半导体单元的制作方法

文档序号:7261511阅读:96来源:国知局
半导体单元的制作方法
【专利摘要】本发明提供了一种半导体单元,其包括:绝缘层;传导层,接合至绝缘层的一侧;半导体装置,安装在传导层上;冷却器,热耦合至绝缘层的另一侧;第一汇流排,具有接合至半导体装置或传导层的接合表面以及作为第一汇流排的除了接合表面外的部分的非接合表面;以及第二汇流排,具有接合至半导体装置或传导层的接合表面以及作为第二汇流排的除了接合表面外的部分的非接合表面。第二汇流排的接合表面的面积与非接合表面的面积之比大于第一汇流排的接合表面的面积与非接合表面的面积之比。第二汇流排的电阻低于第一汇流排的电阻。
【专利说明】半导体单元【技术领域】
[0001] 本发明涉及一种具有半导体装置的半导体单元,其中该半导体装置设置在形成在绝缘层之上的传导层上。
【背景技术】
[0002]日本未审查专利申请公布第2006-202885号公开了可以例如用作电力转换器的半导体单元。该半导体单元具有作为半导体装置的IGBT (绝缘栅双极晶体管)和二极管。IGBT的集电极和二极管的底电极被焊接至用于释放IGBT和二极管产生的热并且还连接在IGBT与二极管之间的组件。IGBT的发射极和二极管的顶电极通过引线相连接。
[0003]在激励半导体单元时,电流流过组件和引线,从而组件和引线发热。在这种情况下,辐射使得引线相比于旨在起到辐射器作用的组件而言被较少程度地冷却,这导致在组件与引线之间(即,在电流流过的两个不同传导构件之间)的冷却差别。
[0004]本发明旨在提供一种具有使得能够减小电流流过的不同传导构件之间的冷却差别的结构的半导体单元。

【发明内容】

[0005]根据本发明的一方面,一种半导体单元包括:绝缘层;传导层,接合至绝缘层的一侧;半导体装置,安装在传导层上;冷却器,热耦合至绝缘层的另一侧;第一汇流排,具有接合至半导体装置或传导层的接合表面以及作为第一汇流排的除了接合表面外的部分的非接合表面;以及第二汇流排,具有接合至半导体装置或传导层的接合表面以及作为第二汇流排的除了接合表面外的部分的非接合表面。第二汇流排的接合表面的面积与非接合表面的面积之比大于第一汇流排的接合表面的面积与非接合表面的面积之比。第二汇流排的电阻低于第一汇流排的电阻。
[0006]根据本发明的另一方面,一种半导体单元包括:绝缘层;传导层,接合至绝缘层的一侧;半导体装置,安装在传导层上;冷却器,热耦合至绝缘层的另一侧;第一汇流排,具有接合至半导体装置或传导层的接合表面以及作为第一汇流排的除了接合表面外的部分的非接合表面;以及第二汇流排,具有接合至半导体装置或传导层的接合表面以及作为第二汇流排的除了接合表面外的部分的非接合表面。第二汇流排的非接合表面的面积大于第一汇流排的非接合表面的面积。第二汇流排的电阻低于第一汇流排的电阻。
[0007]根据以下结合附图所进行的描述,本发明的其他方面和优点将变得显而易见,其中附图作为示例示出了本发明的原理。
【专利附图】

【附图说明】
[0008]图1是作为根据本发明的半导体单元的实施例的三相逆变器的分解透视图;
[0009]图2是图1的逆变器的平面图;
[0010]图3是沿图2的线II1-1II所得到的逆变器的截面图;[0011]图4是沿图2的线IV-1V所得到的逆变器的截面图;
[0012]图5A是图1的逆变器的负汇流排的底视图;
[0013]图5B是图1的逆变器的正汇流排的底视图;
[0014]图6是图1的逆变器的电路图;以及
[0015]图7是根据本发明的三相逆变器的另一实施例的截面图。
【具体实施方式】
