一种动力电池贮氢电极合金及其制备方法

文档序号:6789303阅读:813来源:国知局
专利名称:一种动力电池贮氢电极合金及其制备方法
技术领域
本发明涉及贮氢合金材料技术领域,尤其涉及一种低镁多稀土组元构成的动力电池贮氢电极合金及其制备方法。
背景技术
自1990年N1-MH电池问世以来,已广泛应用于各种小型便携式电子设备,并且正在开发成为商品化混合电动汽车01EV)的辅助动力。已经发现的一系列性能优异的电池负极材料,包括稀土基AB5型贮氢合金、AB2型Laves相贮氢合金、V基固溶体贮氢合金以及Mg2Ni型贮氢合金。特别是稀土基AB5型贮氢合金已经在中国及日本实现了产业化。然而,稀土基AB5型合金的贮氢容量偏低(约330mAh/g),难以满足动力电池对容量的要求;AB2型Laves相贮氢合金难以活化;而V基固溶体及Mg2Ni型贮氢合金循环稳定性差。上述各类均不能满足动力电池对于循环稳定性的实用性要求。研究发现合金中吸氢元素La与Mg的氧化腐蚀是合金电极放电容量衰减的主要原因,合金吸放氢过程中由于晶格的膨胀和收缩导致合金颗粒的粉化,从而进一步加速合金电极的腐蚀。研究还发现,合金具有多相结构,包括主相Ce2Ni7型相和CaCu5型相以及少量RENi3相。其中,RENi3相吸氢时存在歧化反应,即吸氢后生成的氢化物为非晶态并具有较高的热力学稳定性(室温平衡氢压过低),从而导致合金本征吸放氢容量的减小。尽管通过优化合金成分、改进制备工艺等方法改善贮氢合金的循环寿命,如成分优化主要是通过调节化学计量比和La/Mg比,或者用过渡金属Mn、Co、Al、W、Cr、Fe、Cu、Si来部分替代Ni元素。这样的替代虽然能提高合金的综合电化学性能,但合金的循环稳定性仍然没有显著提高。因此,仍不能满足贮氢合金对性能稳定性的实用化要求。显然,仅通过成分优化合金的电化学性能很难满足Ni/MH电池对贮氢合金材料的要求。

发明内容
本发明的目的在于提供一种高容量低镁多稀土组元Re-Mg-Ni系动力电池贮氢合金及其制备方法,通过本发明,使贮氢电极合金的电化学循环稳定性等得到很大提高。本发明通过下面的技术方案实现其目的。本发明的一方面提供一种动力电池贮氢电极合金,其特点在于该合金由低镁多稀土组成,其化学式组成为AEhMgxNiyAlz5Smx, y,z为原子数,且0.15彡x彡0.2,3.3 ^ y ^ 3.8,0.05 ^ z ^ 0.15,稀土元素RE选自La、Ce、Sm、Y、Nd中的至少两种;其优先化学式组成的原子比为:x:y:z=0.18:3.4:0.10。本发明的另一方面提供一种动力电池贮氢电极合金的制备方法,该方法的制备步骤为:A按化学式组成RE^MgxNiyAlz进行配料,式中0.15彡x彡0.2,3.3彡y彡3.8,
0.05彡z彡0.15,RE选自La、Ce、Sm、Y、Nd中的至少两种;其中,所述化学式组成中的Mg和RE在配比时增加5%-15%比例的烧损量,原材料的金属纯度彡99.5% ;
B将配好的原材料进行感应加热,抽真空至IX l(T2-5 X l(T5Pa,施加0.0l-1MPa的惰性气体保护气体,保护气体为纯氦气或者氦气+氩气混合气体,所述混合气体的体积比约为1: 1,熔融温度1300-1600° C,获得熔融的REhMgxNiyAlz液态母合金;C上述母合金在熔融状态下保持1-5分钟后,在保护气体气氛下,,将液态母合金直接注入中间包,通过中间包底部的喷嘴连续喷落在线速度为3-20m/s旋转的水冷铜辊的表面上,获得具有柱状晶组织结构的快淬态合金薄片;D将快淬态合金薄片放入真空热处理炉,抽真空至l(T2-l(T4Pa,加热到400-900°C,保温3-8小时,保温后随炉冷却至室温;E将获得的上述合金通过机械粉碎,过200目筛,获得直径< 74 y m的合金粉末,将合金粉与300目的羰基镍粉按质量比1:4混合均匀,然后冷压成电极。本发明的优点在于,采用较低镁含量以及多组元稀土元素的成分设计,充分利用稀土元素的综合作用,提高了合金的电化学循环稳定性;采用真空熔炼+惰性气体保护+快淬技术制备的动力电池贮氢合金获得均匀一致的柱状晶组织结构,具有这种结构的贮氢合金抗粉化能力强,电化学循环稳定性优良。本发明同时具有工艺易于掌握,适用于规模化生产的特点。


