用于表面安装模块的扩散阻挡层的制作方法

文档序号:7261416阅读:92来源:国知局
用于表面安装模块的扩散阻挡层的制作方法
【专利摘要】本公开涉及用于表面安装模块的扩散阻挡层。公开了一种用于减少水分和气体进入的表面安装封装结构。该表面安装结构包括子模块,该子模块具有介电层、附连到介电层上的半导体装置、与半导体装置电联接的一级金属互连结构、和与一级互连电联接且形成在介电层上的二级I/O连接,其中二级I/O连接构造成将子模块连接到外部电路上。子模块的半导体装置附连到衬底结构上,其中介电材料在介电层与衬底结构之间定位以填充表面安装结构中的间隙。扩散阻挡层邻近一级和二级I/O连接施加在子模块上,并且向下延伸到衬底结构,以减少水分和气体从周围环境进入表面安装结构。
【专利说明】用于表面安装模块的扩散阻挡层
【技术领域】
[0001]本发明的实施例总体上涉及用于封装半导体装置的结构和方法,并且更具体地涉及包括扩散阻挡涂层的表面安装封装结构。
【背景技术】
[0002]表面安装技术是一种用于构成其中表面安装构件或封装直接安装到印刷电路板(PCB)的表面上的电子电路或其它类似的外部电路的方法。在行业内,表面安装技术已替代将带有引线的构件装配在电路板中的孔内的通孔技术构成方法。
[0003]一种普通类型的表面安装的构件是功率半导体装置,其是被用作功率电子电路中的开关或整流器的半导体装置,诸如例如开关模式电源。大部分功率半导体装置仅仅在变换模式下(即,它们要么接通要么切断)使用,且因此为此进行优化。许多功率半导体装置用于高电压功率应用中并且被设计成携带大量电流并且支持大电压。在使用中,高电压功率半导体装置借助于功率覆盖(power overlay) (POL)封装和互连系统表面安装至外部电路,其中POL封装还提供去除由该装置生成的热并保护装置使其不受外部环境损坏的途径。
[0004]标准POL封装制造工艺典型地始于借助于粘合剂将一个或多个功率半导体装置放置到介电层上开始。然后将金属互连件(例如铜互连件)电镀到介电层上以形成到(多个)功率半导体装置的直接金属连接,从而形成POL子模块。金属互连件的形式可以是低廓形(例如厚度小于200微米)、平坦的互连结构,其可供用于形成往来于(多个)功率半导体装置的输入/输出(I/O)系统。然后使用用于电和热连接的焊接互连将POL子模块焊接到陶瓷衬底(包含DBC的氧化铝、包含AMB Cu的AlN等)。然后利用毛细流动(毛细底层填充)、无流动底层填充或注射成型(成型化合物)使用介电有机材料来填充在POL介电层与陶瓷衬底之间的半导体周围的间隙,以形成POL封装。
[0005]应认识到,POL封装容易潮湿,因为环境中的水分可被POL封装中的材料吸收。例如,该模块可吸收大部分卡普顿(Kapton)粘合剂层和有机介电材料(即底层填料(underfill)、成型化合物等)内和封装内由这些材料形成的界面处的水分。当将包含所吸收的水分的POL模块焊接至电路板时,达到在210-260摄氏度的范围内的温度,并且在这些温度下,POL封装中的水分的蒸气压力快速上升。在水分过量的情况下这种蒸气压力的上升会导致层离、“玉米花开裂(pop corning)”和故障。另外,在暴露于水分的同时长期储存和使用中,POL封装进行的过量水分吸收和封装内不相似的材料界面处的腐蚀可由于增加的泄漏电流而引起电气和机械故障并且还会由于POL模块在板组件操作期间回流时的膨胀而在互连件处产生机械损伤。
[0006]在空气(或富氧环境)中在升高的温度下或者在暴露于毒性/腐蚀性气体的情况下长期操作/储存还可影响POL模块的长期寿命和功能。在氧气在升高的温度下进入的情况下,各种界面会劣化并且模块的机械/电气/热性能可受到严重影响。作为示例,在POL金属(Cu)与卡普顿之间的粘合受暴露于升高的温度下的氧气的严重影响,在200C-250C之间的温度下在1000小时数的储存时间内看到粘合强度的下降。包括坚固的扩散阻挡层可减慢氧气(或其它降解气体)的进入并提高模块的长期寿命。
[0007]因此,将期望提供一种具有扩散阻挡层的表面安装封装,该阻挡层减少水分和气体进入封装,从而对与水分和气体有关的故障机制提供增强的可靠性。还将期望在表面安装封装的各个制造阶段期间导入这种扩散阻挡层。

【发明内容】

[0008]本发明的实施例通过提供一种表面安装封装结构来克服前述的缺点,该表面安装封装结构包括构造成减少水分和气体从周围环境进入表面安装结构的扩散阻挡涂层。
