一种铜铟镓硒太阳电池器件及其制备方法

文档序号:10577687阅读:662来源:国知局
一种铜铟镓硒太阳电池器件及其制备方法
【专利摘要】一种铜铟镓硒太阳电池器件,为基于聚酰亚胺膜?苏打玻璃复合衬底的铜铟镓硒太阳电池,由玻璃、聚酰亚胺、钼背接触层、铜铟镓硒吸收层、硫化镉缓冲层、透明窗口层高阻本征氧化锌薄膜、透明窗口层低阻氧化锌铝薄膜和银上电极组成并形成叠层结构,其制备方法是:首先将聚酰亚胺胶涂于玻璃表面,固化成聚酰亚胺膜?苏打玻璃复合衬底,然后依次在其表面依次制备各层薄膜,在完整的铜铟镓硒太阳电池制备完成后,将其与苏打玻璃衬底分离,得到以聚酰亚胺膜为衬底的柔性铜铟镓硒太阳电池。本发明的优点是:该种基于聚酰亚胺膜?苏打玻璃复合衬底的铜铟镓硒薄膜结晶晶粒大;其制备方法是以钢性衬底制备柔性电池,易于实施,有利于大规模的推广应用。
【专利说明】
一种铜铟镓砸太阳电池器件及其制备方法
技术领域
[0001]本发明涉及薄膜太阳电池技术领域,特别是一种基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓砸太阳电池器件及其制备方法。
【背景技术】
[0002]铜铟镓砸材料(CIGS)属于1-1I1-VI族四元化合物半导体,具有黄铜矿的晶体结构。铜铟镓砸薄膜太能电池自20世纪70年代出现以来,得到非常迅速的发展,并将逐步实现产业化。此电池有以下特点:1)铜铟镓砸的禁带宽度可以在1.04eV-1.67eV范围内调整;2)铜铟镓砸是一种直接带隙半导体,对可见光的吸收系数高达15Cnf1,铜铟镓砸吸收层厚度只需1.5-2.5μηι,整个电池的厚度为3-4μηι; 3)抗福照能力强,比较适合作为空间电源;4)转换效率高,2014年德国太阳能和氢能研究中心(ZSW)研制的小面积铜铟镓砸太阳电池转换效率已高达21.7% ;5)弱光特性好。因此铜铟镓砸多晶薄膜太阳电池有望成为下一代太阳电池的主流产品之一。
[0003]航空航天领域需要太阳电池有较高的质量比功率,即希望单位质量的太阳电池能发出更多的电量。对于地面光伏建筑物的曲面造型和移动式的光伏电站等要求太阳电池具有柔性、可折叠性和不怕摔碰,这就促进了柔性太阳电池的发展。由于相对较强的耐高温能力和较为适合的膨胀系数,聚酰亚胺(PI)在其中脱颖而出。
[0004]然而聚酰亚胺的热膨胀系数还是无法与铜铟镓砸材料本身很好的匹配。在温度较高时,聚酰亚胺会产生较大的形变,导致铜铟镓砸薄膜较为疏松,容易脱落。所以,目前基于聚酰亚胺衬底的铜铟镓砸制备时衬底温度较低。从而导致生长出的薄膜结晶质量较差、晶粒细小、缺陷较多,增加了载流子的复合,缩短了少子的寿命,进而影响了电池性能。

【发明内容】

[0005]本发明的目的是针对上述存在问题,提供了一种铜铟镓砸太阳电池器件及其制备方法,该太阳电池器件为基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓砸太阳电池,其以钢性衬底制备柔性电池,基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓砸薄膜结晶质量好,晶粒大,缺陷少。
[0006]本发明的技术方案:
[0007]—种铜铟镓砸太阳电池器件,为基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓砸太阳电池,由玻璃、聚酰亚胺、钼背接触层、铜铟镓砸吸收层、硫化镉缓冲层、透明窗口层高阻本征氧化锌薄膜、透明窗口层低阻氧化锌铝薄膜和银上电极组成并形成叠层结构,其中衬底由苏打玻璃及生长于其表面的聚酰亚胺膜构成,苏打玻璃的厚度为1.5-2mm,聚酰亚胺膜厚度为25_30μπι;钼背接触层包括高阻层薄膜和低阻层薄膜,其中高阻层薄膜的厚度为80-120nm,低阻层薄膜的厚度为600-700nm;铜铟镓砸吸收层的化学分子式为CuIm-xGaxSe2,式中X为0.25-0.35,导电类型为P型,薄膜厚度为1.5-2μπι;硫化镉缓冲层的的导电类型为η型,厚度为45-50nm;透明窗口层包括高阻本征氧化锌薄膜和低阻氧化锌铝薄膜,导电类型为n型,本征氧化锌薄膜的厚度为50-100nm,氧化锌错薄膜的厚度为0.4-0.6M1;银上电极薄膜的厚度为0.8-1.5mi。
[0008]一种所述铜铟镓硒太阳电池器件的制备方法,首先将聚酰亚胺胶涂于苏打玻璃表面,固化成聚酰亚胺膜-苏打玻璃复合衬底,其次在其表面依次制备钼背接触层、铜铟镓硒吸收层、硫化镉缓冲层、透明窗口层和上电极,在完整的铜铟镓硒太阳电池制备完成后,将其与苏打玻璃衬底分离,得到以聚酰亚胺膜为衬底的柔性铜铟镓硒太阳电池。