图1为本发明通过快淬和退火后,各实施例合金的XRD衍射谱示意图。
具体实施例方式以下结合附图以及示例性实施例,进一步详细描述本发明的设计思想以及形成机理,以使本发明的技术解决方案更加清楚。

本发明通过研究发现,通过改善合金的微观结构可以显著改善合金的综合电化学性能,特别是使合金的电化学循环稳定性大幅度提高。通过实验,在成分设计上采用降低Mg含量的方法提高合金的抗腐蚀氧化性能。由于不同稀土元素对合金电极产生不同的影响,在合金中添加稀土多组元,以便发挥稀土元素的综合优势,提高合金的电化学循环稳定性。采用真空快淬技术制备的快淬态合金具有均匀的微晶-纳米晶结构即柱状晶组织结构;通过对微晶结构的快淬态合金进行适当的退火处理,使贮氢合金具有优异的电化学动力学性能,提高了贮氢合金的综合实用性的要求,克服了贮氢合金循环稳定性差的瓶颈问题,满足了动力电池的使用要求。本发明应用感应炉熔炼加氦气保护,基本上避免了金属镁的挥发损失,可以完全抑制合金的成分偏析,保证所制备的贮氢合金成分符合设计组份摩尔配比,得到均匀一致的微晶-纳米晶结构即柱状晶组织结构。而这种结构的贮氢合金抗粉化能力强,电化学循环稳定性优良。由于不存在成分偏析,同时可以大幅度降低退火温度并缩短退火时间,提高生产效率,降低生产成本。本发明所述的感应加热方式包括电弧熔炼,感应加热熔炼或可使原材料完全熔化的其它加热熔炼方式。本发明的动力电池贮氢电极合金由低镁多稀土组成,其化学式组成为:RE1JMgxNiyAlz ;式中 x,y,z 为原子数,且 0.15 彡 x 彡 0.2,3.3 彡 y 彡 3.8,0.05 彡 z 彡 0.15 ;优选原子数比为:x:y:z=0.18:3.4:0.10。稀土元素RE选自La镧、Ce铈、Sm钐、Y钇、Nd钕中的至少两种。其制备方法如下:按所设计的化学式原子比进行原料称重配比,所选原材料的金属纯度> 99.5%。由于镁和稀土元素的熔点较低易于挥发,因此,在配比时增加5%-15%比例的烧损量,以5%左右为佳;将配好的原料按序放入坩埚,即将金属Mg放在坩埚的最上面,其他金属不分先后置于坩埚中,采用感应炉进行熔炼,抽真空至I X 10_2_5 X W5Pa,然后充入0.0l-1MPa惰性保护气体,充入高纯氦气或氩气+氦气混合气体,其混合气体体积比约为1:1 ;熔炼温度1300-1600°C,视合金的成分进行温度调整,以确保金属原料完全熔化;在惰性气体气氛保护下,获得熔融的REhMgxNiyAlz液态母合金;将母合金在熔融状态下保持1-5分钟,在惰性气体气氛保护下,直接将液态母合金注入中间包,通过中间包底部的氮化硼喷嘴连续喷落在以表面线速度3-20m/s速率旋转的水冷铜辊的光滑表面上,可优选6m/s,获得厚度500-2000 iim的快淬态合金薄片;将快淬态合金放入真空热处理炉,抽真空至10_2_10_4Pa,加热到400-900°C,可优选650°C,并保温3_8小时随炉冷却至室温,保温时间可优选4小时左右,获得退火合金;将获得的合金通过机械粉碎,过200目筛,获得直径<74 的合金粉末,将合金粉与300目的羰基镍粉按质量比1:4混合均匀,然后冷压成电极即可。