使用离子注入制造太阳能电池发射极区的制作方法

文档序号:11237278阅读:1202来源:国知局
使用离子注入制造太阳能电池发射极区的制造方法与工艺

本公开的实施例属于可再生能源领域,并且具体地讲,涉及使用离子注入制造太阳能电池发射极区的方法,以及所得太阳能电池。



背景技术:

光伏电池(常被称为太阳能电池)是熟知的用于将太阳辐射直接转换为电能的装置。一般来讲,使用半导体加工技术在基板的表面附近形成p-n结,从而在半导体晶片或基板上制造太阳能电池。照射在基板表面上并进入基板内的太阳辐射在基板块体中形成电子和空穴对。电子和空穴对迁移至基板中的p掺杂区域和n掺杂区域,从而在掺杂区域之间产生电压差。将掺杂区连接至太阳能电池上的导电区,以将电流从电池引导至与其耦接的外部电路。

效率是太阳能电池的重要特性,因其直接与太阳能电池发电能力有关。同样,制备太阳能电池的效率直接与此类太阳能电池的成本效益有关。因此,提高太阳能电池效率的技术或提高制造太阳能电池效率的技术是普遍所需的。本公开的一些实施例允许通过提供制造太阳能电池结构的新工艺而提高太阳能电池的制造效率。本公开的一些实施例允许通过提供新型太阳能电池结构来提高太阳能电池效率。

附图说明

图1a至图1g示出了根据本公开的实施例的太阳能电池制造中的各个阶段的剖视图。

图2为根据本公开的实施例的流程图,该流程图列出了与图1a至图1g相对应的制造太阳能电池的方法中的操作。

图3a示出了根据本公开的实施例的经过修改的第一注入区的剖视图,该第一注入区使用相同尺寸的对准狭缝图案形成。

图3b示出了根据本公开的实施例的经过修改的第一注入区的剖视图,该第一注入区使用相同尺寸的未对准狭缝图案形成。

图3c示出了根据本公开的实施例的经过修改的第一注入区的剖视图,该第一注入区使用更小(例如,更窄)尺寸的狭缝图案形成。

图4示意性地示出了根据本公开的实施例的图案化注入的内嵌式平台的剖视图,该图案化注入涉及移动晶片和静止遮蔽掩模。

图5示意性地示出了根据本公开的另一实施例的图案化注入的另一内嵌式平台的剖视图,该图案化注入涉及移动晶片和静止遮蔽掩模。

图6为根据本公开的另一实施例的流程图,该流程图列出了与图5的内嵌式平台相对应的制造太阳能电池的方法中的操作。

图7a和图7b分别示出了根据本公开的实施例的由材料叠堆层制造成的狭缝掩模的成角度视图和剖视图。

具体实施方式

以下具体实施方式本质上只是例证性的,并非意图限制所述主题的实施例或此类实施例的应用和用途。如本文所用,词语“示例性”意指“用作实例、例子或举例说明”。本文描述为示例性的任何实施未必理解为相比其他实施优选的或有利的。此外,并不意图受前述技术领域、背景技术、

技术实现要素:
或以下具体实施方式中提出的任何明示或暗示的理论的约束。

本说明书包括提及“一个实施例”或“实施例”。短语“在一个实施例中”或“在实施例中”的出现不一定是指同一实施例。特定的特征、结构或特性可以任何与本公开一致的合适方式加以组合。

术语。以下段落提供存在于本公开(包括所附权利要求书)中的术语的定义和/或语境:

“包括”。该术语是开放式的。如在所附权利要求书中所用,该术语并不排除其他结构或步骤。

“被构造成”。各个单元或部件可被描述或声明成“被构造成”执行一项或多项任务。在这样的语境下,“被构造成”用于通过指示该单元/部件包括在操作期间执行一项或多项那些任务的结构而暗示结构。因此,即使当指定的单元/部件目前不在操作(例如,未开启/激活)时,也可将该单元/部件说成是被构造成执行任务。详述某一单元/电路/部件“被构造成”执行一项或多项任务明确地意在对该单元/部件而言不援用35u.s.c.§112第六段。

“第一”、“第二”等。如本文所用的这些术语用作其之后的名词的标记,而并不暗示任何类型的顺序(例如,空间、时间和逻辑等)。例如,提及“第一”太阳能电池并不一定暗示该太阳能电池为某一序列中的第一个太阳能电池;相反,术语“第一”用于区分该太阳能电池与另一个太阳能电池(例如,“第二”太阳能电池)。

“耦接”—以下描述是指元件或节点或结构特征被“耦接”在一起。如本文所用,除非另外明确指明,否则“耦接”意指一个元件/节点/特征直接或间接连接至另一个元件/节点/特征(或直接或间接与其连通),并且不一定是机械连接。