[0009]所述聚酰亚胺膜-苏打玻璃复合衬底的制备方法,步骤如下:
[0010]1)对苏打玻璃进行表面清洗,清洗方法是:
[0011]首先将10cmx l〇cm的苏打玻璃放入重铬酸钾溶液中浸泡2h,重铬酸钾溶液由300 克重铬酸钾、3升浓硫酸和300毫升去离子水配置而成,将苏打玻璃取出用去离子水冲洗后置于浓度为99.5w%的丙酮溶液中,放入超声波清洗机中清洗,超声波频率为20-30kHz,时间为20-25min,然后将苏打玻璃从丙酮溶液中取出,用去离子水冲洗后置于浓度为99.7w% 的酒精中,放入超声波清洗机中清洗超声波频率为20_30kHz,时间为20-25min,最后将苏打玻璃从酒精中取出,放入盛有去离子水的烧杯中,放入超声波清洗机中清洗3遍,超声波频率为20-30kHz,时间为20-25min;
[0012]2)将聚酰亚胺胶涂覆于苏打玻璃表面,采用匀胶工艺进行匀胶,工艺参数为:转速为 1300-1500r/min,时间为 35-45s;[〇〇13]3)将匀胶后的样品放入烘箱内进行固化,即可得到聚酰亚胺膜-苏打玻璃复合衬底,所述固化工艺的升温保温程序为:烘箱温度升温至125-135°C,升温时间为10_15min,并在125-135 °C下维持25-30min;将烘箱温度升温至150-160 °C,升温时间为5-10min,并在 150-160°C下维持10-15min;将烘箱温度升温至200-210°C,升温时间为5-10min,并在200-210°C下维持15-20min;将烘箱温度升温至250-260°C,升温时间为5-10min,并在250-260°C 下维持15-20min;将烘箱温度升温至340-350°C,升温时间为5-10min,并在340-350°C下维持10-15min,然后缓慢降温至18-25°C,即可得到聚酰亚胺膜-苏打玻璃复合衬底。。[〇〇14]所述钼背接触层薄膜的制备方法,采用直流磁控溅射系统制备,将待制备样品置于直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的钼为靶材,采用射频磁控溅射工艺在衬底表面依次分别沉积高阻钼薄膜和低阻钼薄膜,其中:[〇〇15]1)沉积高阻钼薄膜工艺参数为:本底真空3.0 X l(T4Pa,工作气压l_2Pa,衬底温度25-50°C,射频功率500-700W,Ar气流量30-50sccm,基靶行走速度4-6mm/s,沉积时间以基靶的往复次数计为2-4次;[〇〇16]2)沉积低阻薄膜的工艺参数为:本底真空3.0 X 10-4Pa,工作气压为0-0.5Pa,衬底温度为室温25-50°C,射频功率为1500-2000W,Ar气流量为15-20sccm,基靶行走速度为4-6mm/s,沉积时间以基革E的往复次数计为4-6次。
[0017]所述铜铟镓硒吸收层薄膜的制备方法,采用硒化炉薄膜制备系统和共蒸发三步法制备工艺,步骤如下:
[0018]1)将待制备样品置于共蒸发系统中,在本底真空为3.0 Xl(T4Pa、衬底温度为550-595°C下,共蒸发In、Ga、Se预置层,其中In蒸发源温度为860-875°C,Ga蒸发源温度为920-935°C,Se蒸发源温度为520-535°C,蒸发时间为5-15min,控制In/Ga的原子比例为0.7:0.3, (111+6&)/36的原子比例为2:3;
[0019]2)在衬底温度为550-595°C下,共蒸发Cu、Se,其中Cu蒸发源温度为1160-1175°C,Se蒸发源温度为520-535°C,蒸发时间为15-20min;
[0020]3)在衬底温度保持步骤2)的温度不变条件下,共蒸发Cu、In、Ga、Se,其中In蒸发源温度为860-875°C,Ga蒸发源温度为920-935 °C,Se蒸发源温度为520-535 °C,蒸发时间为3-6min,得到稍微富Cu的铜铟镓砸P型黄铜矿结构;
[0021]4)保持衬底温度同2)、3)不变,共蒸发111、6&、56,其中111蒸发源温度为860-875°(:,Ga蒸发源温度为920-940 °C,Se蒸发源温度为520-535 °C,蒸发时间为3-15min,控制Cu/(In+Ga)的原子比例为0.88-0.92 ;
[0022]5)将衬底冷却至18_25°C即可。
[0023]所述硫化镉缓冲层的制备方法,采用化学水浴法制备工艺,步骤如下:
