Cmos图像传感器的像素结构及其形成方法

文档序号:7007809阅读:257来源:国知局
Cmos图像传感器的像素结构及其形成方法
【专利摘要】一种CMOS图像传感器像素结构及其形成方法,包括:半导体衬底,所述半导体衬底中掺杂有第一杂质离子;位于半导体衬底内的凹槽;位于凹槽的两侧侧壁表面的隔离层;位于凹槽内的外延硅层,所述外延层覆盖所述隔离层并填充满凹槽,所述外延硅层中掺杂有第二杂质离子,第二杂质离子的导电类型与第一杂质离子的导电类型相反,所述外延硅层和半导体衬底构成光电二极管;位于外延硅层一侧的半导体衬底上的栅极结构;位于栅极结构的远离外延硅层的一侧的半导体衬底内的浮置扩散区。所述CMOS图像传感器像素结构的暗电流较小。
【专利说明】CMOS图像传感器的像素结构及其形成方法

【技术领域】
[0001]本发明涉及图像传感器领域,特别涉及一种CMOS图像传感器的像素结构及其形成方法。

【背景技术】
[0002]图像传感器分为互补金属氧化物(CMOS)图像传感器和电荷耦合器件(CXD)图像传感器,通常用于将光学信号转化为相应的电信号。CCD图像传感器的优点是对图像敏感度较高,噪声小,但是CCD图像传感器与其他器件的集成比较困难,而且CCD图像传感器的功耗较高。相比之下,CMOS图像传感器具有工艺简单、易与其他器件集成、体积小、重量轻、功耗小、成本低等优点。目前CMOS图像传感器已经广泛应用于静态数码相机、照相手机、数码摄像机、医疗用摄像装置(例如胃镜)、车用摄像装置等。
[0003]CMOS图像传感器的基本感光单元被称为像素,所述像素包含一个光电二极管和3个或4个传输晶体管,称为3T型或4T型。目前市场上大部分CMOS图像传感器是4T型。如图1所示的4T型图像传感器包括:4个传输晶体管和I个光电二极管H),所述4个传输晶体管分别为复位晶体管Ml、放大晶体管M2、选择晶体管M3的和传输晶体管M4。
[0004]下面对如图1所示的4T型图传感器的像素单元的工作原理进行说明。首先,在接收光照前,复位晶体管Ml和传输晶体管M4导通,其他晶体管关断,对所述浮置扩散区FD和光电二极管ro进行复位;然后,所有晶体管关断,光电二极管ro接收光照,并且进行光电转换形成光生载流子;然后传输晶体管M4导通,其他晶体管关断,光生载流子自光电二极管PD转移到浮置扩散区FD ;接着,放大晶体管M2和选择晶体管M3导通,光生载流子依次从浮置扩散区FD经过放大晶体管M2和选择晶体管M3输出,完成一次光信号的采集与传输。
[0005]光生载流子自光电二极管ro传输至浮置扩散区FD依靠的是光电二极管ro的阴极与浮置扩散区FD之间的电势差,当所述电势差大于光电二极管H)与浮置扩散区FD之间的势垒时,所述电势差可以将光电荷传输到浮置扩散区FD。
[0006]现有的N型的CMOS图像传感器像素结构,请参考图2,所述CMOS图像传感器像素结构包括:P型半导体衬底101,位于P型半导体衬底101上的传输晶体管103,所述传输晶体管103包括位于P型半导体衬底101上的栅极结构;位于栅极结构一侧的P型半导体衬底内的光电二极管,所述光电二极管包括位于P型半导体衬底内的N型深掺杂区104 (感光区),N型深掺杂区104作为光电二极管的P型半导体衬底101作为光电二极管的阳极;位于P型半导体衬底101的另一侧内的N型的浮置扩散区105 ;位于半导体衬底101中用于隔离相邻的有源区的浅沟槽隔离结构102。
[0007]但是形成的CMOS图像传感器的像素结构中容易产生暗电流,影响了像素结构的成像的质量。