[0016]以下将参照图1至图6描述作为根据本发明的半导体单元的一个实施例的三相逆变器。参照图1,一般以10表示的三相逆变器包括电路板20、安装在电路板20的一侧的六个半导体装置41、42、43、44、45和46、以及热耦合至电路板20的另一侧的冷却器11。应注意,在图1中所看到的上侧和下侧分别对应于逆变器10的上侧和下侧。
[0017]电路板20包括矩形陶瓷基板21或绝缘层、以及每一个均接合至陶瓷基板21的顶表面的第一、第二、第三和第四金属板22、23、24和25。金属板22至25均由诸如招的传导材料制成。金属板22至25对应于本发明的传导层。
[0018]第一、第二和第三金属板22、23和24布置在陶瓷基板21的纵向上。第四金属板25以及第一、第二和第三金属板22、23和24中的每一个布置在陶瓷基板21的横向上。
[0019]在六个半导体装置41至46之中,三个半导体装置42、44、46分别安装在第一、第二和第三金属板22、23、24的顶表面上,并且剩余的三个半导体装置41、43、45安装在第四金属板25的顶表面上。
[0020]参照示出了本实施例的逆变器10的电路图的图6,半导体装置41、42、43、44、45、46中的每一个均具有包括诸如Q1、Q2、Q3、Q4、Q5、Q6的一个开关装置和一个二极管D的一个装置。开关装置Ql至Q6可由诸如IGBT (绝缘栅双极晶体管)或功率MOSFET (金属氧化物半导体场效应晶体管)的功率半导体装置提供。各个开关装置Ql至Q6的栅极和发射极设置在各个半导体装置41至46的顶表面上,并且各个开关装置Ql至Q6的集电极设置在各个半导体装置41至46的底表面上。各个二极管D的阳极设置在各个半导体装置41至46的顶表面上,并且各个二极管D的阴极设置在各个半导体装置41至46的底表面上。
[0021]如图1和图2所示,逆变器10包括在平面图中具有矩形轮廓并且接合至各个金属板22、23、24的连接构件26、27、28。连接构件26的一个纵向端接合至第一金属板22的顶表面,并且其相对的纵向端接合至半导体装置41的顶表面上的栅极、发射极和阳极。连接构件27的一个纵向端接合至第二金属板23的顶表面,并且其相对的纵向端接合至半导体装置43的顶表面上的栅极、发射极和阳极。连接构件28的一个纵向端接合至第三金属板24的顶表面,并且其相对的纵向端接合至半导体装置45的顶表面上的栅极、发射极和阳极。设置在半导体装置42的底表面上的集电极和阴极电接合至第一金属板22。设置在半导体装置44的底表面上的集电极和阴极电接合至第二金属板23。设置在半导体装置46的底表面上的集电极和阴极电接合至第三金属板24。设置在各个半导体装置41、43、45的底表面上的集电极和阴极电接合至第四金属板25。
[0022]逆变器10包括接合至各个半导体装置42、44、46的顶表面以电连接至电源(未示出)的负端子的负汇流排29。负汇流排29具有在平面图中具有矩形轮廓的基部30、以及在平面图中具有矩形轮廓且从基部30延伸的连接部31、32、33。具有相同配置的连接部31、32,33在基部30的纵向上彼此隔开并且在基部30的横向上延伸。连接部31接合至半导体装置42的顶表面上的栅极、发射极和阳极。连接部32接合至半导体装置44的顶表面上的栅极、发射极和阳极。连接部33接合至半导体装置46的顶表面上的栅极、发射极和阳极。负汇流排29将半导体装置42、44、46电连接至电源的负端子。
[0023]开关装置Q1、Q3、Q5的在半导体装置41、43、45的底表面上的集电极通过第四金属板25和正汇流排34连接至电源的正端子。开关装置Q2、Q4、Q6的在半导体装置42、44、46的顶表面上的发射极通过负汇流排29连接至电源的负端子。