[0024]I)制备反应液:首先配置浓度为0.0lmol/L硫脲溶液1L,配置醋酸镉和醋酸氨混合溶液IL,其中醋酸镉溶液浓度为0.00 lmol/L,醋酸氨溶液浓度为0.003mol/L,氨水溶液浓度为1.3 X 10—3mol/L,然后将硫脲溶液25mL、醋酸镉和醋酸氨混合溶液25mL和氨水溶液4滴混合并搅拌均匀,制得反应液;
[0025]2)将反应液加入放有样品的烧杯中并将烧杯放入水浴锅内,水浴温度设置为75-80 0C,反应时间为15-20min;
[0026]3)反应完成后,用去离子水冲洗干净残留于样品硫化镉缓冲层表面的未反应成膜的硫化镉颗粒即可。
[0027]所述透明窗口层的高阻本征氧化锌薄膜和低阻氧化锌铝薄膜的制备方法,采用射频磁控溅射系统制备,步骤如下:
[0028]I)高阻本征氧化锌薄膜的制备
[0029]将待制备样品置于射频磁控溅射沉积系统的沉积室中,以纯度为99.99%的1-ZnO为靶材,采用射频磁控溅射工艺在衬底表面沉积本征氧化锌薄膜,工艺参数为:本底真空3.0X 10—4Pa,衬底温度25-50 °C,射频功率400W,Ar气流量80sccm,O2气流量I sccm,溅射时间为13min;
[0030]2)低阻氧化锌铝薄膜的制备
[0031]将待制备样品置于在射频磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO: Al为靶材,采用射频磁控溅射工艺在衬底表面沉积ZnO: Al薄膜,工艺参数为:本底真空3.0X 10—4Pa,衬底温度100-120°C,射频功率500W,Ar气流量70sccm,溅射时间为10min。
[0032]所述银上电极的制备方法,采用丝网印刷的方法制备,步骤如下:
[0033]I)将待制备样品置于真空吸附平台上,使待制样品保持平整状态,选择相应掩膜板悬架于待制样品上方,调整掩膜板位置,铺平银浆,开始印刷。
[0034]2)印刷完成后取下掩膜板,将制备好的样品置于固化装置当中,使其在相应工艺温度下完全固化,取出即可。
[0035]本发明的技术原理分析:
[0036]为了满足制备结晶质量较好、晶粒较大、缺陷较少的铜铟镓砸柔性薄膜太阳电池的要求,必须选用衬底柔软、轻便、热膨胀系数与铜铟镓砸薄膜较为匹配的衬底。聚酰亚胺膜-苏打玻璃复合衬底可以依托苏打玻璃与铜铟镓砸吸收层薄膜热膨胀系数较为接近的特点,在复合衬底上制备铜铟镓砸薄膜太阳电池。之后再将薄膜太阳电池以聚酰亚胺为衬底从苏打玻璃表面分离,得到柔性铜铟镓硒薄膜太阳电池,实现以钢性衬底制备柔性太阳电池的设计。
[0037]所述基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓硒太阳电池的技术优势:
[0038]1)将聚酰亚胺胶涂于玻璃表面,可以较好改善衬底的粗糙度;
[0039]2)聚酰亚胺本身的热膨胀系数较大,不能很好地与铜铟镓硒材料本身进行匹配, 在较高温度下容易变形,导致薄膜疏松,极易脱落,而生长于玻璃表面的聚酰亚胺,依靠与玻璃之间的附着力,使其不易发生较大形变,与铜铟镓硒材料更加匹配;
[0040]3)由于与玻璃接触,不易发生形变,可以给予聚酰亚胺较为接近其耐温上限的温度,有助于铜铟镓硒薄膜更好的生长;
[0041]4)其表面生长的铜铟镓硒薄膜结晶质量好、晶粒大、缺陷少;。
[0042]5)在完整的铜铟镓硒太阳电池制备完成后,将其从玻璃上分离,就可以制备出具有较大柱状晶粒的柔性铜铟镓硒太阳电池。[〇〇43]本发明的优点是:该种基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓硒太阳电池吸收层薄膜结晶质量好、晶粒大、缺陷少,利用钢性衬底制备柔性太阳电池;其制备方法简单、易于实施,有利于大规模的推广应用,尤其在太空及特殊场合中具有极其重要的应用前景。【附图说明】
[0044]附图为该铜铟镓硒太阳电池的结构示意图。【具体实施方式】
[0045]为了使本技术领域的人员更好地理解本发明方案,下面结合附图和实施方式对本发明作进一步的详细说明。[〇〇46] 实施例1:[〇〇47] 一种铜铟镓硒太阳电池器件,为基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓硒太阳电池,如图1所示,由玻璃、聚酰亚胺、钼背接触层、铜铟镓硒吸收层、硫化镉缓冲层、透明窗口层高阻本征氧化锌薄膜、透明窗口层低阻氧化锌铝薄膜和银上电极组成并形成叠层结构,其中衬底由苏打玻璃及生长于其表面的聚酰亚胺膜构成,苏打玻璃的厚度为2mm,聚酰亚胺膜厚度为25wn;钼背接触层包括高阻层薄膜和低阻层薄膜,其中高阻层薄膜的厚度为100nm,低阻层薄膜的厚度为600nm;铜铟镓硒吸收层的化学分子式为CuIm-xGaxSe2,式中x 为0.3,导电类型为p型,薄膜厚度为1.5WH;硫化镉缓冲层的的导电类型为n型,厚度为45nm; 透明窗口层包括高阻本征氧化锌薄膜和低阻氧化锌铝薄膜,导电类型为n型,本征氧化锌薄膜的厚度为70nm,氧化锌铝薄膜的厚度为0.6mi;银上电极薄膜的厚度为lwii。