【发明内容】

[0008]本发明解决的问题是减小CMOS图像传感器的暗电流。
[0009]为解决上述问题,本发明提供一种CMOS图像传感器像素结构的形成方法,包括:提供半导体衬底,所述半导体衬底中掺杂有第一杂质离子;刻蚀所述半导体衬底,在半导体衬底中形成凹槽;在凹槽的两侧侧壁表面形成隔离层;在凹槽内形成外延硅层,所述外延层覆盖所述隔离层和凹槽两侧的部分半导体衬底的表面并填充满凹槽,所述外延硅层中掺杂有第二杂质离子,第二杂质离子的导电类型与第一杂质离子的导电类型相反,所述外延娃层和半导体衬底构成光电二极管;在外延娃层一侧的半导体衬底上形成栅极结构;在栅极结构的远离外延硅层的一侧的半导体衬底内形成浮置扩散区。
[0010]可选的,所述凹槽的形成过程为:在所述半导体衬底上形成掩膜层,所述掩膜层中具有暴露半导体表面的开口 ;以所述掩膜层为掩膜,刻蚀所述半导体衬底,在半导体衬底中形成凹槽。
[0011]可选的,在形成凹槽后,刻蚀所述掩膜层,使得掩膜层中的开口的宽度向两边增大,暴露出部分半导体衬底的表面。
[0012]可选的,使得掩膜层的开口的宽度增大的工艺采用湿法刻蚀工艺或干法刻蚀工艺。
[0013]可选的,宽度增大后的开口的侧壁与凹槽的侧壁之间的直线距离为0.1?I微米。
[0014]可选的,所述外延娃层的顶部表面高于半导体衬底的表面,高于半导体衬底表面的外延层填充宽度增大后的开口。
[0015]可选的,形成所述隔离层的过程为:在所述凹槽的侧壁和底部、以及掩膜层表面形成隔离材料层;无掩膜刻蚀所述隔离材料层,在所述凹槽的两侧侧壁上形成隔离层。
[0016]可选的,隔离层的材料为二氧化硅,所述隔离层的厚度为8?20纳米。可选的,所述外延娃层的形成工艺为原位掺杂选择性外延工艺。
[0017]可选的,所述第一杂质离子的导电类型为P型,第二杂质离子的导电类型为N型,浮置扩散区中掺杂的杂质离子的导电类型为N型。
[0018]可选的,所述第一杂质离子的导电类型为N型,第二杂质离子的导电类型为P型,浮置扩散区中掺杂的杂质离子的导电类型为P型。
[0019]可选的,还包括:进行离子注入,在所述外延硅层的表面形成遮盖层,遮盖层中的注入的杂质离子的导电类型与第二杂质离子的导电类型相反。
[0020]本发明还提供了一种CMOS图像传感器像素结构,包括:半导体衬底,所述半导体衬底中掺杂有第一杂质离子;位于半导体衬底内的凹槽;位于凹槽的两侧侧壁表面的隔离层;位于凹槽内的外延硅层,所述外延层覆盖所述隔离层和凹槽两侧的部分半导体衬底的表面并填充满凹槽,所述外延硅层中掺杂有第二杂质离子,第二杂质离子的导电类型与第一杂质离子的导电类型相反,所述外延娃层和半导体衬底构成光电二极管;位于外延娃层一侧的半导体衬底上的栅极结构;位于栅极结构的远离外延硅层的一侧的半导体衬底内的浮置扩散区。
[0021]可选的,所述外延娃层的顶部表面高于半导体衬底的表面,高于半导体衬底表面的外延层覆盖凹槽两侧的部分半导体衬底的表面。
[0022]可选的,覆盖凹槽两侧的部分半导体衬底的外延硅层的宽度为0.1?I微米。
[0023]可选的,所述隔离层的材料为二氧化硅。
[0024]可选的,所述隔离层的厚度为8?20纳米。
[0025]可选的,位于外延硅层的表面的遮盖层,遮盖层中的杂质离子的导电类型与第二杂质离子的导电类型相反。
[0026]可选的,所述第一杂质离子的导电类型为P型,第二杂质离子的导电类型为N型,浮置扩散区中掺杂的杂质离子的导电类型为N型。
