一种电场增强效应的铟镓砷太赫兹探测器的制作方法

文档序号:7110368阅读:399来源:国知局
专利名称:一种电场增强效应的铟镓砷太赫兹探测器的制作方法
技术领域
本发明涉及太赫兹探测领域,具体涉及一种电场增强效应的铟镓砷太赫兹探测器。
背景技术
太赫兹波段是介于微波毫米波与红外之间的电磁波段,其频率范围和波长范围分别为O. ITHz-IOTHz, 3mm—30 μ m0此前,人们对太赫兹波段的研究很少,该波段也一直被称为THz Gap。近年来,由于不断发现太赫兹波在材料,通信,生物化学,安全检测,空间遥感等领域上的巨大应用潜力,使得国内外的研究者对其研究热度大大提高。在太赫兹技术上,太赫兹探测技术是太赫兹科学与技术中最具应用前景的发展方向之一。由于太赫兹波的光子能量很小以及大气对太赫兹波段的强烈吸收,使得目前太赫兹探测器的发展较为缓 慢。近年来,基于不同原理,使用不同探测材料制作的太赫兹探测器有了较大的发展。目前,太赫兹探测技术主要是有直接探测器和相干探测器两种,相干探测器如肖特基二极管混频器SBD、超导体一绝缘体一超导体隧道混频器SIS、半导体/超导体热电子bolometer混频器HEB虽然具有高的转换效率和低的噪声,但是由于需要使用本地振荡源,使得其结构较为复制,并且它们多数需要工作在深低温度。而现在一些常见的直接探测器如高莱探测器,热释电探测器虽然可以工作在室温,但是其响应时间较慢,很难应用于太赫兹实时成像。本发明充分考虑到了实际太赫兹探测器对于响应时间,工作温度,结构难易,信噪比的要求,设计了一种基于电场增强效应的铟镓砷太赫兹探测器,具有响应时间短,室温工作,结构简单紧凑等优点,可对太赫兹信号进行直接探测,并且通过改变探测器的结构尺寸还可以改变探测器所探测的中心波长范围。该探测器基于电场增强效应,选用组分适当的铟镓砷材料,设计合理可行的耦合天线结构,进行光刻,腐蚀,溅射等工艺制作,使用前置放大器进行放大读出,从而实现对于太赫兹信号的探测。

发明内容
针对目前太赫兹相干探测器需要本地太赫兹振荡光源,深低温工作,结构复杂,成本较高而直接探测响应时间较长,信噪比较低等缺点,本发明提出一种基于电场增强效应的铟镓砷太赫兹探测器,通过天线耦合显著提高了探测器的探测灵敏度,该探测器便于大规模集成,使得多元探测成为可能。本发明采用的技术方案为—种电场增强效应的铟镓砷太赫兹探测器,其原理示意简图如附图一所示,由磷化铟衬底I上依次生长磷化铟层2、InxGa1^xAs层3、右掺杂InyGai_yAs层4和左掺杂InyGa1^As层5、右惨杂InzGa1=As层6和左惨杂InzGa1=As层7、正电极层8和负电极层9组成。通过光刻、腐蚀、套刻、溅射等工艺形成所需探测器尺寸结构,右电极层8和左电极层9通过点焊金属导线与前放电路连接来传递所探测信号。
磷化铟衬底层I是磷化铟InP材料,厚度为O. 5—1. 5mm。磷化铟缓型层2是磷化铟材料,其作用是使后续材料生长更加匹配,减小晶格失配率,其厚度为50-150nm。铟镓砷InxGahAs层3是铟镓砷InxGapxAs材料,其x值为O. 537,厚度为2000-3000nm,其作用是通过自由载流子来吸收太赫兹信号。铟镓砷InxGahAs层3通过金属有机化学气相沉积MOCVD或者是分子束外延MBE方法生长在磷化铟缓型层2上。右掺杂铟镓砷InyGapyAs层4和左掺杂铟镓砷InyGapyAs层5厚度为50— 150nm ;掺杂浓度为2\1018—1父1019011_3,右掺杂铟镓砷InzGa1=As层6和左掺杂铟镓砷InzGapzAs层7厚度为250— 350nm ;掺杂浓度为I X IO19— 8 X 1019cnT3,y和z值都为O. 526,掺杂元素都为硅Si。其作用是作为窗口层分别与右电极层8和左电极层9形成欧姆接触。·