[〇〇48]所述铜铟镓硒太阳电池器件的制备方法,首先将聚酰亚胺胶涂于苏打玻璃表面, 固化成聚酰亚胺膜-苏打玻璃复合衬底,其次在其表面依次制备钼背接触层、铜铟镓硒吸收层、硫化镉缓冲层、透明窗口层和上电极,在完整的铜铟镓硒太阳电池制备完成后,将其与苏打玻璃衬底分离,得到以聚酰亚胺膜为衬底的柔性铜铟镓硒太阳电池。
[0049]所述聚酰亚胺膜-苏打玻璃复合衬底的制备方法,步骤如下:
[0050]1)对苏打玻璃进行表面清洗,清洗方法是:[0051 ]首先将1cmXlOcm的苏打玻璃放入重铬酸钾溶液中浸泡2h,重铬酸钾溶液由300克重铬酸钾、3升浓硫酸和300毫升去离子水配置而成,将苏打玻璃取出用去离子水冲洗后置于浓度为99.5w%的丙酮溶液中,放入超声波清洗机中清洗,超声波频率为20kHz,时间为25min,然后将苏打玻璃从丙酮溶液中取出,用去离子水冲洗后置于浓度为99.7w%的酒精中,放入超声波清洗机中清洗超声波频率为20kHz,时间为25min,最后将苏打玻璃从酒精中取出,放入盛有去离子水的烧杯中,放入超声波清洗机中清洗3遍,超声波频率为20kHz,时间为25min;
[0052]2)将聚酰亚胺胶涂覆于苏打玻璃表面,采用匀胶工艺进行匀胶,工艺参数为:转速为 1300r/min,时间为45s;
[0053]3)将匀胶后的样品放入烘箱内进行固化,即可得到聚酰亚胺膜-苏打玻璃复合衬底,所述固化工艺的升温保温程序为:烘箱温度升温至125°C,升温时间为15min,并在125°C下维持30min;将烘箱温度升温至150°C,升温时间为5min,并在150°C下维持15min;将烘箱温度升温至2000C,升温时间为5min,并在200 °C下维持20min;将烘箱温度升温至250 °C,升温时间为5min,并在250°C下维持20min;将烘箱温度升温至350°C,升温时间为lOmin,并在350°C下维持lOmin,然后缓慢降温至22°C,即可得到聚酰亚胺膜-苏打玻璃复合衬底。
[0054]所述钼背接触层薄膜的制备方法,采用直流磁控溅射系统制备,将待制备样品置于直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的钼为靶材,采用射频磁控溅射工艺在衬底表面依次分别沉积高阻钼薄膜和低阻钼薄膜,其中:
[0055]I)沉积高阻钼薄膜工艺参数为:本底真空3.0 X 10—4Pa,工作气压IPa,衬底温度250C,射频功率600W,Ar气流量40SCCm,基靶行走速度4mm/s,沉积时间以基靶的往复次数计为2次;
[0056]2)沉积低阻薄膜的工艺参数为:本底真空3.0 X 10—4Pa,工作气压为0.1Pa,衬底温度为25°C,射频功率为1500W,Ar气流量为15sccm,基靶行走速度为4mm/s,沉积时间以基靶的往复次数计为6次。
[0057]所述铜铟镓砸吸收层薄膜的制备方法,采用砸化炉薄膜制备系统和共蒸发三步法制备工艺,步骤如下:
[0058]I)将待制备样品置于共蒸发系统中,在本底真空为3.0X 10—4Pa、衬底温度为550°C下,共蒸发In、Ga、Se预置层,其中In蒸发源温度为870°C,Ga蒸发源温度为930°C,Se蒸发源温度为530°C,蒸发时间为5min;
[0059]2)在衬底温度为550°C下,共蒸发In、Ga、Cu、Se,其中In蒸发源温度为870°C,Ga蒸发源温度为930°C,Cu蒸发源温度为1160°C,Se蒸发源温度为530°C,蒸发时间为15min;
[0060]3)在衬底温度保持步骤2)的温度不变条件下,蒸发Cu、Se,其中Cu蒸发源温度为1160°C,Se蒸发源温度为530°C,蒸发时间为6min;
[0061 ] 4)在衬底温度为550°C下,共蒸发In、Ga、Se,其中In蒸发源温度为870°C,
[0062]Ga蒸发源温度为930°C,Se蒸发源温度为530°C,蒸发时间为3min,得到稍微贫Cu的铜铟镓砸P型黄铜矿结构,控制Cu/(In+Ga)的原子比例为0.9;
[0063]5)将衬底冷却,当蒸发Se的同时将衬底冷却到380 V时,关闭Se蒸发源,再将衬底冷却至18-25°C即可。