[0027]可选的,所述第一杂质离子的导电类型为N型,第二杂质离子的导电类型为P型,浮置扩散区中掺杂的杂质离子的导电类型为P型。
[0028]与现有技术相比,本发明的技术方案具有以下优点:
[0029]在半导体衬底中形成凹槽后,然后在凹槽的两侧侧壁表面形成隔离层,接着在凹槽内形成外延硅层,所述外延层覆盖所述隔离层和凹槽两侧的部分半导体衬底表面并填充满凹槽,所述外延硅层中掺杂有第二杂质离子,第二杂质离子的导电类型与第一杂质离子的导电类型相反,所述外延硅层和半导体衬底构成光电二极管。隔离层的使得光电二极管感光区域跟半导体衬底以及浅沟槽隔离结构区域电学隔离,使得浅沟槽隔离结构和半导体衬底区域中产生的暗电流不能向二极管区域横向传递,从而提高了成像的质量。
[0030]进一步,在形成凹槽后,刻蚀所述掩膜层,使得掩膜层中的开口的宽度向两边增大,暴露出部分半导体衬底的表面,形成外延娃层时,所述外延娃层的顶部表面高于半导体衬底的表面,高于半导体衬底表面的外延层填充宽度增大后的开口,并覆盖开口暴露的部分半导体衬底的表面。无需重新形成掩膜层,节省了工艺步骤,覆盖部分半导体衬底的外延层构成光生载流子的导通通道。

【专利附图】

【附图说明】
[0031]图1为现有技术4T型图像传感器的电路结构示意图;
[0032]图2为现有技术CMOS图像传感器像素的剖面结构示意图;
[0033]图3?图10为本发明实施例CMOS图像传感器像素结构形成过程的剖面结构示意图。

【具体实施方式】
[0034]经研究,现有的CMOS图像传感器的像素结构中容易产生暗电流主要有两方面的原因,请参考图2,一方面,形成浅沟槽隔离结构102时,浅沟槽隔离结构102和半导体衬底101的交界面上会存在大量的悬挂键,所述悬挂会在浅沟槽隔离结构102与半导体衬底101之间的交界面形成界面态缺陷,界面态缺陷会吸附电子,当半导体衬底101受热时,在所述浅沟槽隔离结构102与半导体衬底101的界面上容易因为热产生而形成大量电子,所述电子会在半导体衬底101内扩散或漂移,当部分电子到达光电二极管的感光区104时,将会造成暗电流;另一方面,感光区104是通过离子注入形成,使得感光区104与半导体衬底101的交界处也容易产生暗电流。
[0035]为此,本发明提出一种CMOS图像传感器像素结构及其形成方法,在半导体衬底中形成凹槽后,然后在凹槽的两侧侧壁表面形成隔离层,接着在凹槽内形成外延硅层,所述外延层覆盖所述隔离层并填充满凹槽,所述外延硅层中掺杂有第二杂质离子,第二杂质离子的导电类型与第一杂质离子的导电类型相反,所述外延硅层和半导体衬底构成光电二极管。隔离层的使得光电二极管感光区域跟半导体衬底以及浅沟槽隔离结构区域隔离,使得浅沟槽隔离结构和半导体衬底区域中产生的暗电流不能向二极管区域横向传递,从而提高了成像的质量。
[0036]为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。在详述本发明实施例时,为便于说明,示意图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明的保护范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
[0037]图3?图10为本发明实施例CMOS图像传感器像素结构形成过程的剖面结构示意图。
[0038]提供半导体衬底200,所述半导体衬底200中掺杂有第一杂质离子;在所述半导体衬底200上形成掩膜层20,所述掩膜层20中具有暴露半导体衬底200表面的开口 203。