[0024]如图2和图3所示,正汇流排34在平面图中具有矩形轮廓,并且接合至第四金属板25的顶表面以电连接至电源的正端子。正汇流排34将第四金属板25电连接至电源的正端子。正汇流排34和负汇流排29都是由诸如铜的相同传导材料制成的。
[0025]如图3和图4所示,负汇流排29的基部30以与正汇流排34重叠的关系布置,如在其厚度方向上看到的那样。连接构件26、27、28以与负汇流排29的基部30和各个连接部31、32、33重叠的关系布置,如在其厚度方向上看到的那样。
[0026]在陶瓷基板21的底表面上设置了应力减缓构件35。应力减缓构件35由诸如铝板的金属板制成,并且具有在其厚度方向上延伸穿过该应力减缓构件的多个孔35A。
[0027]应力减缓构件35A介于陶瓷基板21和冷却器11之间并接合至陶瓷基板21和冷却器11。冷却器11中具有冷却剂流过的多个直通道11A。尽管图中未示出,但是冷却器11具有冷却剂流入和流出通道IlA的入口和出口。
[0028]正汇流排34通过金属板25、陶瓷基板21和应力减缓构件35热耦合至冷却器11。负汇流排29通过半导体装置42、44、46、金属板22、23、24、陶瓷基板21和应力减缓构件35热耦合至冷却器11。利用流过冷却器11的通道IlA的冷却剂使正汇流排34和负汇流排29冷却。
[0029]图5A和图5B分别是负汇流排29和正汇流排34的底视图。负汇流排29的接合至各个半导体装置42、44、46 (参见图1)的顶表面的部分以附图标记29A通过阴影来表示,并且负汇流排29的这样的部分在下文中将称为接合表面。类似地,正汇流排34的接合至金属板25的顶表面的部分以附图标记34A通过阴影来表示,并且正汇流排34的这样的部分在下文中也将称为接合表面。图2中也示出了这些接合表面29A、34A。在负汇流排29和正汇流排34中的每一个中,除了诸如29A、34A的接合表面外的部分在下文中将称为非接合表面。
[0030]如图5A和图5B所示,正汇流排34具有与负汇流排29的基部30和连接部31、32、33基本上相同的宽度T2。负汇流排29的基部30的长度Tl大于正汇流排34的长度,并且负汇流排29的连接部31、32、33的长度Tl也大于正汇流排34的长度。如图3所示,负汇流排29的厚度T3大于正汇流排34的厚度。
[0031]负汇流排29的接合表面29A的长度T4大于正汇流排34的接合表面34A的长度。由于负汇流排29和正汇流排34具有基本上相同的宽度T2,因此负汇流排29的接合表面29A的面积大于正汇流排34的接合表面34A的面积。负汇流排29的非接合表面的面积也大于正汇流排34的非接合表面的面积。
[0032]负汇流排29的接合表面的面积与非接合表面的面积之比大于正汇流排34的接合表面的面积与非接合表面的面积之比。在本实施例中,正汇流排34对应于本发明的第一汇流排,并且负汇流排29对应于本发明的第二汇流排。
[0033]如图3和图4所示,负汇流排29的基部30和连接部31、32、33中的每一个的电流路径的横截面面积均大于正汇流排34的电流路径的横截面面积。
[0034]在本实施例的三相逆变器10中,冷却器11和安装在其上的部件是利用绝缘模制树脂(mold resin)12来模制的。具体地,模制树脂12覆盖冷却器11的顶表面的部分并且覆盖半导体装置41至46、金属板22至25、陶瓷基板21、应力减缓构件35、连接构件26至28、负汇流排29和正汇流排34。正汇流排34的部分以及负汇流排29的基部30的部分从模制树脂12突出,其中电源通过例如外部电极电连接至模制树脂12。
[0035]如图6所示,各个半导体装置41、43、45中的开关装置Q1、Q3、Q5用作逆变器10的上臂。各个半导体装置42、44、46中的开关装置Q2、Q4、Q6用作逆变器10的下臂。