[0064]所述硫化镉缓冲层的制备方法,采用化学水浴法制备工艺,步骤如下:
[0065]I)制备反应液:首先配置浓度为0.0lmol/L硫脲溶液1L,配置醋酸镉和醋酸氨混合溶液IL,其中醋酸镉溶液浓度为0.00 lmol/L,醋酸氨溶液浓度为0.003mol/L,氨水溶液浓度为1.3 X 10—3mol/L,然后将硫脲溶液25mL、醋酸镉和醋酸氨混合溶液25mL和氨水溶液4滴混合并搅拌均匀,制得反应液;
[0066]2)将反应液放入烧杯中并将烧杯放入水浴锅内,水浴温度设置为75 °C,反应时间为20min;
[0067]3)反应完成后,用去离子水冲洗干净残留于样品硫化镉缓冲层表面的未反应成膜的硫化镉颗粒即可。
[0068]所述透明窗口层的高阻本征氧化锌薄膜和低阻氧化锌铝薄膜的制备方法,采用射频磁控溅射系统制备,步骤如下:
[0069]I)高阻本征氧化锌薄膜的制备
[0070]将待制备样品置于射频磁控溅射沉积系统的沉积室中,以纯度为99.99%的丨-2110为靶材,采用射频磁控溅射工艺在衬底表面沉积本征氧化锌薄膜,工艺参数为:本底真空3.0X 10—4Pa,衬底温度25 °C,射频功率400W,Ar气流量80sccm,O2气流量I sccm,溅射时间为13min;
[0071]2)低阻氧化锌铝薄膜的制备
[0072]将待制备样品置于在射频磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO: Al为靶材,采用射频磁控溅射工艺在衬底表面沉积ZnO: Al薄膜,工艺参数为:本底真空3.0X10—4Pa,衬底温度100°C,射频功率500W,Ar气流量70sccm,溅射时间为10min。
[0073]所述银上电极的制备方法,采用丝网印刷的方法制备,步骤如下:
[0074]I)将待制备样品置于真空吸附平台上,使待制样品保持平整状态,选择相应掩膜板悬架于待制样品上方,调整掩膜板位置,铺平银浆,开始印刷。
[0075]2)印刷完成后取下掩膜板,将制备好的样品置于固化装置当中,使其在相应工艺温度下完全固化,取出即可。
[0076]通过测试表明,所制备的铜铟镓砸太阳电池器件可以形成良好的PN结,产生光生伏特效应,在太阳光照射下可以产生电能。
[0077]实施例2:
[0078]一种铜铟镓砸太阳电池器件,为基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓砸太阳电池,如图1所示,由玻璃、聚酰亚胺、钼背接触层、铜铟镓砸吸收层、硫化镉缓冲层、透明窗口层高阻本征氧化锌薄膜、透明窗口层低阻氧化锌铝薄膜和银上电极组成并形成叠层结构,其中衬底由苏打玻璃及生长于其表面的聚酰亚胺膜构成,苏打玻璃的厚度为2mm,聚酰亚胺膜厚度为30μπι;钼背接触层包括高阻层薄膜和低阻层薄膜,其中高阻层薄膜的厚度为lOOnm,低阻层薄膜的厚度为700nm;铜铟镓砸吸收层的化学分子式为CuIm-xGaxSe2,式中X为0.28,导电类型为P型,薄膜厚度为1.8μπι;硫化镉缓冲层的的导电类型为η型,厚度为50nm;透明窗口层包括高阻本征氧化锌薄膜和低阻氧化锌铝薄膜,导电类型为η型,本征氧化锌薄膜的厚度为80nm,氧化锌铝薄膜的厚度为0.5μπι;银上电极薄膜的厚度为1.2μπι。
[0079]所述铜铟镓砸太阳电池器件的制备方法,与实施例1相同。
[0080]所述聚酰亚胺膜-苏打玻璃复合衬底的制备方法,步骤如下:
[0081 ] I)对苏打玻璃进行表面清洗,清洗方法是:
[0082]首先将lOcmX 10cm的苏打玻璃放入重铬酸钾溶液中浸泡2h,重铬酸钾溶液由300 克重铬酸钾、3升浓硫酸和300毫升去离子水配置而成,将苏打玻璃取出用去离子水冲洗后置于浓度为99.5w%的丙酮溶液中,放入超声波清洗机中清洗,超声波频率为30kHz,时间为 20min,然后将苏打玻璃从丙酮溶液中取出,用去离子水冲洗后置于浓度为99.7w%的酒精中,放入超声波清洗机中清洗超声波频率为30kHz,时间为20min,最后将苏打玻璃从酒精中取出,放入盛有去离子水的烧杯中,放入超声波清洗机中清洗3遍,超声波频率为30kHz,时间为20min;[〇〇83]2)将聚酰亚胺胶涂覆于苏打玻璃表面,采用匀胶工艺进行匀胶,工艺参数为:转速为 1400r/min,时间为40s;[〇〇84]3)将匀胶后的样品放入烘箱内进行固化,即可得到聚酰亚胺膜-苏打玻璃复合衬底,所述固化工艺的升温保温程序为:烘箱温度升温至130°C,升温时间为20min,并在130°C 下维持25min;将烘箱温度升温至160°C,升温时间为lOmin,并在160°C下维持lOmin;将烘箱温度升温至210°C,升温时间为lOmin,并在210°C下维持20min;将烘箱温度升温至260°C,升温时间为lOmin,并在260°C下维持20min;将烘箱温度升温至345°C,升温时间为lOmin,并在 345°C下维持15min,然后缓慢降温至22°C,即可得到聚酰亚胺膜-苏打玻璃复合衬底。