[0039]所述半导体衬底200材料可以为硅(Si)、锗(Ge)、或硅锗(GeSi)J^K-(SiC);也可以是绝缘体上娃(SOI),绝缘体上锗(GOI);或者还可以为其它的材料,例如砷化镓等II1- V族化合物。
[0040]所述半导体衬底200中掺杂有第一杂质离子,根据的CMOS图像传感器的像素结构的类型,选择导电类型不同的第一杂质离子,具体的,CMOS图像传感器的像素结构的类型为N型时,所述半导体衬底200中掺杂有P型的第一杂质离子,所述P型杂质离子为硼离子、镓离子或铟离子中的一种或几种,相应的,后续形成的外延硅层和浮置扩散区的掺杂离子的导电类型与半导体衬底200的第一杂质离子的导电类型相反,外延硅层和浮置扩散区中掺杂有N型的杂质离子,所述N型杂质离子磷离子、砷离子或锑离子中的一种或几种;所述MOS图像传感器的像素结构的类型为P型时,所述半导体衬底200中掺杂有N型的第一杂质离子,后续形成的外延硅层和浮置扩散区种杂质离子的导电类型与半导体衬底200的第一杂质离子的导电类型相反,外延硅层和浮置扩散区中掺杂有P型的杂质离子。本实施例和后续实施例以形成N型CMOS图像传感器的像素结构作为示例。
[0041 ] 本实施例中,所述半导体衬底200中掺杂有P型杂质离子,所述P型杂质离子为硼离子、镓离子或铟离子中的一种或几种。所述半导体衬底200可以在半导体基底上通过外延工艺形成或者对半导体基底进行P型离子注入形成。
[0042]所述半导体衬底200内还形成有浅沟槽隔离结构,用于隔离相邻的有源区。
[0043]所述掩膜层20可以为单层或多层堆叠结构,所述掩膜层20中形成有开口 203,后续沿开口 203刻蚀所述半导体衬底200,在半导体衬底200中形成凹槽,本实施例中,所述掩膜层20为双层堆叠结构,所述双层堆叠结构包括位于半导体衬底表面的界面层201和位于界面层201上的硬掩膜层202,所述界面层用于防止硬掩膜层202与半导体衬底200的直接接触而产生的晶格突变,所述界面层201的材料可以为氧化硅,所述硬掩膜层202的材料可以为氮化硅、氮氧化硅、氮碳化硅、无定形碳、TiN或TaN等,本实施例中,所述硬掩膜层202的材料为氮化硅。
[0044]参考图4,以所述掩膜层20为掩膜,沿开口 203刻蚀所述半导体衬底200,在半导体衬底200中形成凹槽204。
[0045]所述凹槽204中后续形成外延娃层,外延娃层作为光电二极管的一部分。
[0046]刻蚀所述凹槽204的工艺为干法刻蚀,干法刻蚀采用的气体为HBr或C12。
[0047]本实施例中,所述凹槽204的侧壁为垂直侧壁。
[0048]在其他实施例中,所述凹槽的侧壁可以为倾斜侧壁,使得凹槽的宽度从半导体衬底的底部到表面逐渐增大,倾斜侧壁的倾斜角度可以为86?89度。
[0049]参考图5,刻蚀部分所述掩膜层20,使得掩膜层20中的开口 203的宽度向两边(凹槽侧壁的外侧方向)增大,使得开口 203的宽度大于凹槽204的宽度,暴露出半导体衬底200的部分表面。
[0050]开口 203的宽度增大后,暴露出凹槽204侧壁外侧的部分半导体衬底200表面,后续采用原位掺杂选择外延工艺形成外延硅层时,使得形成的外延层在填充满凹槽204和开口 203,并使得外延硅层覆盖凹槽204侧壁外侧的部分半导体衬底200表面,光电二极管产生的光生载流子可以通过外延硅层、凹槽204侧壁外侧半导体衬底表面,经过传输晶体管的沟道区,传输到浮置扩散区。