[0009]根据本发明的一个方面,一种表面安装结构包括子模块,该子模块具有:介电层;附连到介电层上的至少一个半导体装置,该半导体装置包括由半导体材料组成的衬底;与至少一个半导体装置电联接的一级金属互连结构,该金属互连结构延伸穿过贯穿介电层形成的通孔,从而连接到至少一个半导体装置上;和与一级金属互连结构电联接且在介电层上在与至少一个半导体装置相对的一侧形成的二级输入/输出(I/O)连接,其中该二级I/O连接构造成将子模块连接到外部电路上。该表面安装结构还包括具有第一表面和第二表面的多层衬底结构,其中子模块的至少一个半导体装置附连到多层衬底的第一表面上。该表面安装结构还包括介电材料,该介电材料在介电层与多层衬底结构的第一表面之间定位并且至少部分地围绕子模块的至少一个半导体装置,和扩散阻挡层,该扩散阻挡层邻近一级和二级I/o连接施加在子模块上,并且向下延伸到多层衬底结构,其中扩散阻挡层构造成减少水分和气体从周围环境进入表面安装结构。
[0010]根据本发明的另一方面,一种制造表面安装封装和互连结构的方法包括以下步骤:构成子模块,该子模块包括至少一个半导体装置和绕其形成的封装结构,其中构成子模块的步骤还包括以下步骤:将至少一个半导体装置附连到介电层上;在介电层上形成一级金属互连结构,其延伸穿过介电层中的通孔以与至少一个半导体装置电连接;以及在在介电层上与至少一个半导体装置相对的一侧形成二级输入/输出(I/o)连接,其中二级I/O连接构造成将子模块连接到外部电路上。该方法还包括以下步骤:形成衬底结构,该衬底结构包括中央衬底层以及位于中央衬底层的相对侧上的第一和第二金属层,使得第一和第二金属层分别形成衬底结构的第一表面和第二表面;将子模块附连到衬底结构的第一表面上;以及在介电层与衬底结构的第一表面之间提供介电材料,其中介电材料至少部分地密封子模块的至少一个半导体装置。该方法还包括以下步骤:邻近二级I/o连接施加在子模块上施加的扩散阻挡层,并且扩散阻挡层向下延伸到多层衬底结构,其中扩散阻挡层构造成减少水分和气体从周围环境进入表面安装封装和互连结构。
[0011]根据本发明的又一方面,一种POL封装结构包括POL子模块,该POL子模块具有:介电层;附连到介电层上的多个半导体装置;一级互连结构,其与多个半导体装置电联接并且延伸穿过贯穿介电层形成的通孔以便连接到多个半导体装置上;以及二级互连结构,其用以将POL子模块与外部电路结构电联接,其中二级互连结构包括在介电层和一级互连结构上形成并且构造成形成到外部电路结构的互连的多个焊接凸块。该POL封装结构还包括具有第一表面和第二表面的多层衬底结构,其中POL子模块的多个半导体装置附连到多层衬底结构的第一表面上。多层衬底结构还包括形成多层衬底结构的第一表面的第一直接敷铜(DBC)层、形成多层衬底结构的第二表面的第二 DBC层以及被夹置在第一与第二 DBC层之间的陶瓷层。该POL封装结构还包括密封剂,该密封剂在介电层与多层衬底结构的第一表面之间定位并且至少部分地围绕子模块的多个半导体装置,和扩散阻挡层,该扩散阻挡层邻近二级互连结构施加在POL子模块上,并且向下延伸到多层衬底结构,其中扩散阻挡层构造成减少水分和气体从周围环境进入POL封装结构。
[0012]根据一实施例,一种表面安装结构,包括:子模块,子模块包括:介电层;附连到介电层上的至少一个半导体装置,其中,至少一个半导体装置中的每一个包括由半导体材料组成的衬底;与至少一个半导体装置电联接的一级金属互连结构,金属互连结构延伸穿过贯穿介电层形成的通孔,从而连接到至少一个半导体装置上;以及与一级金属互连结构电联接并且形成在介电层上在与至少一个半导体装置相对的一侧的二级输入/输出(I/O)连接,二级I/O连接构造成将子模块连接到外部电路上;具有第一表面和第二表面的多层衬底结构,其中,子模块的至少一个半导体装置附连到多层衬底的第一表面上;介电材料,介电材料在介电层与多层衬底结构的第一表面之间定位并且至少部分地围绕子模块的至少一个半导体装置;以及扩散阻挡层,扩散阻挡层邻近一级和二级I/O连接施加在子模块上,并且向下延伸到多层衬底结构,扩散阻挡层构造成减少水分和气体从周围环境进入表面安装结构。
[0013]根据一实施例,扩散阻挡层包括有机材料、无机材料、陶瓷材料和其任意结合。
[0014]根据一实施例,无机材料或陶瓷材料包括组IIA、IIIA、IVA、VA、VIA、VIIA、IB、IIB的元素、组IIIB、IVB、VB的金属、稀土元素的氧化物、氮化物、碳化物和硼化物或其任意结