“阻止”—如本文所用,阻止用于描述减小影响或使影响降至最低。当组件或特征被描述为阻止行为、运动或条件时,它可以完全防止某种结果或后果或未来的状态。另外,“阻止”还可以指减少或减小可能会发生的某种后果、表现和/或效应。因此,当组件、元件或特征被称为阻止结果或状态时,它不一定完全防止或消除该结果或状态。

此外,以下描述中还仅为了参考的目的使用了某些术语,因此这些术语并非意图进行限制。例如,诸如“上部”、“下部”、“上方”或“下方”之类的术语是指附图中提供参考的方向。诸如“正面”、“背面”、“后面”、“侧面”、“外侧”和“内侧”之类的术语描述部件的某些部分在一致但任意的参照系内的取向和/或位置,通过参考描述所讨论的部件的文字和相关的附图可以清楚地了解所述取向和/或位置。这样的术语可包括上面具体提及的词语、它们的衍生词语以及类似意义的词语。

本文描述了使用离子注入制造太阳能电池发射极区的方法,以及所得太阳能电池。在下面的描述中,给出了许多具体细节,诸如具体的工艺流程操作,以便提供对本公开的实施例的透彻理解。对本领域的技术人员将显而易见的是,可在没有这些具体细节的情况下实施本公开的实施例。在其他情况中,没有详细地描述熟知的制造技术,诸如平版印刷和图案化技术,以避免不必要地使本公开的实施例难以理解。此外,应当理解在图中示出的多种实施例是示例性的展示并且未必按比例绘制。

本文公开了制造太阳能电池的方法。在一个实施例中,制造太阳能电池的交替n型和p型发射极区的方法涉及在基板上方形成硅层。该方法还涉及注入第一导电类型的掺杂物杂质物质到硅层中以形成第一注入区,并产生硅层的未注入区。该方法还涉及将辅助杂质物质注入硅层的第一注入区中,该辅助杂质物质不同于第一导电类型的掺杂物杂质物质。该方法还涉及将第二相反导电类型的掺杂物杂质物质注入硅层的未注入区的部分中以形成第二注入区,并产生硅层的剩余未注入区。该方法还涉及利用选择性蚀刻工艺移除硅层的剩余未注入区,保留第一注入区的至少一部分并且保留硅层的第二注入区。该方法还涉及对硅层的第一注入区和第二注入区进行退火,以形成掺杂多晶硅发射极区。

在另一个实施例中,制造太阳能电池的交替的n型和p型发射极区的方法涉及在基板上方形成硅层。该方法还涉及注入第一导电类型的掺杂物杂质物质到硅层中以形成第一注入区,并产生硅层的未注入区。该方法还涉及修改硅层的第一注入区的浅表面。该修改过程通过使辅助杂质物质的前体(不同于第一导电类型的掺杂物杂质物质)流动来进行。该方法还涉及将第二相反导电类型的掺杂物杂质物质注入硅层的未注入区的部分中以形成第二注入区,并产生硅层的剩余未注入区。该方法还涉及利用选择性蚀刻工艺移除硅层的剩余未注入区,保留第一注入区的至少一部分并且保留硅层的第二注入区。该方法还涉及对硅层的第一注入区和第二注入区进行退火,以形成掺杂多晶硅发射极区。

本文还公开了太阳能电池。在一个实施例中,背接触太阳能电池包括具有光接收表面和背表面的晶体硅基板。第一多晶硅发射极区设置在晶体硅基板上方。第一多晶硅发射极区掺杂有第一导电类型的掺杂物杂质物质,并且还包括不同于第一导电类型的掺杂物杂质物质的辅助杂质物质。第二多晶硅发射极区设置在晶体硅基板上方,并且与第一多晶硅发射极区相邻但分开。第二多晶硅发射极区掺有第二相反导电类型的掺杂物杂质物质。第一导电触点结构和第二导电触点结构分别电连接到第一多晶硅发射极区和第二多晶硅发射极区。

本文还公开了用于制造太阳能电池的装置。在一个实施例中,用于制造太阳能电池的发射极区的内嵌式工艺装置包括第一工位,该第一工位被构造成将第一导电类型的掺杂物杂质原子注入穿过第一遮蔽掩模并进入设置在基板上方的材料层的第一区内。该内嵌式工艺装置还包括第二工位,该第二工位被构造成将辅助杂质物质注入穿过第二遮蔽掩模并进入材料层的第一区内。该内嵌式工艺装置还包括第三工位,该第三工位被构造成将第二不同导电类型的掺杂物杂质原子注入穿过第三遮蔽掩模并进入材料层的第二不同区内。在一个此类实施例中,第一工位被构造成注入磷或砷原子或离子,第三工位被构造成注入硼原子或硼离子,并且第二工位被构造成注入一种物质,所述物质诸如但不限于氮原子或氮离子、碳原子或氮离子或者氧原子或氧离子。

