薄膜太阳能电池及其制造方法

文档序号:7251940阅读:111来源:国知局
薄膜太阳能电池及其制造方法
【专利摘要】薄膜太阳能电池为了实现点接触,在透明导电膜(4)以及金属背面电极层(2)之间配置薄膜的光吸收层(3),进而,在金属背面电极层(2)与光吸收层(3)的界面中,设置至少包含其表面是绝缘体的纳米粒子(6、6…)的纳米粒子分散层(5)。
【专利说明】薄膜太阳能电池及其制造方法
【技术领域】
[0001]本发明涉及薄膜太阳能电池及其制造方法,特别涉及能够实现高的光电变换效率的薄膜太阳能电池及其制造方法。
【背景技术】
[0002]近年来,以非晶硅或者硫族系化合物为材料的薄膜太阳能电池得到了关注。这样的太阳能电池具有材料费廉价、而且大型的太阳能电池面板的生产容易这样的优良的特性,另一方面,一般其光电变换效率比结晶系太阳能电池劣化,期望进一步的改善。
[0003]在以娃晶片为材料的结晶系太阳能电池中,为了使其光电变换效率进一步提闻,提出了使电极层成为点接触构造并实用化。半导体层与电极层的接触界面是悬挂键以及其他结晶缺陷的密度高、且载流子的再结合速度最快的部分。因此,在以往技术中,使光吸收层(半导体层)和电极层以点接触来减少表面再结合的比例,提高了光电变换效率。具体而言,通过在光吸收层与电极层之间的大部分中,形成作为钝化膜而发挥功能的表面再结合速度小的优质的氧化膜、氮化膜,来实现点接触,降低载流子的再结合比例(例如参照专利文献I)。由此,已知作为太阳能电池特性之一的开放电压变高,光电变换效率提高。
[0004]但是,在现状的薄膜太阳能电池中,上述那样的点接触构造没有实现。在将针对结晶硅太阳能电池的上述技术例如应用于CIS系薄膜太阳能电池的情况下,需要在半导体层与电极层之间形成缺陷 少的绝缘膜,但没有实现形成这样的绝缘膜的技术。虽然有通过今后的技术革新实现的可能性,但即使在该情况下,制造工序复杂化,导致制造成本增加。
[0005]因此,在薄膜太阳能电池中,如果能够实现在光吸收层与电极层之间易于形成的点接触构造,则不会导致制造成本增加,而实现薄膜太阳能电池的光电变换效率的提高。
[0006]【专利文献I】日本特开平9-283779
[0007]【专利文献2】日本特开2009-246025

【发明内容】

[0008]因此,本发明的目的在于实现一种具备在光吸收层与电极层之间易于形成的点接触的薄膜太阳能电池。
[0009]为了解决所述课题,在本发明的第I方案中,提供一种薄膜太阳能电池,在透明导电膜以及金属背面电极层之间配置了薄膜的光吸收层,其特征在于,在所述金属背面电极层与所述光吸收层的界面中,设置有包含至少其表面为绝缘体的纳米粒子的纳米粒子分散层。
[0010]在第I方案中,所述纳米粒子可以是整体由所述绝缘体形成的粒子、内部为中空的粒子、或者将金属粒子的表面用所述绝缘体包覆的粒子中的任意一个。在这种情况下,所述绝缘体可以是二氧化硅、氧化铝、氮化硅或者钠钙玻璃中的任意一个。另外,在所述绝缘体的折射率小于所述光吸收层的折射率的情况下,所述纳米粒子的粒径能够设为IOOnm以上500nm以下。[0011]进而,在所述纳米粒子是将金属粒子的表面用所述绝缘体包覆的粒子的情况下,所述纳米粒子的粒径能够设为IOOnm以下。在该情况下,所述金属粒子是Au、Ag或者Cu。
[0012]进而,也可以将所述纳米粒子分散层形成于所述金属背面电极层与所述光吸收层之间的界面的所述光吸收层侧。或者,也可以将所述纳米粒子分散层形成于所述金属背面电极层与所述光吸收层之间的界面的所述金属背面电极层侧。