[0051]宽度增大后的开口 203的侧壁与凹槽204的侧壁之间的直线距离W限定可光生载流子导通通道的宽度,所述直线距离W为0.1?I微米,比如可以为0.2微米、0.5微米、或0.7微米,以保证光生载流子能顺畅通过。
[0052]刻蚀部分所述掩膜层20采用湿法或干法刻蚀工艺,本实施例中,采用湿法刻蚀工艺刻蚀所述掩膜层20,具体的,可以采用热磷酸刻蚀硬掩膜层202,采用氢氟酸刻蚀界面层201。
[0053]在本发明的其他实施例中,采用干法刻蚀工艺刻蚀部分所述掩膜层,具体的:首先在硬掩膜层表面形成图形化的光刻胶层,图像化的光刻胶层暴露出需要去除的掩膜层表面;采用含氟等离子体刻蚀去除暴露的部分掩膜层,使得掩膜层中的开口的宽度增大;去除所述图形化的光刻胶层。
[0054]接着,参考图6,在凹槽204的两侧侧壁表面形成隔离层205。
[0055]所述隔离层20用于后续凹槽204中形成的光电二极管和半导体衬底以及浅沟槽隔离结构的电学隔离,防止浅沟槽隔离结构区域和半导体衬底中产生的暗电流向凹槽204中形成的光电二极管感光区的横向传递。
[0056]本实施例中,所述隔离层205的材料为二氧化硅,在本发明的其他实施例中,所述隔离层205还可以为其他合适的材料,比如氮化硅等。
[0057]所述隔离层205可以为单层或多层堆叠结构。
[0058]所述隔离层205的形成的具体过程为:在所述凹槽204和开口 203的侧壁和底部、以及掩膜层20的表面沉积形成氧化硅薄膜;采用无掩膜刻蚀工艺刻蚀所述氧化硅薄膜,在凹槽204的两侧侧壁表面形成隔离层205。
[0059]所述隔离层205的厚度为8?20纳米,比如可以为10纳米或15纳米,以保证电隔离的效果。
[0060]接着,请参考图7,在凹槽204和开口 203内(参考图6)内形成外延硅层206,所述外延层206覆盖所述隔离层205和凹槽204两侧的部分半导体衬底200的表面并填充满凹槽206和开口 203,所述外延硅层206中掺杂有第二杂质离子,第二杂质离子的导电类型与第一杂质离子的导电类型相反,所述外延硅层206和凹槽204底部的半导体衬底200构成光电二极管的PN结。
[0061]形成所述外延娃层的工艺为原位掺杂选择性外延工艺,温度是600?1100摄氏度,压强I?500托,硅源气体是SiH4或DCS,还包括HCl气体以及氢气,氢气作为载气,HCl气体作为选择性气体,用于增加沉积的选择性,所述选择性气体也可以为氯气,其中硅源气体、HCl的流量均为I?lOOOsccm,氢气的流量是0.1?50slm。还包括:杂质源气体,杂质源气体中含有待掺杂的第二杂质离子。
[0062]本实施例中,形成的为N型的CMOS图像传感器像素结构,所述第二杂质离子为磷离子、砷离子、锑离子中的一种或几种。本发明的其他实施例中,形成P型的CMOS图像传感器像素结构时,第二杂质离子可以是硼离子、镓离子或铟离子中的一种或几种。
[0063]在本发明的其他实施例中,还可以通过离子注入在外延硅层中掺杂第二杂质离子。
[0064]本实施例中,所述外延硅层206高于半导体衬底200的表面,高于半导体衬底200的部分外延硅层206填充所述宽度增大后的开口 203 (参考图6),并覆盖宽度增大后的开口 203底部暴露的部分半导体衬底200的表面(凹槽204两侧的部分半导体衬底200表面)。外延娃层206与半导体衬底200表面的接触区域作为光电二极管产生的光生载流子的传输通道。
[0065]覆盖凹槽204两侧的部分半导体衬底200的外延硅层206的宽度为0.1?I微米,比如可以为0.2微米、0.5微米或0.7微米,以保证光生载流子能顺畅通过。