口 ο
[0015]根据一实施例,扩散阻挡层包括单层阻挡、多层阻挡和具有跨越扩散阻挡层的厚度在有机和无机材料之间变化的组分的分级组分阻挡。
[0016]根据一实施例,表面安装结构还包括施加在一级金属互连结构上的阻焊层;并且其中,二级I/o连接包括构造成在期望位置穿过阻焊层以便与一级金属互连结构电联接的盘栅阵列(LGA)焊接凸块和球栅阵列(BGA)焊接凸块中的一种。
[0017]根据一实施例,扩散阻挡层施加在一级金属互连结构与阻焊层之间。
[0018]根据一实施例,扩散阻挡层施加在阻焊层上以及二级I/O连接的焊接凸块上或周围。
[0019]根据一实施例,扩散阻挡层施加在一级金属互连结构上并且还构造成充当阻焊层。
[0020]根据一实施例,扩散阻挡层具有在一个原子层与100微米之间的厚度。
[0021]根据一实施例,多层衬底结构包括:陶瓷绝缘层;在绝缘层的一侧定位以形成多层衬底结构的第一表面的第一金属层;以及在绝缘层的另一侧定位以形成多层衬底结构的第二表面的第二金属层;其中,第一和第二金属层包括第一和第二直接敷铜(DBC)层。
[0022]根据一实施例,子模块包括功率覆盖(POL)子模块。
[0023]根据一实施例,一种制造表面安装封装和互连结构的方法,包括:构成子模块,子模块包括至少一个半导体装置和绕其形成的封装结构,其中,构成子模块包括:将至少一个半导体装置附连到介电层上;在介电层上形成一级金属互连结构,一级金属互连结构延伸穿过介电层中的通孔以与至少一个半导体装置电连接;以及在介电层上在与至少一个半导体装置相对的一侧上形成二级输入/输出(I/o)连接,二级I/O连接构造成将子模块连接到外部电路上;形成衬底结构,衬底结构包括中央衬底层以及位于中央衬底层的相对侧的第一和第二金属层,使得第一和第二金属层分别形成衬底结构的第一表面和第二表面;将子模块附连到衬底结构的第一表面上;在介电层与衬底结构的第一表面之间提供介电材料,其中,介电材料至少部分地密封子模块的至少一个半导体装置;以及邻近二级I/O连接施加在子模块上施加的扩散阻挡层,并且扩散阻挡层向下延伸到多层衬底结构,扩散阻挡层构造成减少水分和气体从周围环境进入表面安装封装和互连结构。
[0024]根据一实施例,方法还包括在一级金属互连结构上施加阻焊层,其中,二级I/O连接在预定位置延伸穿过阻焊层。
[0025]根据一实施例,施加扩散阻挡层包括在一级金属互连结构与阻焊层之间施加扩散阻挡层。
[0026]根据一实施例,施加扩散阻挡层包括在阻焊层上以及二级I/O连接上或周围施加扩散阻挡层。
[0027]根据一实施例,施加扩散阻挡层包括施加有机材料、无机材料、陶瓷材料或其任意
结合的一层或多层。
[0028]根据一实施例,扩散阻挡层施加成具有在一个原子层与100微米之间的厚度。
[0029]根据一实施例,一种功率覆盖(POL)封装结构,包括:P0L子模块,POL子模块包括:介电层;附连到介电层上的多个半导体装置;与多个半导体装置电联接的一级互连结构,一级互连结构延伸穿过贯穿介电层形成的通孔以便连接到多个半导体装置上;以及用以将POL子模块与外部电路结构电联接的二级互连结构,二级互连结构包括在介电层和一级互连结构上形成并且构造成形成到外部电路结构的互连的多个焊接凸块;具有第一表面和第二表面的多层衬底结构,其中,POL子模块的多个半导体装置附连到多层衬底结构的第一表面上,并且其中,多层衬底结构还包括:形成多层衬底结构的第一表面的第一直接敷铜(DBC)层;形成多层衬底结构的第二表面的第二 DBC层;以及被夹置在第一和第二 DBC层之间的陶瓷层;密封剂,其在介电层与多层衬底结构的第一表面之间定位并且至少部分地围绕子模块的多个半导体装置;和扩散阻挡层,扩散阻挡层邻近二级互连结构施加在POL子模块上,并且向下延伸到多层衬底结构,扩散阻挡层构造成减少水分和气体从周围环境进入POL封装结构。
[0030]根据一实施例,POL封装结构还包括施加在一级金属互连结构上的阻焊层,其中,扩散阻挡层在一级金属互连结构与阻焊层之间的位置以及阻焊层上和多个焊接凸块上的位置中的一个位置处施加。
[0031]根据一实施例,扩散阻挡层由有机材料、无机材料、陶瓷材料和其任意结合组成。
[0032]通过结合附图提供的本发明的优选实施例的下文的详细描述,这些和其它优点和特征将更易于理解。
【专利附图】