右电极层8和左电极层9为派射锡金合金,厚度为350—450nm。作用是将探测器与前放电路连接起来,并且也用作耦合天线将太赫兹信号耦合至探测器以提高太赫兹波的吸收效率。右电极层8和左电极层9示意简图如附图二,在附图二对称结构中,正负电极指向对称中心的四个顶点D与右掺杂InzGahAs层6和左掺杂InzGai_zAs层7的边缘四个顶点重合且使其表面连接。与电极相关尺寸如下D点距离探测器左边或者右边的距离为ml等于三分之一中心台阶的宽度m,m的大小为30— 70um。探测器的尺寸mXn小于100X100 μ m2。正负电极尺寸为sXt, s的大小为O. 2—1. 2mm当s和t中有一个距离取定值时,另一个距离为探测器所探测波长的四分之一。本发明具有如下优点I、探测器可在室温环境下工作,通过适当制冷还可提高探测器的性能。2、天线耦合结构可提高探测器对太赫兹信号的耦合效率,提高探测器的信噪比。3、探测器结构简单紧凑,便于大规模集成,发展多元探测器件。4、探测波段较宽,可达O. 1-5THZ。5、探测灵敏度高,响应时间快。


附图I为探测器原理示意简图。附图2为对称电极示意简图。附图中标号为1为憐化钢衬底、2为憐化钢缓型层、3为钢嫁神InxGahAs层、4为铟镓砷右掺杂InyGai_yAs窗口层、5为铟镓砷左掺杂InyGai_yAs窗口层、6为铟镓砷右掺杂InzGa1^zAs窗口层、7为铟镓砷左掺杂InzGai_zAs窗口层、8为右电极层,9为左电极层。
具体实施例方式以下结合附图I对本发明进行进一步详述附图I为本探测器结构示意简图。太赫兹光子信号被InxGahAs材料中的自由载流子吸收以后,自由载流子被加热从而改变了产生一复合过程,使得载流子浓度发生改变,引起铟镓砷InxGahAs材料的电阻值发生变化,而在金属和半导体介质的接触处,由于麦克斯韦方程的连续性使得界面两侧产生巨大的电场差异,且由于电极耦合天线的作用进一步使得铟镓砷InxGahAs材料对太赫兹信号的吸收增强,通过金属导线将信号与前放电路连接,将铟镓砷InxGahAs材料电阻值的变化转换成电压变化信号而进行放大检出,从而可以实现对太赫兹信号的探测。依照附图一结构,制作了三个实示例探测器实示例探测器I为O. 5mm磷化铟衬底上依次生长厚度为50nm的磷化铟缓型层,厚度为2000nm, x值为O. 537的InxGa1^xAs层,厚度为50nm, y值为O. 526,掺杂硅浓度为2 X IO1W3的右掺杂InyGai_yAs层和左掺杂InyGallAs层,厚度为250nm,z值为O. 526,掺杂硅浓度为IX IO19CnT3的右掺杂InzGa1Js层和左掺杂InzGa1Js层,厚度为350nm的正电极层和左电极层。该器件电极尺寸m值为30um, s值为lmm, t值为O. 5mm。实示例探测器2为Imm磷化铟衬底上依次生长厚度为IOOnm的磷化铟缓型层,厚度为2500nm, x值为O. 537的InxGa1^xAs层,厚度为IOOnm, y值为O. 526,掺杂硅浓度为6 X 1018cm_3的右掺杂InyGapyAs层和左掺杂InyGapyAs层,厚度为300nm, z值为O. 526,掺杂硅浓度为4X IO19CnT3的右掺杂InzGa1Js层和左掺杂InzGa1Js层,厚度为400nm的正电极层和左电极层。该器件电极尺寸m值为50um, s值为O. 5mm, t值为O. 2mm。 实示例探测器3为I. 5mm磷化铟衬底上依次生长厚度为150nm的磷化铟缓型层,厚度为3000nm, x值为O. 537的InxGa1^xAs层,厚度为150nm, y值为O. 526,掺杂硅浓度为I X 1019cm_3的右掺杂InyGapyAs层和左掺杂InyGapyAs层,厚度为350nm, z值为O. 526,掺杂硅浓度为8 X IO19CnT3的右掺杂InzGa1Js层和左掺杂InzGa1Js层,厚度为450nm的正电极层和左电极层。该器件电极尺寸m值为70um, s值为O. 2mm, t值为O. lmm。