[0013]为了解决所述课题,在本发明的第2方案中,提供一种薄膜太阳能电池的制造方法,其特征在于,包括如下各步骤:在基板上形成金属背面电极层,将至少包含表面为绝缘体的纳米粒子的溶液涂覆于所述金属背面电极层表面并使其干燥,从而在所述金属背面电极层上形成纳米粒子分散层,在包含所述纳米粒子分散层的所述金属背面电极层上形成薄膜的P型光吸收层,在所述光吸收层上形成η型透明导电膜。
[0014]在第2方案中,也可以用Mo构成所述金属背面电极层,用化合物半导体构成所述P型光吸收层。
[0015]为了解决所述课题,在本发明的第3方案中,提供一种薄膜太阳能电池的制造方法,具备如下各步骤:在透明基板上形成透明导电膜,在所述透明导电膜上形成至少包括Pn结的薄膜的光吸收层,将包含至少表面为绝缘体的纳米粒子的溶液涂覆于所述光吸收层表面并使其干燥,从而在所述光吸收层上形成纳米粒子分散层,在包含所述纳米粒子分散层的所述光吸收层上形成金属背面电极层。
[0016]在第2、第3方案中,所述纳米粒子能够设为整体由所述绝缘体形成的粒子、内部为中空的粒子、或者将金属粒子的表面用所述绝缘体包覆的粒子中的某一个。
[0017]另外,在所述纳米粒子是将金属粒子的表面用所述绝缘体包覆的粒子的情况下,也可以使所述纳米粒子的粒径成为IOOnm以下。
[0018]进而,也可以使所述绝缘体成为二氧化硅、氧化铝、氮化硅或者钠钙玻璃中的某一个。
[0019]根据本发明,在金属背面电极层与P型光吸收层的界面中,形成表面包含绝缘体的纳米粒子的纳米粒子分散层,由此,金属背面电极层与P型光吸收层的接触面积被大幅限制,能够实现点接触。通过该点接触,金属背面电极层与P型光吸收层之间的界面中的载流子的再结合速度大幅降低,通过入射光生成的载流子不会再结合而高效地到达各电极,所以薄膜太阳能电池的光电变换效率提高。进而,在纳米粒子表面的绝缘体的折射率小于光吸收层的折射率的情况下,通过使纳米粒子的粒径成为IOOnm以上,纳米粒子分散层作为BSR (Back Surface Reflector)构造而发挥功能,使薄膜太阳能电池的光电变换效率进一步提闻。
[0020]另外,例如,在通过用绝缘膜包覆了金(Au)或者银(Ag)粒子的纳米粒子形成纳米粒子分散层的情况下,通过使纳米粒子的粒径成为IOOnm以下,在纳米粒子分散层中发生表面等离子体激元共振,薄膜太阳能电池的光电变换效率进一步提高。
[0021]通过在金属背面电极层上或者光吸收层上,涂覆包含纳米粒子的溶液并使其干燥,能够容易地形成纳米粒子分散层。因此,通过本发明,能够在薄膜太阳能电池中简单地实现点接触。
【专利附图】

【附图说明】[0022]图1是示出本发明的实施方式I的CIS系薄膜太阳能电池的概略结构的剖面图。
[0023]图2 Ca)是示出图1所示的CIS系薄膜太阳能电池的制造工序的一部分的图。
[0024]图2 (b)是不出图2 (a)所不的制造工序之后的工序的图。
[0025]图2 (C)是示出图2 (b)所示的制造工序之后的工序的图。
[0026]图3 Ca)是示出图1所示的CIS系薄膜太阳能电池的制造工序的一部分、且图2(C)所不的制造工序之后的工序的图。
[0027]图3 (b)是示出图3 (a)所示的制造工序之后的工序的图。
[0028]图4是示出本发明的实施方式2的非晶硅薄膜太阳能电池的概略结构的图。
[0029]【符号说明】
[0030]1:基板;2:金属背面电极层;3:CIS系P型光吸收层;4:透明导电膜;5:纳米粒子分散层;6:纳米粒子;10:透明基板;11:透明导电膜;12:p型非晶硅层;13:i型非晶硅层;14:n型非晶硅层;15:纳米粒子分散层;16:纳米粒子;17:金属背面电极层。
【具体实施方式】
[0031]以下,参照附图,说明本发明的各种实施方式。另外,关于在以下的附图中记载为概略图的部分,为了易于理解,用与实际不同的大小来表示各层的关系。另外,在各附图中,同一符号表不同一或者类似的构成要素。