【附图说明】
[0033]附图示出目前设想到的用于执行本发明的实施例。
[0034]在附图中:
图1是根据本发明的实施例的功率覆盖(POL)结构的示意性截面侧视图。[0035]图2-9是根据本发明的实施例在制造/组建工序的各个阶段期间的POL结构的示意性截面侧视图。
[0036]图10A-10D是根据本发明的实施例的具有施加至其上的扩散阻挡层的POL结构的示意性截面侧视图。
[0037]图11A-11C是根据本发明的实施例的扩散阻挡层的示意性截面侧视图。
【具体实施方式】
[0038]本发明的实施例提供了一种具有包括于其上的扩散阻挡层的表面安装封装,以及形成这种表面安装封装的方法。该表面安装封装制造成使得扩散阻挡层减少水分和气体进入封装,同时仍可供用于将表面安装封装附连到外部电路上。
[0039]参看图1,示出了根据本发明一实施例的表面安装封装和互连结构10。在图1中所示的实施例中,表面安装封装结构10的形式是功率覆盖(POL)结构,不过应认识到,其它表面安装封装结构被认为在本发明的范围内。POL结构10包括位于其中的一个或多个半导体装置12,根据各种实施例,半导体装置12可呈模、二极管或其它功率电子装置的形式。如在图1中所示,三个半导体装置12设于POL结构10中,但应认识到,更多或更少数量的半导体装置12可包括于POL结构10中。(多个)半导体装置12封装于POL子模块14内,POL子模块14形成到(多个)功率半导体装置12的直接金属连接,其中连接呈例如低廓形、平坦一级互连结构的形式。
[0040]在POL子模块14上设置有二级输入-输出(I/O)连接16,以实现POL结构10表面安装到外部电路,例如印刷电路板(PCB)(未示出)上。根据一示例性实施例,二级I/O连接16由构造成附连/固定到PCB上以使POL结构10与PCB电联接的盘栅阵列(LGA)焊接凸块17形成,不过其它合适的二级焊接互连,例如球栅阵列(BGA)焊接凸块也可使用。LGA焊接凸块17提供抵抗在高应力条件下失效的高度可靠的互连结构。
[0041]如图1中所示,POL结构10还包括POL子模块14附连到其上的衬底结构18。根据一示例性实施例,衬底结构18由瓷板(例如氧化铝)20组成,瓷板20带有通过高温接合工艺接合到其两侧的一层直接敷铜(DBC) 22、24。对于接合工艺而言,可基于例如板20由氧化铝还是氮化铝和氮化硅等组成来采用不同的硬焊和直接接合技术。衬底结构18的顶部DBC层22或“模侧DBC层”然后在烧制后蚀刻,以基于半导体装置12的数量/布置来按需使该层图案化。在衬底结构18的背面上的底部DBC层24或“非模侧DBC层”则完全或部分地暴露以提供从POL结构10的高效地向外的传热。虽然在上文和下文中称作“DBC层”,但是应认识到,铝可代替铜用作金属层,且因此这种实施例也被认为在本发明的范围内。因此,在下文中使用术语“DBC层”来意图涵盖包括包括接合至瓷板(例如氧化铝)20的两侧的任何合适的金属材料22、24(诸如铜或铝)的片的衬底结构18。如在图1中所示,在POL结构10上还设置有介电材料26以填充POL结构10中的间隙,从而向POL结构10提供另外的结构完整性。介电材料26在下文中一般称作“底层填充材料”,并且在优选实施例中为对水分敏感并且在固化前作为液体流动的有机介电材料。然而,应认识到,介电材料26可由任意一定数量的合适材料形成,包括底层填料、硅酮、成型化合物、密封剂或其它合适的有机材料。
[0042]如图1中所示,POL结构10还包括施加在POL结构10的POL子模块14周围的扩散阻挡层28。根据本发明的实施例,扩散阻挡层28构造成具有低水分和气体(例如氧气)渗透率,从而显著地减小被POL子模块14中的材料、底层填充材料26吸收的以及在子模块中的材料之间的界面处的水分和气体的量,并且防止其它污染物与POL子模块14接触。另夕卜,阻挡层28使得POL结构10对焊接操作(例如二级I/O连接16焊接至PCB)更可靠。扩散阻挡层28邻近二级I/O连接16施加并以不阻止将二级I/O连接16焊接至PCB的厚度施加。下文更详细地说明向根据本发明的各种实施例的POL结构10施加扩散阻挡层28。