[0036]开关装置Ql、Q2串联连接,开关装置Q3、Q4串联连接,并且开关装置Q5、Q6串联连接。
[0037]开关装置Ql至Q6中的每一个的二极管D反并联连接在发射极与集电极之间。具体地,二极管D的阴极连接至发射极并且其阳极连接至集电极。
[0038]开关装置Q1、Q2之间的连接、开关装置Q3、Q4之间的连接以及开关装置Q5、Q6之间的连接与诸如三相电动机的负载51相连。逆变器10将电池B的DC电力转换为AC电力以供给至负载51。
[0039]以下将描述本实施例的上述逆变器10的操作。在向逆变器10供给来自电池B的电力以驱动负载51时,电流流过的传导构件(诸如正汇流排34和负汇流排29)发热。在正汇流排34处产生的热通过金属板25、陶瓷基板21和应力减缓构件35传递至冷却器11。在负汇流排29处产生的热通过半导体装置42、44、46、金属板22、23、24、陶瓷基板21和应力减缓构件35传递至冷却器11。
[0040]在正汇流排34和负汇流排29之中,与接合至金属板25的接合表面34A具有较小面积的正汇流排34相比,接合至半导体装置42、44、46的接合表面29A具有较大面积的负汇流排29被冷却器11较大程度地冷却。也就是说,与非接合表面具有较小面积的正汇流排34相比,非接合表面具有较大面积的负汇流排29被较小程度地冷却。因此,与接合表面34A的面积与非接合表面的面积之比较小的正汇流排34相比,接合表面29A的面积与非接合表面的面积之比较大的负汇流排29被冷却器11较小程度地冷却。
[0041]在本实施例中,与正汇流排34相比,负汇流排29的电流路径的横截面面积较大,因此负汇流排29的电阻较低。因此,由流过负汇流排29的电流引起的焦耳热小于由流过正汇流排34的电流引起的焦耳热,从而导致发热的正汇流排34和负汇流排29会达到的温度之间的差减小。
[0042]发热的正汇流排34和负汇流排29会达到的温度之间的差的这种减小还可通过增大负汇流排29的接合至半导体装置42、44、46的部分的面积(即,接合表面29A的面积)来实现,以使得负汇流排29被冷却器11较大程度地冷却。然而,这样增大负汇流排29的接合表面29A的面积要求与负汇流排29接合的表面(S卩,各个半导体装置42、44、46的顶表面)的面积较大,这导致逆变器10的尺寸增大,因此,这不是实际选择。
[0043]本实施例的逆变器10提供了以下优点。
[0044](I)负汇流排29的接合表面29A的面积与非接合表面的面积之比大于正汇流排34的接合表面的面积与非接合表面的面积之比。负汇流排29的电流路径的横截面面积大于正汇流排34的电流路径的横截面面积,从而在激励逆变器10时在负汇流排29处所产生的热量或焦耳热小于在正汇流排34处所产生的热量或焦耳热,由此使得正汇流排34与负汇流排29之间的冷却差别减小。
[0045](2)冷却器11和安装在其上的部件是利用模制树脂12来模制的。当金属板22至25在逆变器10被激励的同时发热并膨胀时,模制树脂12用来限制金属板22至25的热膨胀,由此防止金属板22至25从陶瓷基板21脱离。
[0046](3)负汇流排29的基部30以与正汇流排34的重叠关系来布置,如在其厚度方向上看到的那样。连接构件26、27、28以与负汇流排29的基部30和各个连接部31、32、33重叠的关系来布置,如在其厚度方向上看到的那样。流过连接构件26、27、28以及正汇流排34的电流的方向与流过负汇流排29的电流的方向相反。在负汇流排29与各个连接构件26、27,28之间以及在负汇流排29与正汇流排34之间发生的互感应导致逆变器10的电感减小。