[0085]所述钼背接触层薄膜的制备方法,采用直流磁控溅射系统制备,将待制备样品置于直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的钼为靶材,采用射频磁控溅射工艺在衬底表面依次分别沉积高阻钼薄膜和低阻钼薄膜,其中:
[0086]1)沉积高阻钼薄膜工艺参数为:本底真空3.0 X l(T4Pa,工作气压1.5Pa,衬底温度 25°C,射频功率700W,Ar气流量50sccm,基靶行走速度5mm/s,沉积时间以基靶的往复次数计为4次;[〇〇87]2)沉积低阻薄膜的工艺参数为:本底真空3.0 X l(T4Pa,工作气压为0.5Pa,衬底温度为25°C,射频功率为1800W,Ar气流量为20sccm,基靶行走速度为6mm/s,沉积时间以基靶的往复次数计为6次。
[0088]所述铜铟镓硒吸收层薄膜的制备方法,采用硒化炉薄膜制备系统和共蒸发三步法制备工艺,步骤如下:[〇〇89]2)将待制备样品置于共蒸发系统中,在本底真空为3.0X l(T4Pa、衬底温度为580°C下,共蒸发In、Ga、Se预置层,其中In蒸发源温度为870°C,Ga蒸发源温度为930°C,Se蒸发源温度为530°C,蒸发时间为5min;
[0090]2)在衬底温度为580°C下,共蒸发111、6&、〇1、56,其中111蒸发源温度为870°(:,6&蒸发源温度为930°C,Cu蒸发源温度为1170°C,Se蒸发源温度为530°C,蒸发时间为18min;
[0091]3)在衬底温度保持步骤2)的温度不变条件下,蒸发Cu、Se,其中Cu蒸发源温度为 1170°C,Se蒸发源温度为530°C,蒸发时间为6min;[〇〇92]4)在衬底温度为580°C下,共蒸发111、6&、56,其中111蒸发源温度为860°(:,6&蒸发源温度为920°C,Se蒸发源温度为530°C,蒸发时间为7min,得到稍微贫Cu的铜铟镓硒p型黄铜矿结构,控制Cu/(In+Ga)的原子比例为0.9;
[0093]5)将衬底冷却,当蒸发Se的同时将衬底冷却到380°C时,关闭Se蒸发源,再将衬底冷却至18-25°C即可
[0094]所述硫化镉缓冲层的制备方法,采用化学水浴法制备工艺,步骤如下:
[0095]I)制备反应液:首先配置浓度为0.0lmol/L硫脲溶液1L,配置醋酸镉和醋酸氨混合溶液IL,其中醋酸镉溶液浓度为0.00 lmol/L,醋酸氨溶液浓度为0.003mol/L,氨水溶液浓度为1.3 X 10—3mol/L,然后将硫脲溶液25mL、醋酸镉和醋酸氨混合溶液25mL和氨水溶液4滴混合并搅拌均匀,制得反应液;
[0096]2)将反应液放入烧杯中并将烧杯放入水浴锅内,水浴温度设置为80°C,反应时间为15min;
[0097]3)反应完成后,用去离子水冲洗干净样品残留于硫化镉缓冲层表面的未反应成膜的硫化镉颗粒即可。
[0098]所述透明窗口层的高阻本征氧化锌薄膜和低阻氧化锌铝薄膜的制备方法,采用射频磁控溅射系统制备,步骤如下:
[0099]I)高阻本征氧化锌薄膜的制备
[0100]将待制备样品置于射频磁控溅射沉积系统的沉积室中,以纯度为99.99%的1-ZnO为靶材,采用射频磁控溅射工艺在衬底表面沉积本征氧化锌薄膜,工艺参数为:本底真空3.0X 10—4Pa,衬底温度50°C,射频功率400W,Ar气流量80sccm,O2气流量Isccm,溅射时间为13min;
[0101]2)低阻氧化锌铝薄膜的制备
[0102]将待制备样品置于在射频磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO: Al为靶材,采用射频磁控溅射工艺在衬底表面沉积ZnO: Al薄膜,工艺参数为:本底真空3.0X10—4Pa,衬底温度120°C,射频功率500W,Ar气流量70sccm,溅射时间为10min。
[0103]所述银上电极的制备方法,采用丝网印刷的方法制备,步骤如下:
[0104]I)将待制备样品置于真空吸附平台上,使待制样品保持平整状态,选择相应掩膜板悬架于待制样品上方,调整掩膜板位置,铺平银浆,开始印刷。