本文所述的一个或多个实施例提供了用于制造高效率、全背接触太阳能电池器件的简化工艺流程,该流程涉及使用离子注入技术来生成n+(例如,通常为磷掺杂或砷掺杂)和p+(例如,通常为硼掺杂)多晶硅发射极层中的一者或两者。在一个实施例中,制造方法涉及使用离子注入将所需掺杂物类型的原子以及辅助原子引入发射极层中,以引起发射极层的湿法蚀刻特性充分变化,以便允许其在选择性湿法蚀刻移除发射极层的所有未注入区期间用作掩模。一个或多个实施例涉及针对高效率太阳能电池制造的一体化图案化离子注入和表面改性的硬件和对应工艺。一个或多个实施例提供用于使用图案化离子注入技术生成(和隔离)独立的n和p掺杂多晶硅(polysi)指状物发射极的有效工艺操作节约方法,所述发射极覆盖高效率太阳能电池的背面。

为了提供背景,当前可实施叉指背接触(ibc)处理方案来有效生成被掺杂氧化物层覆盖的图案化扩散区。将此类结构图案化以生成纹理耐蚀刻掩模,穿过该掩模在与进行正面纹理化的相同时间形成沟槽隔离n和p掺杂发射极。虽然采用图案化离子注入替换来自图案化氧化物层的扩散的概念可能看上去简单明了,但除非与提供自对准蚀刻选择性的方法相结合,否则此类方法对于制造具有掺杂多晶硅发射极区的高效率太阳能电池结构可能为不可行的。对于使用磷注入物的方法而言可能尤其如此。

为了解决上述问题中的一者或多者,根据本公开的实施例,通过进行彼此略微偏置的磷(或砷)和硼的图案化离子注入并且在两者间留有未注入空隙,而形成最终具有掺杂多晶硅发射极区的太阳能电池的一维指状物结构。在磷(或砷)注入后,进行氮离子、氧离子或碳离子(或包含这些元素的带正电分子簇)的第二自对准(例如,穿过相同掩模图案)较浅注入。在与磷(或砷)相同的区域中进行此类辅助(或“从属”)物质的注入,以便修改注入区的表面并增加对碱性纹理浴的耐蚀刻性。由于仅硼注入会大幅度增加耐蚀刻性,因此具有p+较窄从属掺杂物分布的多晶硅膜的第一区(例如,注入线)与具有硼掺杂物分布的多晶硅膜的第二区(例如,注入线)相互交叉的组合可经历既定的纹理蚀刻工艺流程。此类蚀刻工艺可在将晶片的正面(向阳面)纹理化的同时移除未注入多晶硅(例如,介于注入指状物之间)的区域。此外,描述了新硬件平台,该平台可单程进行所有三项图案化和对准注入操作。上述方法和其他方法以及硬件平台在下文有更详细地描述。

在将注入引起的蚀刻选择性用于自对准沟槽形成的例子性工艺流程中,图1a至图1g示出了根据本公开的实施例的太阳能电池制造中的各个阶段的剖视图。图2为根据本公开的实施例的流程图200,该流程图列出了与图1a至图1g相对应的制造太阳能电池的方法中的操作。

参见图1a和流程图200的对应操作202,制造太阳能电池的交替的n型发射极区和p型发射极区的方法涉及在设置于基板102上的薄氧化物层104上形成硅层106。

在一个实施例中,基板102为单晶硅基板,诸如块体单晶n型掺杂硅基板。然而,应当理解,基板102可以是设置在整个太阳能电池基板上的层,诸如多晶硅层。再次参见图1a,在一个实施例中,如图所示,基板102的光接收表面101为纹理化的,如下文更详细所述。在一个实施例中,薄氧化物层为厚度约2纳米或更小的隧道介电氧化硅层。

在一个实施例中,硅层106为非晶硅层。在一个此类实施例中,非晶硅层使用低压化学气相沉积(lpcvd)或等离子体增强化学气相沉积(pecvd)形成。然而,在替代的实施例中,使用多晶硅层代替非晶硅层。

参见图1b和流程图200的对应操作204,将第一导电类型的掺杂物杂质物质注入硅层106中,以形成第一注入区108并产生硅层的未注入区109(即,在工艺中的此阶段尚未注入的硅层106的剩余部分)。

在一个实施例中,通过使用离子束注入或等离子体浸渍注入来进行注入。在一个实施例中,该第一注入为硅提供n+掺杂物原子(例如,磷原子或砷原子)。在具体的此类实施例中,注入磷原子或砷原子或者磷离子或砷离子涉及注入,以在硅层106中形成大约在1e19-1e20个原子/cm3范围内的磷原子或砷原子的浓度。

再次参见操作204,在一个实施例中,穿过第一遮蔽掩模进行注入,所述注入的例子结合图4有所描述。在一个此类实施例中,穿过具有第一狭缝图案的第一遮蔽掩模注入第一导电类型的掺杂物杂质物质,所述注入的例子结合图7a和图7b有所描述。在一个实施例中,第一遮蔽掩模为布置在硅层106之外但紧邻硅层106的石墨遮蔽掩模。