[0032][实施方式I]
[0033]图1是示出本发明的第I实施方式的、基底构造的薄膜太阳能电池的概略构造的剖面图,特别,示出了作为P型光吸收层使用了 CIS系半导体的薄膜太阳能电池的构造。在图中,I是基板,由玻璃、塑料、金属板等构成。2是以Mo、T1、Cr等为材料的金属背面电极层,3是由CIS系半导体构成的P型光吸收层,4是以Ζη0、ΙΤ0等为材料的η型透明导电膜,构成该太阳能电池的窗层。另外,也可以在P型光吸收层3与n型透明导电膜4之间,设置以Zn (0、S、0H)、CdS、In2S3等为材料的高电阻缓冲层。P型光吸收层3由Cu (In,Ga) Se2,Cu (In、Ga) (Se、S) 2、CuInS2 等构成。
[0034]作为一个例子,金属背面电极层2的层厚是200~500nm,p型光吸收层3的层厚是1.0~1.5 μ m,η型透明导电膜4的膜厚是0.5~2.5 μ m。
[0035]在图1中,5是在金属背面电极层2与P型光吸收层3的界面中设置的纳米粒子分散层,通过使至少其表面由绝缘体形成的、具有IOnm~500nm程度的粒径的纳米粒子6、6…分散于金属背面电极层2上而形成。纳米粒子分散层5中的纳米粒子6的金属背面电极层2表面的覆盖率(界面覆盖率)成为20%~95%程度。纳米粒子分散层5是通过在金属背面电极层2上涂覆含有纳米粒子的溶液(例如纯水)并使其干燥而形成的。界面覆盖率能够通过调节溶液中的纳米粒子浓度来控制。
[0036]P型光吸收层3是在金属背面电极层2上形成了纳米粒子分散层5之后形成的。因此,金属背面电极层2与P型光吸收层3之间的接触面积由于纳米粒子分散层5中的纳米粒子6的存在而被限制,显著变小。相伴于此,P型光吸收层3与金属背面电极层2的界面中的载流子的表面再结合速度也降低。其结果,通过该构造在金属背面电极侧实现点接触。
[0037]另外,作为包覆纳米粒子6的绝缘体、或者构成纳米粒子6自身的绝缘体,能够使用二氧化硅(Si02)、氧化铝(A1203)、氮化硅(Si3N4)或者钠钙玻璃,它们在形成CIS系光吸收层3的情况的热处理温度(500°C?700°C)中不熔融而稳定。
[0038]作为纳米粒子6,根据需要,能够使用以下所示的方式I?方式3的例子。
[0039][方式I]
[0040]方式I的纳米粒子6是由单一的物质、例如氧化铝、二氧化硅、SLG (钠钙玻璃)、氮化硅的绝缘体形成的纳米粒子,为了产生点接触效果,使其直径成为IOnm?500nm程度。作为这样的纳米粒子,能够使用市面销售的商品(例如参照http://www.sigmaaldrich.com/japan/materialscience/nano-materials/nanopowders.html)。
[0041]在图1所示的CIS系薄膜太阳能电池的情况下,CIS系P型光吸收层3的折射率是
3.0程度,并且,包覆纳米粒子的氧化铝(A1203)、二氧化硅(SiO2)、钠钙玻璃的折射率是1.5前后,氮化硅的折射率是2.0前后,所以由方式I的纳米粒子构成的纳米粒子分散层5具备背面反射(BSR)功能。为了有效地得到BSR功能,优选使纳米粒子6的粒径成为IOOnm以上。
[0042]S卩,在方式I的纳米粒子中,通过使用粒径为IOOnm以上的例子,能够通过纳米粒子分散层5与点接触效果一起期待背面反射效果,能够使薄膜太阳能电池的光电变换效率进一步提闻。
[0043][方式2]