实施例1参照图1,将按照化学式组成称好的金属原料Laa72CeaiMgai8Ni14Alai置于中频感应炉的氧化镁坩埚中,然后盖好炉盖,抽真空至真空度为4.5 X 10_2Pa,再充入氩气+氦气混合气体达到0.04MPa负压力,温度控制在1450°C左右,调节功率使金属全部熔化,成为熔融液态母合金,在熔融条件下保持5分钟,然后将液态合金注入中间包,通过中间包底部的氮化硼喷嘴连续喷落在以8m/s线速度旋转的水冷铜辊的光滑表面上,获得快淬态合金薄片;将快淬态合金放入真空热处理炉,抽真空至4.5X 10_3Pa,加热到650°C保温4小时后,随炉冷却至室温,获得退火合金,即可制作各种动力电池贮氢电极合金。将获得的合金通过机械粉碎,过200目筛,获得直径70 ii m的合金粉末,将合金粉与300目的羰基镍粉按质量比1:4混合均勻,然后在35MPa的压力下冷压成直径为15mm的圆电极片电极。实施例2-10参照图1,本发明具体实施例2-10的化学成分及比例选择如下:头施例2 =Laa62CeaiSmaiMgai8Ni14Alai头施例3 =Laa72YaiMgai8Nii4Alai头施例4 =Laa62CeaiYaiMgai8Ni14Alai头施例5 =Laa52Sma3Mgai8Nii4Alai头施例6 =Laa52Sma2YaiMgai8Ni14Alai头施例7 =Laa52Nda3Mgai8Nii4Alai头施例8 =Laa52Nda2CeaiMgai8Ni14Alai头施例9 =Laa6Cea2Mga2Ni145Ala05头施例10 =Laa6Ndai5YaiMgai5Ni13Alai5按照实施例1的制备方法,并按上述2-10实施例的化学式组成选取块体金属镁、金属镍、金属铝以及稀土金属。这些金属纯度>99.5%,按化学剂量比称重。其中,金属镁及稀土金属在配比时增加5%-15%比例的烧损量,尤以5%-8左右为佳;在制备过程中,各阶段技术参数如:感应加热时分别采用lX10-2Pa*lX10-3Pa、2X10-2Pa、2X10_4Pa、3X l(T2Pa、3X l(T5Pa、4X l(T2Pa、4X l(T3Pa、5X l(T4Pa、5X KT5Pa 抽真空;分别施加 0.0lMPa或 0.05MPa、0.15MPa、0.25MPa、0.40MPa、0.55MPa、0.70MPa、0.80MPa、0.90MPa、lMPa 的纯氦气,或者施加按照体积比约为1:1的氦气+氩气混合气体作为保护气体;熔融温度分别采用1300。C 或 1350° C、1400。C、1450° C、1500。C、1550。C、1600。C ;使上述化学式组成
原料分别获得相应成分的熔融液态母合金。液态母合金在熔融状态下保持I或2、3、4、5分钟后,在纯氦气或氦气+氩气混合气体惰性气体气氛的保护下,直接将液态母合金注入中间包进行快淬处理;中间包底部的氮化硼喷嘴将液态母合金连续喷落在以表面线速度3-20m/s速率旋转的水冷铜辊的光滑表面上,获得厚度在500-2000 u m的快淬态合金薄片;水冷铜辊表面线速度以5m/s-8m/s为最佳。接着,将快淬态合金薄片放入真空热处理炉中进行加热,加热时抽真空至10_2,Kr3,或 KT4Pa,加热温度为 400 V或 500 V、600 V、700 V、800°C、900°C,保温 3 或 4,5,6,7,
或8小时,保温后 随炉冷却至室温等参数均可在上述范围内进行适当选择,制备出合格的贮氢电极合金。将获得的上述2-10实施例的不同成分的电极合金通过机械粉碎,过200目筛,获得直径<74 的合金粉末。将合金粉与300目的羰基镍粉按质量比1:4混合均匀后,在35MPa的压力下冷压成不同形式的电极或电极片,然后对其进行电化学性能测试。采用X射线衍射仪(即XRD)测试快淬和退火态合金的结构,用模拟电池测试仪测试合金的电化学吸放氢容量,以及循环稳定性等电化学性能参数。测试合金的活化性能与最大放电容量所采用的放电制度为:充放电电流密度为60mA/g,充电时间480min,放电截止电压为-0.5V ;测试合金的电化学循环稳定性所米用的放电制度为:充放电电流密度为300mA/g,充电时间80min,放电截止电压为-0.6V。当充放电流密度为300mA/g时,合金的放电容量下降到最大放电容量的60%对应的循环次