[0105]2)印刷完成后取下掩膜板,将制备好的样品置于固化装置当中,使其在相应工艺温度下完全固化,取出即可。
[0106]检测结果与实施例1相同。
[0107]综上所述,为制备高转换效率的柔性铜铟镓砸电池,本发明提供了一种基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓砸太阳电池器件的制备方法,将聚酰亚胺胶涂于苏打玻璃表面,固化成聚酰亚胺膜-苏打玻璃复合衬底,并在其表面制备铜铟镓砸太阳电池,在完整的铜铟镓砸太阳电池制备完成后,将其与苏打玻璃分离,形成以聚酰亚胺膜为衬底的柔性铜铟镓砸太阳电池,实现以钢性衬底制备柔性电池。该制备方法工艺条件方便易行,有利于大规模的推广应用,尤其在太空及特殊场合中具有极其重要的应用前景。
[0108]以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
【主权项】
1.一种铜铟镓砸太阳电池器件,其特征在于:为基于聚酰亚胺膜-苏打玻璃复合衬底的铜铟镓砸太阳电池,由玻璃、聚酰亚胺、钼背接触层、铜铟镓砸吸收层、硫化镉缓冲层、透明窗口层高阻本征氧化锌薄膜、透明窗口层低阻氧化锌铝薄膜和银上电极组成并形成叠层结构,其中衬底由苏打玻璃及生长于其表面的聚酰亚胺膜构成,苏打玻璃的厚度为1.5-2mm,聚酰亚胺膜厚度为25-30μπι;钼背接触层包括高阻层薄膜和低阻层薄膜,其中高阻层薄膜的厚度为80-120nm,低阻层薄膜的厚度为600-700nm;铜铟镓砸吸收层的化学分子式为CuIm 一XGaxSe2,式中X为0.25-0.35,导电类型为p型,薄膜厚度为1.5_2μπι;硫化镉缓冲层的的导电类型为η型,厚度为45-50nm;透明窗口层包括高阻本征氧化锌薄膜和低阻氧化锌铝薄膜,导电类型为η型,本征氧化锌薄膜的厚度为50-100nm,氧化锌招薄膜的厚度为0.4-0.6μηι;银上电极薄膜的厚度为0.8-1.5μπι。2.一种如权利要求1所述铜铟镓砸太阳电池器件的制备方法,其特征在于:首先将聚酰亚胺胶涂于苏打玻璃表面,固化成聚酰亚胺膜-苏打玻璃复合衬底,其次在其表面依次制备钼背接触层、铜铟镓砸吸收层、硫化镉缓冲层、透明窗口层和上电极,在完整的铜铟镓砸太阳电池制备完成后,将其与苏打玻璃衬底分离,得到以聚酰亚胺膜为衬底的柔性铜铟镓砸太阳电池。3.根据权利要求2所述铜铟镓砸太阳电池器件的制备方法,其特征在于:所述聚酰亚胺膜-苏打玻璃复合衬底的制备方法,步骤如下: 1)对苏打玻璃进行表面清洗,清洗方法是: 首先将1cmX 1cm的苏打玻璃放入重铬酸钾溶液中浸泡2h,重铬酸钾溶液由300克重铬酸钾、3升浓硫酸和300毫升去离子水配置而成,将苏打玻璃取出用去离子水冲洗后置于浓度为99.5w %的丙酮溶液中,放入超声波清洗机中清洗,超声波频率为20-30kHz,时间为20-25min,然后将苏打玻璃从丙酮溶液中取出,用去离子水冲洗后置于浓度为99.7w%的酒精中,放入超声波清洗机中清洗超声波频率为20-30kHz,时间为20-25min,最后将苏打玻璃从酒精中取出,放入盛有去离子水的烧杯中,放入超声波清洗机中清洗3遍,超声波频率为20-30kHz,时间为20-25min; 2)将聚酰亚胺胶涂覆于苏打玻璃表面,采用匀胶工艺进行匀胶,工艺参数为:转速为1300-1500r/min,时间为35-45s; 3)将匀胶后的样品放入烘箱内进行固化,即可得到聚酰亚胺膜-苏打玻璃复合衬底,所述固化工艺的升温保温程序为:烘箱温度升温至125-135°C,升温时间为10-15min,并在125-135°C下维持25-30min;将烘箱温度升温至150-160°C,升温时间为5-10min,并在150-160°C下维持10-15min;将烘箱温度升温至200-210 °C,升温时间为5-10min,并在200-2100C下维持15-20min ;将烘箱温度升温至250-260 V,升温时间为5_10min,并在250-260 V下维持15-20min;将烘箱温度升温至340-350°C,升温时间为5-10min,并在340-350°C下维持10-15min,然后缓慢降温至18-25°C,即可得到聚酰亚胺膜-苏打玻璃复合衬底。4.