[0043]现参看图2-12,根据本发明的实施例,提供了用于制造图1的POL结构10的技术的工序步骤的详细视图。如在图2-9中首先所示,提供了用于组建POL子模块14的工序步骤。参看图2,POL子模块14的组建工序始于将介电层30或“挠性层”放置并附连到框架结构32上。介电层30的形式是叠层或膜且放置于框架结构32上以在POL子模块14的组建工序期间提供稳定性。根据本发明的实施例,介电层30可由多种介电材料中的一种诸如Kapton?、Ultem?、聚四氟乙烯(PTFE)、Upilex?、聚砜材料(例如 Udel?、RadeI?)或另一种聚合物膜诸如液晶聚合物(LCP)或聚酰亚胺材料形成。
[0044]如在图3中所示,在将介电层30固定到框架结构32上后,粘合剂层34沉积到介电层30上。然后穿过粘合剂层34和介电层30形成多个通孔36,如在图4中所示。根据本发明的实施例,通孔36可经由激光消融或激光钻制工艺、等离子体蚀刻、光界定或机械钻制工艺而形成。在下一技术步骤中,一个或多个半导体装置12(例如三个半导体装置)经由粘合剂层34固定到介电层30上,如在图5中所示。为了将半导体装置12固定到介电层30上,半导体装置12放置于粘合剂层34上且然后使粘合剂34固化以将半导体装置12固定到介电层30上。根据本发明的一个实施例,并且如在图5中所示,半导体装置12可具有不同厚度/高度。为了增加半导体装置12的厚度/高度,可将铜垫片(shim) 37焊接到一个或多个半导体装置12上,以便增加其厚度/高度,使得所有半导体装置12的厚度/高度相等并且使半导体装置12的后表面平坦化。
[0045]虽然贯穿粘合剂层34和介电叠层30的通孔36的形成在图4中示出为在半导体装置12放置到粘合剂层34上之前执行,但是应该认识到半导体装置12的放置可先于通孔形成而发生。也就是,取决于通孔尺寸所施加的约束,半导体装置12首先可放置于粘合剂层34和介电层30上,其中通孔36随后在对应于在半导体装置12上所形成的多个金属电路和/或连接垫(未示出)的位置处形成。而且,可根据需要来采用预钻制通孔和在后钻制通孔的组合。
[0046]如在图6和图7中所示,在将半导体装置12固定于介电层30上且形成通孔36后,清洁通孔36 (诸如通过反应式离子蚀刻(RIE)除尘(desoot)工艺)且随后将通孔36金属化以形成一级互连38。一级金属互连38典型地通过溅射和电镀应用的组合来形成,不过应该认识到,也可使用金属沉积的其它无电方法。例如,钛粘附层和铜晶种层可首先经由溅射工艺来施加,继之以将铜的厚度增加到期望水平的电镀工艺。随后将所施加的金属材料图案化为具有所期望的形状的金属互连38 (即一级互连)且其充当通过介电层30和粘合剂层30形成的竖直馈通。金属互连38从半导体装置12的电路和/或连接垫(未示出)延伸出,通过通孔/开口 36且出来横跨介电层30的顶部表面39。
[0047]现参看图8,制造POL结构10的技术继续将POL子模块14附连到衬底结构18上。根据本发明的一个实施例,经由焊接材料40将POL子模块14附连到衬底结构18上,从而将POL子模块14和衬底结构18固定在一起。也就是,每个半导体装置12被焊接到模侧DBC层22上。然后将聚合物底层填料、密封剂或成型化合物26 (例如环氧树脂或其它有机填充材料)设置在POL结构10上,其填充POL结构10中的间隙,如图9中所示,从而约束介电层30并且向POL结构10提供另外的电绝缘和结构完整性。
[0048]现参看图10A-10D,示出了制造POL结构10时的下一个步骤的各种实施例,其中将一个或多个扩散阻挡层28施加至POL结构10。在图10A-10D中所示的各种备选步骤中的每个中,将扩散阻挡层28施加至POL结构10,以显著减小被POL结构10中的材料吸收以及在结构中的材料之间的界面处的水分和气体的量,并且防止其它污染物与POL子模块14接触。根据本发明的实施例,扩散阻挡层28包括由有机材料、无机材料、陶瓷材料和其任意结合形成的一层或多层,其中这些材料典型地是反应等离子体物质的反应或再结合产物。形成扩散阻挡层28的层或叠层具有低的水分和气体通过其中的扩散/传输率,从而共同减少水分和气体进入POL结构10。扩散阻挡层28可经由任意一定数量的合适的工艺例如等离子体增强的化学气相沉积工艺施加,并具有期望厚度,例如在一个原子层到高达25-100微米的范围内的厚度,使得层28不会干扰LGA/BGA焊接凸块17的可焊接性。扩散阻挡层28作为在低温、例如在不超过例如大约250-300摄氏度的温度处施加的非导电层构成。