[0066]接着,请参考图8,去除所述掩膜层20 (参考图7);在所述外延硅层206的表面形成遮盖层207。
[0067]遮盖层207的形成工艺为离子注入,遮盖层207中注入的杂质离子的导电类型与外延硅层中掺杂的第二杂质离子的导电类型相反,本实施例中,遮盖层207中注入的杂质离子为P型的杂质离子。进行离子注入之前,可以在靠近后续形成的栅极结构一侧的部分外延娃层206上形成掩膜。
[0068]所述遮盖层207用于防止外延硅层206表面的暗电流的产生,遮盖层207与外延娃层206之间形成PN结,所述遮盖层207作为光电二极管的一部分。
[0069]所述遮盖层207的厚度要小于高于半导体衬底200的部分外延硅层206的厚度,使得与半导体衬底200的表面接触的部分外延硅层206作为光生载流子的传输通道。
[0070]接着,请参考图9,在外延硅层206 —侧的半导体衬底200上形成栅极结构210。
[0071]所述栅极结构210作为传输晶体管的一部分,用于控制栅极结构210底部的沟道区的导通,使得外延硅层中产生的光生载流子通过沟道区传输到栅极结构210另一侧半导体衬底200中形成的浮置扩散区。所述栅极结构210包括位于半导体衬底200上的栅介质层209、位于栅介质层209上的栅电极208以及位于栅介质层209和栅电极208两侧侧壁的侧墙。所述栅介质层209材料可以为氧化硅,栅电极209的材料可以为多晶硅。
[0072]所述栅极结构210靠近半导体衬底200表面的部分外延硅层206,所述侧墙作为外延硅层和栅极结构210之间的隔离层,所述侧墙可以为单层或多层堆叠结构,比如:所述侧墙可以为氮化硅的单层结构,或者氧化硅-氮化硅-氧化硅的三层堆叠结构。
[0073]在本发明的其他实施例中,在半导体衬底上的其他区域还可以形成选择晶体管、放大晶体管、复位晶体管的栅极结构。
[0074]最后,请参考图10,在栅极结构210的远离外延硅层206的一侧的半导体衬底200内形成浮置扩散区211。
[0075]浮置扩散区211形成工艺为离子注入,浮置扩散区211中掺杂的杂质离子的导电类型与外延硅层206中掺杂的第二杂质离子的导电类型相同。本实施例中,所述浮置扩散区211中掺杂有N型的杂质离子。
[0076]上述方法形成的CMOS图像传感器像素结构,请参考图10,包括:
[0077]半导体衬底200,所述半导体衬底200中掺杂有第一杂质离子;
[0078]位于半导体衬底200内的凹槽;
[0079]位于凹槽的两侧侧壁表面的隔离层205 ;
[0080]位于凹槽内的外延硅层206,所述外延层206覆盖所述隔离层205并填充满凹槽,所述外延硅层206中掺杂有第二杂质离子,第二杂质离子的导电类型与第一杂质离子的导电类型相反,所述外延娃层206和半导体衬底200构成光电二极管;
[0081]位于外延娃层206 —侧的半导体衬底200上的栅极结构210 ;
[0082]位于栅极结构210的远离外延硅层206的一侧的半导体衬底200内的浮置扩散区211。
[0083]具体的,所述外延娃层206的顶部表面高于半导体衬底200的表面,高于半导体衬底200表面的外延层206覆盖部分半导体衬底200的表面。
[0084]覆盖凹槽204两侧的部分半导体衬底200的外延硅层206的宽度为0.1?I微米,比如可以为0.2微米、0.5微米或0.7微米,以保证光生载流子能顺畅通过。
[0085]所述隔离层205的材料可以为二氧化硅,所述隔离层205的厚度为8?20微米,但不限于此范围。