[0044]方式2的纳米粒子6是用氧化铝、二氧化硅、SLG、氮化硅等包覆金属(例如Au、Ag、Cu)的纳米粒子,使粒子表面成为绝缘体的例子,为了产生点接触效果,使粒子径成为IOnm?500nm程度。这样的纳米粒子通过使其粒子径成为IOOnm以下(相对入射光的波长充分小的大小),能够在纳米粒子分散层5中,期待在可见区域中发生表面等离子体激元共振。如果在纳米粒子分散层5中发生表面等离子体激元共振,则局部地发生大的电场而使光的强度增加,发生大的光电流。其结果,光的吸收效率增大,太阳能电池的光电变换效率提高(参照专利文献2的段落[0017])。因此,通过用粒径为IOOnm以下的方式2的纳米粒子形成纳米粒子分散层5,能够与点接触效果一起通过表面等离子体激元效果,使薄膜太阳能电池的光电变换效率进一步提高。关于用二氧化硅等绝缘物包覆了金属粒子的方式2的纳米粒子以及其表面等离子体激元共振,能够参照例如http://www.chem.tsukuba.ac.jp/teranisi/research/Opt.html。
[0045][方式3]
[0046]方式3的纳米粒子6是由中空的绝缘体(例如氧化铝、二氧化硅、SLG、氮化硅等)构成的纳米粒子。通过使用粒径为IOnm?500nm这样的纳米粒子来形成纳米粒子分散层5,能够在金属电极层侧得到点接触效果。另外,在CIS系薄膜太阳能电池、CZTS系薄膜太阳能电池中,通过用粒径为IOOnm以上的方式3的纳米粒子形成纳米粒子分散层5,能够与点接触效果一起得到背面反射效果,能够使薄膜太阳能电池的光电变换效率进一步提高。关于方式 3 白勺纳米粒子,记载于例如 http://www.nittetsukou.c0.jp/rdd/tech/tech_silinax.html 中。
[0047][制造方法]
[0048]参照图2以及图3,说明图1所示的基底构造的CIS系薄膜太阳能电池的制造方法。[0049]如图2 (a)所示,首先,在玻璃、塑料、金属板等的基板I上,通过DC溅射等形成Mo等的金属背面电极层2。金属背面电极层2的膜厚是200~500nm。通过在金属背面电极层2的表面上涂覆含有纳米粒子的溶液(例如纯水)并使其干燥,如图2 (b)所示,形成纳米粒子分散层5。纳米粒子分散层5中的各纳米粒子6、6…所致的金属背面电极层2表面的覆盖率是20%~95%。能够通过溶液中含有的纳米粒子的浓度控制,实现期望的覆盖率。
[0050]接下来,如图2 (C)所示,为了形成CIS系P型光吸收层3,首先,通过溅射堆积CuGa层3a,之后,通过派射同样地堆积In层3b,形成金属先质(precursor)膜30。CuGa层3a也可以在派射源中使用CuGa来形成。进而,金属先质膜30也可以不使用Ga而用Cu和In形成、或者也可以将Cu-Ga-1n形成为溅射源。
[0051]针对如以上那样形成的金属先质膜30,接下来,进行硒化/硫化。首先,将形成了金属先质膜30的基板收容到反应炉内并导入用N2气体等稀释的H2Se气体,之后,使基板升温至400°C程度,从而促使CuGa、In和Se的反应。在进行金属先质膜30的硫化的情况下,在硒化之后,将H2Se气体改变为稀释H2S气体而催促硒化物的硫化。其结果,如图3 (a)所示,Cu (In、Ga) Se2、Cu (In、Ga) (Se、S) 2等的p型光吸收层3形成于纳米粒子分散层5和金属背面电极层2上。CIS系P型光吸收层3的层厚一般是1.0~1.5 μ m。
[0052]另外,为了在形 成之后的CIS系薄膜太阳能电池中得到高的光电变换效率,CIS系P型光吸收层3需要包含Na等碱性金属。因此,需要在形成金属先质膜时在溅射材料中预先混入Na、或者在形成了金属先质膜之后在该膜中添加Na。或者,也可以通过用SLG(钠钙玻璃)形成基板1,从基板I在P型光吸收层3中供给Na。进而,在用SLG形成纳米粒子6的情况下,纳米粒子6还成为向P型光吸收层3的Na的供给源。