[0049]参照图10A,根据本发明的一个实施例,在将POL子模块14附连到衬底结构18上并且沉积底层填充材料26后,将阻焊层(solder mask layer) 42施加到POL子模块14上的图案化金属互连38上,以提供用于其铜垫片的保护涂层。除焊料外,应该认识到,该层42可由并非焊料的一些金属材料诸如Ni或Ni/Au组成。如图1OA中进一步所示,二级I/O互连16然后在介电层30的顶部上施加至阻焊层40。在一个实施例中,I/O互连16作为焊接至阻焊层42以实现POL结构10表面安装到外部电路上的LGA或BGA焊接凸块17形成,其中焊接凸块17提供抵抗在高应力条件下的失效的高度可靠的二级互连结构。在施加阻焊层42和二级I/O互连16后,然后将扩散阻挡层28施加至POL结构10。扩散阻挡层28施加在阻焊层42和二级I/O互连16的焊接凸块17上,不需要使该层图案化。扩散阻挡层28还在POL结构的侧面向下延伸并延伸到陶瓷层20或背面DBC层24,以使得底层填充材料26也被扩散阻挡层28覆盖且POL结构10被阻挡层28封闭。
[0050]参见图10B,根据本发明的另一实施例,在将POL子模块14附连到衬底结构18上并沉积底层填充材料26后,扩散阻挡层28直接在金属互连38上施加至POL结构10。然后将阻焊层42施加在扩散阻挡层28上以提供用于其铜垫片的保护涂层,其中阻焊层42还被用来蚀刻扩散阻挡层28以在要形成LGA焊接凸块17的位置开放。如图1OB中进一步所示,二级I/O互连16在介电层30的顶部上和扩散阻挡层28的顶部上施加至阻焊层42,其中互连的形式是焊接至阻焊层42以使得POL结构10能够表面安装到外部电路上的LGA或BGA焊接凸块17。扩散阻挡层28在POL结构的侧面向下延伸并延伸到陶瓷层20或背面DBC层24,以使得底层填充材料26也被扩散阻挡层28覆盖且POL结构10被阻挡层28封闭。
[0051]参照图10C,根据本发明的另一实施例,多个扩散阻挡层28在制造工艺的各个阶段施加到POL结构10上。也就是,第一扩散阻挡层28A直接在金属互连38上施加至POL结构10。然后将阻焊层42施加在扩散阻挡层28上,以提供用于其铜垫片的保护涂层,其中二级I/O互连16然后在介电层30的顶部上和第一扩散阻挡层28A的顶部上施加至阻焊层42,其中互连的形式是LGA或BGA焊接凸块17。在施加阻焊层42和二级I/O互连16后,然后将第二扩散阻挡层28B施加至子模块,其中第二扩散阻挡层28B施加到阻焊层42和二级I/O连接16的焊接凸块17上,不需要使该层图案化。第二扩散阻挡层28B构造成使得该层不干扰LGA/BGA焊接凸块17的可焊接性。另外,第一和/或第二扩散阻挡层28A、28B在POL结构的侧面向下延伸并延伸到陶瓷层20或背面DBC层24,以使得底层填充材料26也被扩散阻挡层覆盖且POL结构10被阻挡层封闭。
[0052]参见图10D,根据本发明的另一实施例,在将POL子模块14附连到衬底结构18上并沉积底层填充材料26后,扩散阻挡层28直接在金属互连38上施加至POL结构10并且构造成充当阻焊层。在替代传统阻焊层的功能时,扩散阻挡层28的厚度增加,使得阻挡层向金属互连38提供充足的保护。在施加扩散阻挡层28后,二级I/O互连16形成在其上,其中互连的形式为LGA或BGA焊接凸块17。
[0053]现参见图11A-11C,示出了根据本发明实施例的扩散阻挡层28的各种设想的结构。如上所述,扩散阻挡层28包括由有机材料、无机材料、陶瓷材料和其任意结合形成的一层或多层,其中这些材料典型地是反应等离子体物质的反应或再结合产物。
[0054]如在图1lA中所示,扩散阻挡层28可作为始终具有一致组分的单层50构成。根据一个实施例,单层50可仅由无机和/或陶瓷材料形成,其中无机/陶瓷材料包括组IIA、IIIA、IVA、VA、VIA、VIIA、IB、IIB的元素、组IIIB、IVB、VB的金属、稀土元素的氧化物、氮化物、碳化物和硼化物或其任意结合中的任意一种。
[0055]如图1lB中所示,扩散阻挡层28可代之以作为叠层52、54(即多层结构)例如第一层52和第二层54构成,不过应认识到,可构成另外的层。根据一个实施例,第一层52可由一种或多种有机材料例如碳、氢、氧和可选地其它微量元素例如硫、氮、硅等形成,取决于与其一起使用的反应剂的类型,其中在涂层中产生有机组分的合适的反应剂为直链或支链烷烃、烯烃、炔烃、醇、醛、醚、环氧烷烃、芳族化合物等,其具有最多15个碳原子。第二层54可由无机和/或陶瓷材料形成,其中无机/陶瓷材料包括组IIA、IIIA、IVA、VA、VIA、VIIA、IB、IIB的元素、组IIIB、IVB、VB的金属、稀土元素的氧化物、氮化物、碳化物和硼化物或其任意结合中的任意一种。