权利要求
1.一种电场增强效应的铟镓砷太赫兹探测器,其特征在于所述的探测器结构为在磷化铟衬底(I)上依次生长磷化铟层(2)、InxGahAs层(3)、右掺杂InyGapyAs层(4)和左掺杂InyGa^yAs层(5)、右掺杂InzGa^zAs层(6)和左掺杂InzGa^zAs层(7)以及正电极层(8)和负电极层(9);其中 所述的磷化铟衬底(I)厚度为O. 5—1. 5mm ; 所述的磷化铟缓型层(2)厚度为50— 150nm ; 所述的InxGahAs层(3)的厚度为2000— 3000nm,其x值为O. 537 ; 所述右掺杂InyGa^yAs层(4)和左掺杂InyGapyAs层(5)的厚度为50—150nm,掺杂为Si,浓度大小为 2X IO18— I X 1019cnT3,y 值为 O. 526 ; 所述的右掺杂InzGa1=As层(6)和左掺杂InzGa^zAs层(7)厚度为250— 350nm,掺杂为Si,浓度大小为 I X 1019—8X 1019cnT3,z 值为 O. 526 ; 所述的正电极层(8)和负电极层(9)厚度为350— 450nm,由金和锡溅射而成,用来兼做耦合天线和正负电极,该电极层覆盖在右掺杂InzGahAs层(4),左掺杂InzGai_zAs层(5),右掺杂InyGapyAs层(6)和左掺杂InyGapyAs层(7)和InxGapxAs层(3)形成的台阶的两侧表面和两侧边缘,并在接触处形成欧姆接触,而大部分的电极层都溅射在台阶两侧的表面上;右电极层(8 )和左电极层(9 )围绕探测器中心线两边成对称分布,对称分布结构中,正负电极指向对称中心的四个顶点D与右掺杂InzGahAs层(6)和左掺杂InzGai_zAs层(7)的边缘四个顶点重合且使其表面连接。
2.根据权利要求I所述的一种电场增强的铟镓砷太赫兹探测器,其特征在于所述的正电极(8)和负电极(9)的尺寸为对称中心四个顶点D距离探测器左边或者右边的距离为ml等于三分之一对称中心台阶的宽度m, m的大小为30—70um ;探测器的尺寸ml Xn小于100X 100 μ m2 ;正负电极尺寸为sX t,s的大小为O. 2—1. 2mm,当s和t中有一个距离取定值时,另一个距离为探测器所探测波长的四分之一。
全文摘要
本发明公开一种电场增强效应的铟镓砷太赫兹探测器,该探测器由磷化铟衬底上依次生长磷化铟缓型层,铟镓砷本征层,掺杂铟镓砷层和正负电极金属层构成。该探测器基于不同材料界面电场增强效应,选用组分适当的铟镓砷材料,通过有限元方法模拟计算,设计合理的天线耦合结构,通过前放电路对太赫兹信号进行放大读出,从而实现太赫兹信号的探测。具有可室温工作,探测灵敏度高,结构简单紧凑以及可大规模集成等优点,可以对太赫兹波信号进行成像检测。
文档编号H01L31/0224GK102938422SQ20121040547
公开日2013年2月20日 申请日期2012年10月22日 优先权日2012年10月22日
发明者黄志明, 童劲超, 黄敬国, 褚君浩 申请人:中国科学院上海技术物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1