接着参见图1c和流程图200的对应操作206,将辅助杂质物质注入硅层106的第一注入区108内。辅助杂质物质不同于第一导电类型的掺杂物杂质物质。另外,在一个实施例中,注入辅助杂质物质的对应区以在硅层106中具有比相应的初始第一注入区108深度更小的深度。这样,形成经过修改的第一注入区108’,并且在一个实施例中该经过修改的第一注入区具有仅磷(或砷)的区152的下部部分152并且具有磷(或砷)连同辅助杂质物质的区的上部部分150,如图1c所示。

在一个实施例中,注入第一注入区中的辅助杂质物质为诸如但不限于以下的物质:氮原子或氮离子、碳原子或碳离子、或者氧原子或氧离子。应当理解,术语“离子”可包括含有键合至附加氢原子的掺杂物物质的一个或多个原子的分子离子。在一个实施例中,辅助杂质物质为氮并且通过使用n2或nh3的注入而提供。在一个实施例中,辅助杂质物质为碳并且通过使用ch4或碳氢化合物诸如乙炔或可能的甲基硅烷的注入而提供。在一个实施例中,辅助杂质物质为氧并且通过使用n2或o2的注入而提供。

在一个实施例中,通过使用离子束注入或等离子体浸渍注入来进行注入。在一个实施例中,该第二注入最终在硅层106的n+区的上部部分中提供氮原子、碳原子或氧原子。在具体的此类实施例中,注入所述第二注入在硅层106中形成大约在1e19-1e21个原子/cm3范围内的氮原子、碳原子或氧原子的浓度。在一个实施例中,辅助杂质物质的分布主要位于硅层106的表面下方头1000埃以内。

再次参见操作206,在一个实施例中,穿过第二遮蔽掩模进行注入,所述注入的例子结合图4有所描述。在一个此类实施例中,穿过具有第一狭缝图案的第二遮蔽掩模注入辅助杂质物质。该第一狭缝图案可与结合操作204所述的以上第一狭缝图案相同或略有修改,如下文更详细地描述。在一个实施例中,第二遮蔽掩模为布置在硅层106之外但紧邻硅层106的石墨遮蔽掩模。

如上所述,将辅助杂质物质注入第一注入区108中可在一个实施例中涉及穿过具有第一狭缝图案(即,用于形成初始区108的狭缝图案)的第二遮蔽掩模进行注入。在第一实施例中,第二遮蔽掩模具有与第一狭缝图案相同的狭缝图案,并且狭缝的尺寸与第一遮蔽掩模的狭缝尺寸相同。例如,图3a示出了使用相同尺寸的对准狭缝图案所形成的经过修改的第一注入区108’的剖视图。辅助原子区150与硅层106中的n+区152对准。

然而,图3b示出了使用相同尺寸的未对准狭缝图案所形成的经过修改的第一注入区108’的剖视图。辅助杂质物质区150’与硅层106中的n+区152’未对准。即,辅助杂质物质区150’的一部分形成于n+区152’之内,但辅助杂质物质区150’的一部分形成于n+区152’之外。可能出现的情况是优选地使辅助杂质物质区完全形成于n+区内。

因此,在一个实施例中,图3c示出了使用更小(例如,更窄)尺寸的狭缝图案所形成的经过修改的第一注入区108’的剖视图。辅助杂质物质区150’’比n+区152’’窄并且完全形成于n+区152’’之内。在一个此类实施例中,针对第二掩模中的狭缝使用更窄的尺寸允许存在失准容限,而没有使辅助杂质物质注入n+区之外的风险。

参见图1d和流程图200的对应操作208,将第二导电类型的掺杂物杂质物质注入硅层106中以形成第二注入区110并产生硅层的未注入区112(即,在任一上述注入工艺期间均未显著注入的硅层106的剩余部分)。

如在针对第一注入工艺和第二注入工艺的情况中一样,在一个实施例中,通过使用离子束注入或等离子体浸渍注入来进行注入。在一个实施例中,该第三注入为硅提供p+掺杂物原子(例如,硼原子)。在具体的此类实施例中,注入硼原子或硼离子涉及注入,以在硅层106中形成大约在1e19-1e20个原子/cm3范围内的硼原子的浓度。

再次参见操作208,在一个实施例中,穿过第三遮蔽掩模进行注入,所述注入的例子结合图4有所描述。在一个此类实施例中,穿过具有第二狭缝图案(不同于第一狭缝图案)的第三遮蔽掩模注入第二导电类型的掺杂物杂质物质,所述注入的例子结合图7a和图7b有所描述。在一个此类实施例中,第一狭缝图案和第二狭缝图案一起形成一维交叉指状物图案。如在第一遮蔽掩模和第二遮蔽掩模的情况中一样,在一个实施例中,第三遮蔽掩模为布置在硅层106之外但紧邻硅层106的石墨遮蔽掩模。

参见图1e和流程图200的对应操作210,例如利用选择性蚀刻工艺移除硅层106的剩余未注入区112,从而保留硅层106的经过修改的第一注入区108’和第二注入区110。