[0056]如在图1lC中所示,根据又一实施例,扩散阻挡层28可作为具有分级(graded)组分的层56构成,S卩,层56的组分跨越该层的厚度变化,使得层56可称作具有多个区域58、60、62。跨越层56的厚度的区域58、60、62的合适的涂层组分是有机、无机或陶瓷材料,例如上述有机、无机和陶瓷材料。例如,可通过从硅烷(SiH4)生成的等离子体与有机材料例如甲烷或二甲苯的再结合来将碳化硅沉积到衬底上。可从由硅烷、甲烷和氧或硅烷和环氧丙烧生成的等离子体来沉积碳氧化娃。还可从由有机娃化合物(organosiIicone)前体例如四乙氧基硅烷(TEOS)、六甲基二硅氧烷(HMDSO)、六甲基二硅氮烷(HMDSN)或八甲基环四硅氧烷(D4)生成的等离子体来沉积碳氧化硅。可从由硅烷和氨生成的等离子体来沉积氮化硅。可从由酒石酸铝与氨的混合物生成的等离子体来沉积碳氮氧化铝(aluminumoxycarbonitride)。可选择反应剂的其它组合以获得层56的期望组分。通过在沉积反应产物以形成层期间改变送入反应室中的反应剂的组分来获得层56的分级组分。
[0057]有益地,本发明的实施例因此提供了具有二级封装I/O 16的POL封装和互连结构10,二级封装I/O 16设置在POL子模块14的挠性侧(即介电层30的顶部上)以二级互连到外部电路上并且整个非模侧DBC层24可用于热连接。POL结构10包括构造成减少水分和气体进入封装的扩散阻挡层28,从而对与水分和气体有关的故障机制提供增强的可靠性。扩散阻挡层28还构造成使得其不干扰二级I/O互连16到PCB或其它外部电路上的可焊接性。
[0058]因此,根据本发明的一个实施例,一种表面安装结构包括子模块,该子模块具有:介电层;附连到介电层上的至少一个半导体装置,该半导体装置包括由半导体材料组成的衬底;与至少一个半导体装置电联接的一级金属互连结构,该金属互连结构延伸穿过贯穿介电层形成的通孔,从而连接到至少一个半导体装置上;和与一级金属互连结构电联接且在介电层上在与至少一个半导体装置相对的一侧形成的二级输入/输出(I/o)连接,其中该二级I/o连接构造成将子模块连接到外部电路上。该表面安装结构还包括具有第一表面和第二表面的多层衬底,其中子模块的至少一个半导体装置附连到多层衬底的第一表面上。该表面安装结构还包括介电材料,该介电材料在介电层与多层衬底结构的第一表面之间定位并且至少部分地围绕子模块的至少一个半导体装置,和扩散阻挡层,该扩散阻挡层邻近一级和二级I/o连接施加在子模块上,并且向下延伸到多层衬底结构,其中扩散阻挡层构造成减少水分和气体从周围环境进入表面安装结构。
[0059]根据本发明的另一实施例,一种制造表面安装封装和互连结构的方法包括以下步骤:构成子模块,该子模块包括至少一个半导体装置和绕其形成的封装结构,其中构成子模块的步骤还包括以下步骤:将至少一个半导体装置附连到介电层上;在介电层上形成一级金属互连结构,其延伸穿过介电层中的通孔以与至少一个半导体装置电连接;以及在介电层上在与至少一个半导体装置相对的一侧形成二级输入/输出(I/o)连接,其中二级I/O连接构造成将子模块连接到外部电路上。该方法还包括以下步骤:形成衬底结构,该衬底结构包括中央衬底层以及位于中央衬底层的相对侧的第一和第二金属层,使得第一和第二金属层分别形成衬底结构的第一表面和第二表面;将子模块附连到衬底结构的第一表面上;以及在介电层与衬底结构的第一表面之间提供介电材料,其中介电材料至少部分地密封子模块的至少一个半导体装置。该方法还包括以下步骤:邻近二级I/o连接施加在子模块上施加的扩散阻挡层,并且扩散阻挡层向下延伸到多层衬底结构,其中扩散阻挡层构造成减少水分和气体从周围环境进入表面安装封装和互连结构。