[0053]接下来,如图3 (b)所示,在CIS系P型光吸收层3上,通过溅射等形成以Ζη0、ΙΤ0等为材料的η型透明导电膜4,作为窗层。另外,也可以在CIS系P型光吸收层3与η型透明导电膜4之间,设置以Zn (O、S、OH)、CdS, In2S3等为材料的高电阻缓冲层。η型透明导电膜4的膜厚一般是0.5~2.5 μ m。
[0054]另外,关于参照图2以及图3说明的薄膜太阳能电池,用CIS系半导体构成了 P型光吸收层3,但也可以将其用CZTS系半导体构成。CZTS是包含Cu、Zn、Sn、S的、I2-11-1V-VI4族化合物半导体,作为代表性的例子,有Cu2ZnSnS4等。进而,还能够用CdTe等I1-VI族化合物半导体构成光吸收层。
[0055]在上述实施方式I所示的基底构造(在基板上依次层叠了金属背面电极层、光吸收层、透明导电膜的构造)的薄膜太阳能电池中,在金属背面电极上形成纳米粒子的分散层,在其上依次对P型光吸收层、透明导电膜进行制膜,所以P型光吸收层是以在表面有凹凸的纳米粒子分散层为基底而形成的。因此,在制膜之后的P型光吸收层的表面中,受到作为基底的纳米粒子分散层表面的影响,同样地形成凹凸。通过该凹凸,从受光面侧入射并透射了透明导电膜的光被P型光吸收层表面反射而再次向外部放射的比例降低,更多的光达到P型光吸收层内。作为其结果,薄膜太阳能电池的发电效率进一步提高。
[0056][实施方式2]
[0057]图4是示出本发明的实施方式2的、顶衬构造的薄膜太阳能电池的概略构造的剖面图,特别,示出用非晶硅构成的薄膜太阳能电池的构造。在图4中,10表示玻璃等的透明基板,11表不ITO等的透明导电I旲,12表不P型非晶娃层,13表不i型非晶娃层,14表不η型非晶硅层。透明导电膜11是在基板上通过溅射等对ITO膜进行制膜而形成的。P型非晶硅层12、i型非晶硅层13以及η型非晶硅层14构成光吸收层,是通过等离子体CVD等在透明导电膜11上分别对P、1、η型的非晶硅进行制膜而形成的。
[0058]15是在η型非晶硅层14上形成的纳米粒子分散层。层15是通过在η型非晶硅层14上涂覆包含纳米粒子16、16…的溶液(例如纯水)并使其干燥而形成的。界面覆盖率优选为20%~95%,通过调节溶液中的粒子浓度,能够控制覆盖率。如果形成了纳米粒子分散层15,则在其上,对Ag、Al等进行溅射来形成金属背面电极层17,而完成非晶硅薄膜太阳能电池。
[0059]在图4的顶衬构造的薄膜太阳能电池中,入射光从基板10侧经由透明导电膜11入射到p-1-n光吸收层中。
[0060]本实施方式的纳米粒子16、16…可取与实施方式I的纳米粒子6、6…同样的方式
1、方式2以及方式3。但是,在顶衬构造中,用Au、Al等光反射性的金属形成了金属背面电极层17,所以电极层17自身具有背面反射功能。因此,无需如第I实施方式那样,为了得到背面反射功能,使纳米粒子16、16...的粒径成为IOOnm以上。
[0061]在实施方式2的薄膜太阳能电池中,如图4所示,在p-1-n光吸收层与金属背面电极层17的界面的金属背面电极层17侧,形成了纳米粒子分散层15,所以p-1-n光吸收层与金属背面电极层17的接触面积大幅减少,作为其结果,与第I实施方式的薄膜太阳能电池的情况同样地,在界面中形成点接触。由此,该薄膜太阳能电池的光电变换效率大幅提高。另外,通过利用粒径为IOOnm以下的方式2的纳米粒子形成纳米粒子分散层15,在界面中产生表面等离子体激元共振,入射光的吸收率增加而能够得到高的光电变换效率。
[0062]另外,在实施方式I以及实施方式2这两者中,关于表面等离子体激元共振对太阳能电池的光电变换效率波及的影响,记载于上述专利文献2的特别是段落(0017)中。