在一个实施例中,在操作206中提供用以形成经过修改的第一注入区108’的辅助杂质物质对经过修改的第一注入区108’的蚀刻进行抑制(例如,减慢其蚀刻速率)。在一个此类实施例中,辅助注入物质用来影响蚀刻选择性并且有意地以更低能量注入,以实现更浅的分布(例如,在表面附近)。此外,在后续的湿法和/或干式蚀刻/清洁操作中,可减小或甚至完全消除此类辅助物质的量,特别是在将其包括在内的唯一驱动因素是为了抑制操作210处的n+区蚀刻的情况下。

再次参见图3a和图3c,在一个实施例中,辅助杂质物质的对应区完全位于初始第一注入区108的相应一者内。在一个具体实施例中,仅参见3c,辅助杂质物质的对应区具有比相应第一注入区宽度更小的宽度。在任一种情况下,在一个实施例中,所得蚀刻宽度通过辅助杂质物质区150或150’’的宽度确定,如图3a和图3c所示。就图3c而言,随后,在一个实施例中,移除硅层106的剩余未注入区还包括移除不包括辅助杂质物质的对应区150’’的经过修改的第一注入区108’的剩余部分。出于比较的目的,参见图3b,此类所得蚀刻分布将包括一个区,所述具有辅助杂质物质的区形成于n+区之外。为此原因,可针对上文所述的从属注入考虑使用具有更窄尺寸狭缝的辅助杂质物质注入掩模。

在一个实施例中,利用基于氢氧化物的湿法蚀刻剂移除硅层106的剩余未注入区112,该湿法蚀刻剂进一步移除薄氧化物层104的暴露部分并将沟槽114形成于基板102内。可形成沟槽以使基板102的纹理化部分作为沟槽底部。在一个实施例中,由于沟槽114的布置通过硅层106的第一注入区108’和第二注入区110确定,因此在硅层106的第一注入区108’和第二注入区110之间将沟槽114形成为自对准,如图1e所示。在一个实施例中,基于氢氧化物的湿法蚀刻剂处理之后进行氢氟酸/臭氧(hf/o3)湿法清洁处理。

应当理解,光接收表面101的纹理化和自对准沟槽114形成的时间可有差别。例如,在一个实施例中,在沟槽114的形成/纹理化之前,在单独的工艺中进行光接收表面101的纹理化,如图1a至图1g所示。然而,在另一个实施例中,在与沟槽114的形成/纹理化相同的工艺中进行光接收表面101的纹理化。此外,沟槽114的形成/纹理化的时间可相对于用来使第一注入区108’和第二注入区110结晶的退火工艺而有差别。例如,在一个实施例中,在用于移除硅层106的剩余未注入区112的工艺中进行沟槽114的形成/纹理化,如图1e所示。然而,在另一个实施例中,沟槽114的形成/纹理化在移除硅层106的剩余未注入区112和后续退火工艺之后进行。在一个实施例中,纹理化表面(无论在沟槽114中还是在表面101处)可为具有规则或不规则形状的表面,该表面用于散射入射光,从而减少从太阳能电池的光接收表面和/或暴露表面反射离开的光量。

参见图1f和流程图200的对应操作212,对硅层106的第一注入区108’和第二注入区110进行退火,以分别形成掺杂多晶硅发射极区116和掺杂多晶硅发射极区118。在一个实施例中,在大约850-1100℃范围内的温度下进行退火并使退火持续时间在大约1–100分钟的范围内。在一个实施例中,在加热或退火期间进行少量磷掺杂剂驱动。另外的实施例可包括在光接收表面101上形成钝化或抗反射涂层120,所述形成的例子示于下文所述的图1g中。

应当理解,虽然一般来讲可能最有利的是在进行高温退火和活化工艺之前完成硅层106的未注入区的蚀刻(即,移除),如上文所述,但某些注入条件可导致纹理化蚀刻(例如,如相对于未注入区)中的本征更高的反应性。在此类情况下,可在沟槽蚀刻之前进行高温退火。

参见图1g,导电触点122和导电触点124被制造成分别接触第一掺杂多晶硅发射极区116和第二掺杂多晶硅发射极区118。在一个实施例中,触点通过以下方式制造:首先沉积和图案化绝缘层140以具有开口,并且随后在开口中形成一个或多个导电层。在一个实施例中,导电触点122和导电触点124包含金属并通过沉积、平版印刷和蚀刻方法形成,或作为另外一种选择通过印刷工艺形成。

再次参见图1g,随后,在一个例子性实施例中,背接触太阳能电池包括具有光接收表面101和背表面的晶体硅基板102。第一多晶硅发射极区116设置在晶体硅基板102上方。第一多晶硅发射极区116掺杂有第一导电类型(例如,磷原子或砷原子)的掺杂物杂质物质,并且还包括不同于第一导电类型的掺杂物杂质物质的辅助杂质物质(例如,氮原子、碳原子和/或氧原子)。第二多晶硅发射极区118设置在晶体硅基板102上方,并且与第一多晶硅发射极区116相邻但分开。第二多晶硅发射极区118掺杂有第二相反导电类型(例如,硼原子)的掺杂物杂质物质。第一导电触点结构122和第二导电触点结构124分别电连接到第一多晶硅发射极区116和第二多晶硅发射极区118。