[0060]根据本发明的又一实施例,一种POL封装结构包括POL子模块,该POL子模块具有:介电层;附连到介电层上的多个半导体装置;一级互连结构,其与多个半导体装置电联接并且延伸穿过贯穿介电层形成的通孔以便连接到多个半导体装置上;以及二级互连结构,其用以将POL子模块与外部电路结构电联接,其中二级互连结构包括在介电层和一级互连结构上形成并且构造成形成到外部电路结构的互连的多个焊接凸块。该POL封装结构还包括具有第一表面和第二表面的多层衬底结构,其中POL子模块的多个半导体装置附连到多层衬底结构的第一表面上。多层衬底结构还包括形成多层衬底结构的第一表面的第一直接敷铜(DBC)层、形成多层衬底结构的第二表面的第二 DBC层以及被夹置在第一和第二DBC层之间的陶瓷层。该POL封装结构还包括密封剂,该密封剂在介电层与多层衬底结构的第一表面之间定位并且至少部分地围绕子模块的多个半导体装置,和扩散阻挡层,该扩散阻挡层邻近二级互连结构施加在POL子模块上,并且向下延伸到多层衬底结构,其中扩散阻挡层构造成减少水分和气体从周围环境进入POL封装结构。
[0061]虽然仅关于有限数量的实施例详细地描述了本发明,但应当容易理解的是,本发明并不局限于这些公开的实施例。而是,可修改本发明以合并之前未描述但与本发明的精神和范围相符的任意数量的变型、更改、替代或等效布置。此外,虽然已经描述了本发明的各种实施例,但应理解的是,本发明的方面可仅包括所述实施例中的一些。因此,本发明不应视作受前文的描述限制,而是仅受所附权利要求的范围限制。
【权利要求】
1.一种表面安装结构,包括: 子模块,所述子模块包括: 介电层; 附连到所述介电层上的至少一个半导体装置,其中,所述至少一个半导体装置中的每一个包括由半导体材料组成的衬底; 与所述至少一个半导体装置电联接的一级金属互连结构,所述金属互连结构延伸穿过贯穿所述介电层形成的通孔,从而连接到所述至少一个半导体装置上;以及 与所述一级金属互连结构电联接并且形成在所述介电层上在与所述至少一个半导体装置相对的一侧的二级输入/输出(I/o)连接,所述二级I/O连接构造成将所述子模块连接到外部电路上; 具有第一表面和第二表面的多层衬底结构,其中,所述子模块的至少一个半导体装置附连到所述多层衬底的第一表面上; 介电材料,所述介电材料在所述介电层与所述多层衬底结构的第一表面之间定位并且至少部分地围绕所述子模块的至少一个半导体装置;以及 扩散阻挡层,所述扩散阻挡层邻近所述一级和二级I/o连接施加在所述子模块上,并且向下延伸到所述多层衬底结构,所述扩散阻挡层构造成减少水分和气体从周围环境进入所述表面安装结构。
2.根据权利要求1所述的表面安装结构,其特征在于,所述扩散阻挡层包括有机材料、无机材料、陶瓷材料和其任意结合。
3.根据权利要求2 所述的表面安装结构,其特征在于,所述无机材料或陶瓷材料包括组 IIA、IIIA、IVA、VA、VIA、VIIA、IB、IIB 的元素、组 IIIB、IVB、VB 的金属、稀土元素的氧化物、氮化物、碳化物和硼化物或其任意结合。
4.根据权利要求1所述的表面安装结构,其特征在于,所述扩散阻挡层包括单层阻挡、多层阻挡和具有跨越所述扩散阻挡层的厚度在有机和无机材料之间变化的组分的分级组分阻挡。
5.根据权利要求1所述的表面安装结构,其特征在于,所述表面安装结构还包括施加在所述一级金属互连结构上的阻焊层;并且 其中,所述二级I/o连接包括构造成在期望位置穿过所述阻焊层以便与所述一级金属互连结构电联接的盘栅阵列(LGA)焊接凸块和球栅阵列(BGA)焊接凸块中的一种。
6.根据权利要求5所述的表面安装结构,其特征在于,所述扩散阻挡层施加在所述一级金属互连结构与所述阻焊层之间。
7.根据权利要求5所述的表面安装结构,其特征在于,所述扩散阻挡层施加在所述阻焊层上以及所述二级I/O连接的焊接凸块上或周围。
8.根据权利要求1所述的表面安装结构,其特征在于,所述扩散阻挡层施加在所述一级金属互连结构上并且还构造成充当阻焊层。
9.根据权利要求1所述的表面安装结构,其特征在于,所述扩散阻挡层具有在一个原子层与100微米之间的厚度。
10.根据权利要求1所述的表面安装结构,其特征在于,所述多层衬底结构包括: 陶瓷绝缘层;在所述绝缘层的一侧定位以形成所述多层衬底结构的第一表面的第一金属层;以及在所 述绝缘层的另一侧定位以形成所述多层衬底结构的第二表面的第二金属层;其中,所述第一和第二金属层包括第一和第二直接敷铜(DBC)层。
【文档编号】H01L23/31GK103579136SQ201310324406
【公开日】2014年2月12日 申请日期:2013年7月30日 优先权日:2012年7月30日
【发明者】A.V.高达, P.A.麦康奈李, 赵日安, S.S.乔罕 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1