数定义为合金的循环寿命。用S5tltl表示500次循环后合金容量的保持率,即S5cici=C5ticucitl/
Qnax, 300 ^ 100%。上述实施例所制备的合金经测试的结果列于表I中。表I实施例合金的电化学性能
权利要求
1.一种动力电池忙氢电极合金,其特征在于,由低镁多稀土组成,其化学式组成为:RE1JMgxNiyAlz ;式中 x,y,z 为原子数,且 0.15 彡 x 彡 0.2,3.3 彡 y 彡 3.8,0.05 彡 z 彡 0.15,稀土元素RE选自La、Ce、Sm、Y、Nd中的至少两种。
2.根据权利要求1所述电极合金,其特征在于,所述化学式组成的原子比为:x:y:z=0.18:3.4:0.10。
3.一种动力电池贮氢电极合金的制备方法,其特征在于,所述方法步骤为: A按化学式组成REhMgxNiyAlz进行配料,式中0.15彡X彡0.2,3.3彡y彡3.8,0.05彡z彡0.15,RE选自La、Ce、Sm、Y、Nd中的至少两种; B将配好的原材料进行感应加热,抽真空至IX 10_2-5X 10_5Pa,施加0.0l-1MPa的惰性气体保护气体,熔融温度1300-1600° C,获得熔融的REhMgxNiyAlz液态母合金; C上述母合金在熔融状态下保持1-5分钟后,在保护气体气氛下,将液态母合金直接注入中间包,通过中间包底部的喷嘴连续喷落在线速度为3-20m/s旋转的水冷铜辊的表面上,获得快淬态合金薄片; D将快淬态合金薄片放入真空热处理炉,抽真空至10_2-10_4Pa,加热到400-900°C,保温3-8小时,保温后随炉冷却至室温; E将获得的上述合金通过机械粉碎,过200目筛,获得直径< 74 y m的合金粉末,将合金粉与300目的羰基镍粉按质量比1:4混合均匀,然后冷压成电极。
4.根据权利要求2所述制备方法,其特征在于,所述感应加热方式包括电弧熔炼,感应加热熔炼或可使原材料 完全熔化的其它加热熔炼方式。
5.根据权利要求2所述制备方法,其特征在于,所述保护气体为纯氦气或者氦气+氩气混合气体,所述混合气体的体积比约为1:1。
6.根据权利要求2所述制备方法,其特征在于,所述快淬态合金薄片具有柱状晶组织结构。
7.根据权利要求2所述制备方法,其特征在于,所述化学式组成中的Mg和RE在配比时增加5%-15%比例的烧损量。
8.根据权利要求2所述制备方法,其特征在于,所述原材料的金属纯度>99.5%。
全文摘要
本发明提供一种动力电池用贮氢电极合金及其制备方法,由低镁多稀土组元构成,其化学式组成为RE1-xMgxNiyAlz;且0.15≤x≤0.2,3.3≤y≤3.8,0.05≤z≤0.15,稀土元素RE选自La、Ce、Sm、Y、Nd中的至少两种;该制备方法是在惰性气体保护下采用感应加热熔炼,将熔融合金倒入中间包,通过中间包底部的喷嘴连续喷落在以一定速率旋转的水冷铜辊的表面,获得快淬合金,然后在真空热处理炉中进行真空退火;本发明充分利用稀土元素的综合作用,采用真空熔炼+惰性气体保护+快淬技术制备的动力电池贮氢合金,提高了合金的电化学循环稳定性,具有工艺易于掌握,适用于规模化生产的特点。
文档编号H01M4/24GK103165873SQ20131006393
公开日2013年6月19日 申请日期2013年2月28日 优先权日2013年2月28日
发明者张羊换, 郭世海, 林玉芳, 尚宏伟, 杨泰, 赵栋梁 申请人:钢铁研究总院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1