在另一方面,图4示意性地示出了根据本公开的实施例的图案化注入的内嵌式平台的剖视图,该图案化注入涉及移动晶片和静止遮蔽掩模。

参见图4,内嵌式平台400包括用于具有硅层106的输入晶片的晶片输入区。第一工位450被构造成将第一导电类型的掺杂物杂质原子注入穿过第一遮蔽掩模并进入设置在基板上方的材料层106的第一区内。第二工位452被构造成将辅助杂质物质注入穿过第二遮蔽掩模并进入材料层106的第一区内。第三工位454构造成将第二不同导电类型的掺杂物杂质原子注入穿过第三遮蔽掩模并进入材料层106的第二不同区内。在一个具体实施例中,如通过图4的输出晶片所举例说明,第一工位450被构造成注入磷(或作为另外一种选择,砷)原子或离子,第三工位454被构造成注入硼原子或硼离子,并且第二工位452被构造成注入氮原子或氮离子(或作为另外一种选择,碳原子或氮离子或者氧原子或氧离子)。

再次参见图4,将静止模板掩模402,诸如静止石墨掩模,保持为在注入期间邻近但不接触基板。虽然示为具有三个对应狭缝图案的一个掩模,但应当理解,对于模块450、452和454中的每一个而言,通常将使用单独的遮蔽掩模。可通过离子束可准直的程度确定距接收基板的间距的可用距离。典型间距将介于50-250微米之间,它与si太阳能晶片基板大致为相同的厚度数量级。然而,在将遮蔽掩模下边缘下面的发散角(自垂直)降到最小的条件下,间距可高达1000微米(1mm)。在一个实施例中,所得的注入区图案为一维叉指图案。

又如,图5示意性地示出了根据本公开的另一实施例的图案化注入的另一内嵌式平台的剖视图,该图案化注入涉及移动晶片和静止遮蔽掩模。

参见图5,内嵌式平台500包括用于输入晶片的晶片输入区。第一工位550被构造成将第一导电类型的掺杂物杂质原子(例如,磷或砷)注入穿过第一遮蔽掩模并进入设置在基板上方的材料层的第一区内。第二工位554被构造成将第二不同导电类型的掺杂物杂质原子(例如,硼)注入穿过第二遮蔽掩模并进入材料层的第二不同区内。提供了入口552用于错流引入含有c、n或o的前体(例如,ch4或c2h4),从而提供穿过石墨掩模与接收晶片之间的空间所递送的辅助杂质物质。另外,还可包括惰性气体入口556(例如,用于氦气),用于提供惰性气体流,如图5所示。

再次参见图5,类似于图4的内嵌式装置,提供了一种系统用于通过使用辅助杂质物质进行表面修改来赋予n型(p)注入指状物耐蚀刻性(相对于未注入区而言)。然而,与图4的内嵌式装置相比,在不添加第三注入源且不需要相关的额外掩模对准的情况下,提供了“辅助”或从属注入的相同益处或效果。在一个此类实施例中,低流动性的合适前体(例如,甲烷或乙烯)被引入静止石墨掩模(用于磷或砷注入)与晶片之间的狭窄间隙中,从而通过与至少一些入射离子通量的相互作用来实现较窄表面修改。

图6为根据本公开的另一实施例的流程图600,该流程图列出了与图5的内嵌式平台相对应的制造太阳能电池的方法中的操作。

参见流程图600的操作602,制造太阳能电池的交替的n型和p型发射极区的方法涉及在基板上方形成硅层。在操作604中,将第一导电类型的掺杂物杂质物质注入硅层中以形成第一注入区,并产生硅层的未注入区。在操作606中,修改硅层的第一注入区的浅表面。该修改过程通过使辅助杂质物质的前体(不同于第一导电类型的掺杂物杂质物质)流动来进行。在一个此类实施例中,使辅助杂质物质的前体流动涉及错流引入甲烷(ch4)或乙烯(c2h4)。

再次参见流程图600,在操作608中,将第二相反导电类型的掺杂物杂质物质注入硅层的未注入区的部分中以形成第二注入区,并产生硅层的剩余未注入区。在操作610中,利用选择性蚀刻工艺移除硅层的剩余未注入区,保留第一注入区的至少一部分并且保留硅层的第二注入区。在操作610中,对硅层的第一注入区和第二注入区进行退火以形成掺杂多晶硅发射极区。