[0047]可以用以下例示的各种方式对上述实施例进行修改。
[0048]如图7所示,多个散热片(fin) 61可形成为从负汇流排29的基部30的顶表面垂直地延伸。这样的散热片61的设置增大了负汇流排29的表面面积,因此负汇流排29相比于正汇流排34而言被较大程度地冷却,这还有助于减小正汇流排34与负汇流排29之间的冷却差别。
[0049]负汇流排29可由电导率高于正汇流排34的电导率的材料制成,以使得负汇流排29的电阻低于正汇流排34的电阻。在这种情况下,负汇流排29和正汇流排34的电流路径可具有基本上相同的横截面面积。
[0050]冷却器11和安装在其上的部件不一定需要利用诸如12的模制树脂来模制。
[0051]如果正汇流排34的接合表面的面积与非接合表面的面积之比大于负汇流排29的接合表面的面积与非接合表面的面积之比,则使得正汇流排34具有比负汇流排29低的电阻。在这种情况下,正汇流排34对应于本发明的第二汇流排,并且负汇流排29对应于本发明的第一汇流排。
[0052]正汇流排34可直接接合至半导体装置41、43、45的底表面而无需使用金属板25。
[0053]附加传导层可设置在半导体装置42、44、46的顶表面之上,并且负汇流排29可接合至这样的附加传导层。
[0054]本发明不仅可应用于诸如10的三相逆变器,而且可应用于单相逆变器或DC-DC转换器。
【权利要求】
1.一种半导体单元,包括: 绝缘层; 传导层,接合至所述绝缘层的一侧; 半导体装置,安装在所述传导层上; 冷却器,热耦合至所述绝缘层的另一侧; 第一汇流排,具有接合至所述半导体装置或所述传导层的接合表面以及作为所述第一汇流排的除了接合表面外的部分的非接合表面;以及 第二汇流排,具有接合至所述半导体装置或所述传导层的接合表面以及作为所述第二汇流排的除了接合表面外的部分的非接合表面,所述第二汇流排的接合表面的面积与非接合表面的面积之比大于所述第一汇流排的接合表面的面积与非接合表面的面积之比, 其特征在于,所述第二汇流排的电阻低于所述第一汇流排的电阻。
2.根据权利要求1所述的半导体单元,其中,所述第二汇流排的电流路径的横截面面积大于所述第一汇流排的电流路径的横截面面积。
3.根据权利要求1所述的半导体单元,其中,所述第二汇流排由电导率大于所述第一汇流排的电导率的材料制成。
4.根据权利要求1至3中任一项所述的半导体单元,其中,所述绝缘层、所述传导层、所述半导体装置、所述第一汇流排、所述第二汇流排和所述冷却器是利用模制树脂来模制的。
5.根据权利要求1至3中任一项所述的半导体单元,其中,所述第二汇流排具有散热片。
6.一种半导体单元,包括: 绝缘层; 传导层,接合至所述绝缘层的一侧; 半导体装置,安装在所述传导层上; 冷却器,热耦合至所述绝缘层的另一侧; 第一汇流排,具有接合至所述半导体装置或所述传导层的接合表面以及作为所述第一汇流排的除了接合表面外的部分的非接合表面;以及 第二汇流排,具有接合至所述半导体装置或所述传导层的接合表面以及作为所述第二汇流排的除了接合表面外的部分的非接合表面,所述第二汇流排的非接合表面的面积大于所述第一汇流排的非接合表面的面积, 其特征在于,所述第二汇流排的电阻低于所述第一汇流排的电阻。
【文档编号】H01L23/48GK103579138SQ201310328644
【公开日】2014年2月12日 申请日期:2013年7月31日 优先权日:2012年8月3日
【发明者】西槙介, 森昌吾, 音部优里, 加藤直毅 申请人:株式会社丰田自动织机
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1