[0063]另外进而,在实施方式I中,作为P型光吸收层3使用了由1-1I1-VI2族化合物构成的半导体层,但本发明不限于这样的薄膜太阳能电池。例如,在利用CdTe等I1-VI族化合物半导体的薄膜太阳能电池等中,通过在光吸收层与金属背面电极层之间形成与上述实施方式I同样的纳米粒子分散层,能够在金属背面电极层侧实现点接触来提高开放电压。进而,在实施方式2中,作为光吸收层,示出了非晶硅的p-1-n构造,但也可以代替非晶硅而使用微晶娃,也可以是由CdTe、CdS等I1-VI族化合物半导体构成的p_n构造。
【权利要求】
1.一种薄膜太阳能电池,在透明导电膜以及金属背面电极层之间配置了薄膜的光吸收层,其特征在于:在所述金属背面电极层与所述光吸收层的界面中,设置了包含至少其表面为绝缘体的纳米粒子的纳米粒子分散层。
2.根据权利要求1所述的薄膜太阳能电池,其特征在于:所述纳米粒子是整体由所述绝缘体形成的粒子、内部为中空的粒子、或者将金属粒子的表面用所述绝缘体包覆的粒子之中的某一个。
3.根据权利要求2所述的薄膜太阳能电池,其特征在于:所述绝缘体是二氧化硅、氧化招、氮化娃或者钠钙玻璃之中的某一个。
4.根据权利要求2或者3所述的薄膜太阳能电池,其特征在于:在所述绝缘体的折射率小于所述光吸收层的折射率的情况下,所述纳米粒子的粒径是IOOnm以上500nm以下。
5.根据权利要求2所述的薄膜太阳能电池,其特征在于:在所述纳米粒子是将金属粒子的表面用所述绝缘体包覆的粒子的情况下,所述纳米粒子的粒径是IOOnm以下。
6.根据权利要求5所述的薄膜太阳能电池,其特征在于:所述金属粒子是Au、Ag或者Cu。
7.根据权利要求1至6 中的任意一项所述的薄膜太阳能电池,其特征在于:所述纳米粒子分散层形成于所述金属背面电极层与所述光吸收层之间的界面的所述光吸收层侧。
8.根据权利要求1至6中的任意一项所述的薄膜太阳能电池,其特征在于:所述纳米粒子分散层形成于所述金属背面电极层与所述光吸收层之间的界面的所述金属背面电极层侧。
9.一种薄膜太阳能电池的制造方法,其特征在于具备如下各步骤: 在基板上形成金属背面电极层; 将包含至少表面为绝缘体的纳米粒子的溶液涂覆于所述金属背面电极层表面并使其干燥,从而在所述金属背面电极层上形成纳米粒子分散层; 在包含所述纳米粒子分散层的所述金属背面电极层上形成薄膜的P型光吸收层;以及 在所述光吸收层上形成η型透明导电膜。
10.根据权利要求9所述的薄膜太阳能电池的制造方法,其特征在于:所述金属背面电极层由Mo构成,所述P型光吸收层由化合物半导体构成。
11.一种薄膜太阳能电池的制造方法,其特征在于具备如下各步骤: 在透明基板上形成透明导电膜; 在所述透明导电膜上形成至少包括Pn结的薄膜的光吸收层; 将包含至少表面为绝缘体的纳米粒子的溶液涂覆于所述光吸收层表面并使其干燥,从而在所述光吸收层上形成纳米粒子分散层;以及 在包含所述纳米粒子分散层的所述光吸收层上形成金属背面电极层。
12.根据权利要求9至11中的任意一项所述的薄膜太阳能电池的制造方法,其特征在于:所述纳米粒子是整体由所述绝缘体形成的粒子、内部为中空的粒子、或者将金属粒子的表面用所述绝缘体包覆的粒子之中的某一个。
13.根据权利要求12所述的薄膜太阳能电池的制造方法,其特征在于:在所述纳米粒子是将金属粒子的表面用所述绝缘体包覆的粒子的情况下,所述纳米粒子的粒径是IOOnm以下。
14.根据权利要求9至13中的任意一项所述的薄膜太阳能电池的制造方法,其特征在于:所述绝缘体是二 氧化硅、氧化铝或者钠钙玻璃中的某一个。
【文档编号】H01L31/0445GK103765606SQ201280042191
【公开日】2014年4月30日 申请日期:2012年8月23日 优先权日:2011年9月2日
【发明者】杉本广纪 申请人:昭和砚壳石油株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1