在一个实施例中,如上所述,可使用模板掩模(诸如静止石墨遮蔽掩模)来进行注入。例如,图4和图5示意性地示出了根据本公开的实施例的用于图案化注入的可能内嵌式平台,该图案化注入涉及静止遮蔽掩模。在任一上述情况下,在一个实施例中,在模板掩模上可能发生一些沉积物或残留物积聚。多次运行之后,可能需要从掩模移除此类沉积物或残留物。应当理解,可针对材料在模板掩模上的过度积聚而确定最佳运行次数以使通量平衡,所述过度积聚可以某种方式影响后面的注入工艺。在一个此类实施例中,特定运行次数之后,通过选择性蚀刻移除所积聚的材料,并且模板掩模随后可被重复使用。

应当理解,可通过在均匀材料样本中形成(例如,切割、蚀刻)狭缝来制造狭缝掩模。然而,另一方面,使用可被切割或蚀刻以在其中提供狭缝图案的材料叠堆层来制造狭缝掩模。例如,图7a和图7b分别示出了根据本公开的实施例的由材料叠堆层制造成的狭缝掩模的成角度视图700和剖视图702。参见图7a和图7b,通过用于制造掩模的单层厚度来确定掩模中狭缝750的尺寸。在一个此类实施例中,各层为彼此堆叠且结合的各硅晶片。

因此,引入目标针对高效率太阳能应用的具有图案化能力的新型高通量离子注入工具可适用于制造叉指背接触(ibc)太阳能电池。具体地讲,在物理和化学变化与进行离子注入操作相关联的情况下,可利用此类注入以允许形成自对准沟槽图案。

总之,虽然上文具体描述了某些材料,但对于仍然在本发明实施例的实质和范围内的其他此类实施例,一些材料可易于被其他材料取代。例如,在一个实施例中,可使用不同材料的基板,诸如iii-v族材料的基板,来代替硅基板。在另一个实施方案中,使用多晶硅基板。此外,应当理解,在针对太阳能电池背表面上的发射极区具体描述n+型和随后p+型掺杂的顺序的情况下,设想的其他实施例包括相反的导电类型顺序,分别为例如p+型和随后n+型掺杂。另外,虽然主要提及背接触太阳能电池布置,但应当理解,本文所述的方法也可应用于前接触电极太阳能电池。一般来讲,可实施本文所述的实施例以针对高效率叉指背接触(ibc)型太阳能电池提供更低成本的高通量离子注入平台。具体实施例可提供用于在通过注入形成的发射极区中生成自对准沟槽的有利方法。

因此,已公开了使用离子注入制造太阳能电池发射极区的方法,以及所得太阳能电池。

尽管上面已经描述了具体实施例,但即使相对于特定的特征仅描述了单个实施例,这些实施例也并非旨在限制本公开的范围。在本公开中所提供的特征的例子旨在为说明性的而非限制性的,除非另有说明。以上描述旨在涵盖将对本领域的技术人员显而易见的具有本公开的有益效果的那些替代形式、修改形式和等效形式。

本公开的范围包括本文所(明示或暗示)公开的任何特征或特征组合,或其任何概括,不管其是否减轻本文所解决的任何或全部问题。因此,可以在本申请(或对其要求优先权的申请)的审查过程期间对任何此类特征组合提出新的权利要求。具体地讲,参考所附权利要求书,来自从属权利要求的特征可与独立权利要求的那些特征相结合,来自相应的独立权利要求的特征可以按任何适当的方式组合,而并非只是以所附权利要求中枚举的特定形式组合。

在一个实施例中,制造太阳能电池的交替的n型和p型发射极区的方法包括在基板上方形成硅层。该方法还包括将第一导电类型的掺杂物杂质物质注入硅层中以形成第一注入区,并产生硅层的未注入区。该方法还包括将辅助杂质物质注入硅层的第一注入区中,该辅助杂质物质不同于第一导电类型的掺杂物杂质物质。该方法还包括将第二相反导电类型的掺杂物杂质物质注入硅层的未注入区的部分中以形成第二注入区,并产生硅层的剩余未注入区。该方法还包括利用选择性蚀刻工艺移除硅层的剩余未注入区,保留第一注入区的至少一部分并且保留硅层的第二注入区。该方法还包括对硅层的第一注入区和第二注入区进行退火,以形成掺杂多晶硅发射极区。

在一个实施例中,将辅助杂质物质注入硅层的第一注入区中包括针对第一注入区的相应一者形成辅助杂质物质的对应区,所述辅助杂质物质的对应区完全位于第一注入区的相应一者内。

在一个实施例中,针对第一注入区的相应一者形成辅助杂质物质的对应区包括形成辅助杂质物质的对应区,所述辅助杂质物质的对应区具有比第一注入区的相应一者的宽度更小的宽度。

在一个实施例中,移除硅层的剩余未注入区还包括移除每个第一注入区中不包括辅助杂质物质的对应区的部分。

在一个实施例中,针对第一注入区的相应一者形成辅助杂质物质的对应区包括形成辅助杂质物质的对应区,所述辅助杂质物质的对应区在硅层中具有比第一注入区的相应一者的深度更小的深度。