根据权利要求2所述铜铟镓砸太阳电池器件的制备方法,其特征在于:所述钼背接触层薄膜的制备方法,采用直流磁控溅射系统制备,将待制备样品置于直流磁控溅射沉积系统的沉积室中,以纯度为99.99 %的钼为靶材,采用射频磁控溅射工艺在衬底表面依次分别沉积高阻钼薄膜和低阻钼薄膜,其中: I)沉积高阻钼薄膜工艺参数为:本底真空3.0 X 10—4Pa,工作气压l-2Pa,衬底温度25-50°C,射频功率500-700W,Ar气流量30-50sccm,基靶行走速度4-6mm/s,沉积时间以基靶的往复次数计为2_4次; 2)沉积低阻薄膜的工艺参数为:本底真空3.0 X 10—4Pa,工作气压为0-0.5Pa,衬底温度为室温25-500C,射频功率为1500-2000W,Ar气流量为15-20sccm,基靶行走速度为4-6mm/s,沉积时间以基靶的往复次数计为4-6次。5.根据权利要求2所述铜铟镓砸太阳电池器件的制备方法,其特征在于:所述铜铟镓砸吸收层薄膜的制备方法,采用砸化炉薄膜制备系统和共蒸发三步法制备工艺,步骤如下: 1)将待制备样品置于共蒸发系统中,在本底真空为3.0\10—兮&、衬底温度为550-5951€下,共蒸发In、Ga、Se预置层,其中In蒸发源温度为860-875°C,Ga蒸发源温度为920-935°C,Se蒸发源温度为520-535°C,蒸发时间为5_15min,控制In/Ga的原子比例为0.7:0.3,(In+Ga)/Se的原子比例为2:3; 2)在衬底温度为550-595°C下,共蒸发Cu、Se,其中Cu蒸发源温度为1160-1175°C,Se蒸发源温度为520-535°(:,蒸发时间为15-201^11; 3)在衬底温度保持步骤2)的温度不变条件下,共蒸发Cu、In、Ga、Se,其中In蒸发源温度为860-875 °C,Ga蒸发源温度为920-935 °C,Se蒸发源温度为520-535 °C,蒸发时间为3-6min,得到稍微富Cu的铜铟镓砸P型黄铜矿结构; 4)保持衬底温度同2)、3)不变,共蒸发In、Ga、Se,其中In蒸发源温度为860-875V,Ga蒸发源温度为920-940°(:,36蒸发源温度为520-535°(:,蒸发时间为7-151^11,控制(:11/(111+6&)的原子比例为0.88-0.92。6.根据权利要求2所述铜铟镓砸太阳电池器件的制备方法,其特征在于:所述硫化镉缓冲层的制备方法,采用化学水浴法制备工艺,步骤如下: 1)制备反应液:首先配置浓度为0.0lmol/L硫脲溶液IL,配置醋酸镉和醋酸氨混合溶液IL,其中醋酸镉溶液浓度为0.00lmol/L,醋酸氨溶液浓度为0.003mol/L,氨水溶液浓度为1.3 X 10—3mol/L,然后将硫脲溶液25mL、醋酸镉和醋酸氨混合溶液25mL和氨水溶液4滴混合并搅拌均匀,制得反应液; 2)将反应液加入放有样品的烧杯中并将烧杯放入水浴锅内,水浴温度设置为75-80°C,反应时间为15-20min; 3)反应完成后,用去离子水冲洗干净残留于样品硫化镉缓冲层表面的未反应成膜的硫化镉颗粒即可。7.根据权利要求2所述铜铟镓砸太阳电池器件的制备方法,其特征在于:所述透明窗口层的高阻本征氧化锌薄膜和低阻氧化锌铝薄膜的制备方法,采用射频磁控溅射系统制备,步骤如下: 1)高阻本征氧化锌薄膜的制备 将待制备样品置于射频磁控派射沉积系统的沉积室中,以纯度为99.99%的1-ZnO为革巴材,采用射频磁控溅射工艺在衬底表面沉积本征氧化锌薄膜,工艺参数为:本底真空3.0 X10一4Pa,衬底温度25-50°C,射频功率400W,Ar气流量80sccm,O2气流量Isccm,溅射时间为13min; 2)低阻氧化锌铝薄膜的制备 将待制备样品置于在射频磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO:Al为靶材,采用射频磁控溅射工艺在衬底表面沉积ZnO: A1薄膜,工艺参数为:本底真空3.0 X 10一4Pa,衬底温度100-120°C,射频功率500W,Ar气流量70sccm,溅射时间为100min。8.根据权利要求2所述铜铟镓硒太阳电池器件的制备方法,其特征在于:所述银上电极 的制备方法,采用丝网印刷的方法制备,步骤如下:1)将待制备样品置于真空吸附平台上,使待制样品保持平整状态,选择相应掩膜板悬 架于待制样品上方,调整掩膜板位置,铺平银浆,开始印刷。2)印刷完成后取下掩膜板,将制备好的样品置于固化装置当中,使其在相应工艺温度 下完全固化,取出即可。
【文档编号】H01L31/032GK105938857SQ201610333885
【公开日】2016年9月14日
【申请日】2016年7月7日
【发明人】薛玉明, 孙海涛, 宋殿友, 夏丹, 俞兵兵, 冯少君, 张聪, 王玉昆, 张奥
【申请人】天津理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1