在一个实施例中,对硅层的第一注入区和第二注入区进行退火包括在利用选择性蚀刻工艺移除硅层的剩余未注入区之后进行退火。

在一个实施例中,形成硅层包括使用低压化学气相沉积(lpcvd)或等离子体增强化学气相沉积(pecvd)形成非晶硅层。

在一个实施例中,注入第一导电类型的掺杂物杂质物质包括注入磷或砷原子或离子,注入第二导电类型的掺杂物杂质物质包括注入硼原子或离子,并且将辅助杂质物质注入第一注入区中包括注入选自由氮原子或离子、碳原子或离子以及氧原子或离子构成的组中的物质。

在一个实施例中,注入磷或砷原子或离子包括注入以在硅层中形成大约在1e19-1e20个原子/cm3范围内的磷原子或砷原子浓度,注入硼原子或离子包括注入以在硅层中形成大约在1e19-1e20个原子/cm3范围内的硼原子浓度,并且注入选自由氮原子或离子、碳原子或离子以及氧原子或离子构成的组中的物质包括注入以在硅层中分别形成大约在1e19-1e21个原子/cm3范围内的氮原子、碳原子或氧原子浓度。

在一个实施例中,注入第一导电类型的掺杂物杂质物质包括穿过具有第一狭缝图案的第一遮蔽掩模进行注入,将辅助杂质物质注入第一注入区中包括穿过具有第一狭缝图案的第二遮蔽掩模进行注入,并且注入第二导电类型的掺杂物杂质物质包括穿过具有第二不同狭缝图案的第三遮蔽掩模进行注入。

在一个实施例中,穿过第二遮蔽掩模进行注入包括穿过具有比第一遮蔽掩模的狭缝尺寸更窄的狭缝的第二遮蔽掩模进行注入。

在一个实施例中,穿过第一遮蔽掩模、第二遮蔽掩模和第三遮蔽掩模进行注入包括分别穿过第一静止石墨遮蔽掩模、第二静止石墨遮蔽掩模和第三静止石墨遮蔽掩模进行注入,并且其中所述第一静止石墨遮蔽掩模、第二静止石墨遮蔽掩模和第三静止石墨遮蔽掩模在注入期间紧邻但不接触硅层。

在一个实施例中,第一狭缝图案和第二狭缝图案一起形成一维交叉指状物图案。

在一个实施例中,利用选择性蚀刻工艺移除硅层的剩余未注入区包括使用基于氢氧化物的湿法蚀刻剂,并且该方法还包括使用选择性蚀刻工艺来对移除硅层的剩余未注入区之后所暴露的基板的部分进行纹理化。

在一个实施例中,形成硅层包括在设置于基板上的薄氧化物层上形成硅层,并且基板为单晶硅基板。

在一个实施例中,该方法还包括形成电连接到掺杂多晶硅发射极区的导电触点。

在一个实施例中,制造太阳能电池的交替的n型和p型发射极区的方法包括在基板上方形成硅层。该方法还包括将第一导电类型的掺杂物杂质物质注入硅层中以形成第一注入区,并产生硅层的未注入区。该方法还包括修改硅层的第一注入区的浅表面,该修改过程通过使辅助杂质物质的前体(不同于第一导电类型的掺杂物杂质物质)流动来进行。该方法还包括将第二相反导电类型的掺杂物杂质物质注入硅层的未注入区的部分中以形成第二注入区,并产生硅层的剩余未注入区。该方法还包括利用选择性蚀刻工艺移除硅层的剩余未注入区,保留第一注入区的至少一部分并且保留硅层的第二注入区。该方法还包括对硅层的第一注入区和第二注入区进行退火,以形成掺杂多晶硅发射极区。

在一个实施例中,注入第一导电类型的掺杂物杂质物质包括注入磷或砷原子或离子,注入第二导电类型的掺杂物杂质物质包括注入硼原子或离子,并且使辅助杂质物质的前体流动包括错流引入甲烷(ch4)或乙烯(c2h4)。

在一个实施例中,背接触太阳能电池包括具有光接收表面和背表面的晶体硅基板。第一多晶硅发射极区设置在晶体硅基板上方,所述第一多晶硅发射极区掺杂有第一导电类型的掺杂物杂质物质,并且还包括不同于第一导电类型的掺杂物杂质物质的辅助杂质物质。第二多晶硅发射极区设置在晶体硅基板上方,并且与第一多晶硅发射极区相邻但分开。第二多晶硅发射极区掺有第二相反导电类型的掺杂物杂质物质。第一导电触点结构和第二导电触点结构分别电连接到第一多晶硅发射极区和第二多晶硅发射极区。

在一个实施例中,第一导电类型的掺杂物杂质物质包括磷原子或砷原子,第二导电类型的掺杂物杂质物质包括硼原子,并且辅助杂质物质包括选自由氮原子、碳原子和氧原子构成的组中的物质。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1