[0086]还包括,位于外延娃层206表面的遮盖层207,遮盖层207中的杂质离子的导电类型与外延硅层中掺杂的第二杂质离子的导电类型相反。
[0087]所述第一杂质离子的导电类型为P型,第二杂质离子的导电类型为N型,浮置扩散区中掺杂的杂质离子的导电类型为N型。
[0088]在其他实施例中,所述第一杂质离子的导电类型为N型,第二杂质离子的导电类型为P型,浮置扩散区中掺杂的杂质离子的导电类型为P型。
[0089]本发明的CMOS图像传感器像素结构及其形成方法,工艺过程简单,并且形成的CMOS图像传感器像素结构暗电流小,成像质量高。
[0090]虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。
【权利要求】
1.一种CMOS图像传感器像素结构的形成方法,其特征在于,包括: 提供半导体衬底,所述半导体衬底中掺杂有第一杂质离子; 刻蚀所述半导体衬底,在半导体衬底中形成凹槽; 在凹槽的两侧侧壁表面形成隔离层; 在凹槽内形成外延硅层,所述外延层覆盖所述隔离层和凹槽两侧的部分半导体衬底的表面并填充满凹槽,所述外延硅层中掺杂有第二杂质离子,第二杂质离子的导电类型与第一杂质离子的导电类型相反,所述外延娃层和半导体衬底构成光电二极管; 在外延娃层一侧的半导体衬底上形成栅极结构; 在栅极结构的远离外延硅层的一侧的半导体衬底内形成浮置扩散区。
2.如权利要求1所述的CMOS图像传感器像素结构的形成方法,其特征在于,所述凹槽的形成过程为:在所述半导体衬底上形成掩膜层,所述掩膜层中具有暴露半导体表面的开口 ;以所述掩膜层为掩膜,刻蚀所述半导体衬底,在半导体衬底中形成凹槽。
3.如权利要求2所述的CMOS图像传感器像素结构的形成方法,其特征在于,在形成凹槽后,刻蚀所述掩膜层,使得掩膜层中的开口的宽度向两边增大,暴露出部分半导体衬底的表面。
4.如权利要求3所述的CMOS图像传感器像素结构的形成方法,其特征在于,所述外延娃层的顶部表面高于半导体衬底的表面,高于半导体衬底表面的外延层填充宽度增大后的开口,并覆盖开口暴露的部分半导体衬底的表面。
5.如权利要求3所述的CMOS图像传感器像素结构的形成方法,其特征在于,使得掩膜层的开口的宽度增大的工艺采用湿法刻蚀工艺或干法刻蚀工艺。
6.如权利要求3所述的CMOS图像传感器像素结构的形成方法,其特征在于,宽度增大后的开口的侧壁与凹槽的侧壁之间的直线距离为0.1?I微米。
7.如权利要求2所述的CMOS图像传感器像素结构的形成方法,其特征在于,形成所述隔离层的过程为:在所述凹槽的侧壁和底部、以及掩膜层表面形成隔离材料层;无掩膜刻蚀所述隔离材料层,在所述凹槽的两侧侧壁上形成隔离层。
8.如权利要求1所述的CMOS图像传感器像素结构的形成方法,其特征在于,所述隔离层的材料为二氧化硅,所述隔离层的厚度为8?20纳米。
9.如权利要求1所述的CMOS图像传感器像素结构的形成方法,其特征在于,所述外延娃层的形成工艺为原位掺杂选择性外延工艺。
10.如权利要求1所述的CMOS图像传感器像素结构的形成方法,其特征在于,所述第一杂质离子的导电类型为P型,第二杂质离子的导电类型为N型,浮置扩散区中掺杂的杂质离子的导电类型为N型。
11.如权利要求1所述的CMOS图像传感器像素结构的形成方法,其特征在于,所述第一杂质离子的导电类型为N型,第二杂质离子的导电类型为P型,浮置扩散区中掺杂的杂质离子的导电类型为P型。
12.如权利要求1所述的CMOS图像传感器像素结构的形成方法,还包括:进行离子注入,在所述外延硅层的表面形成遮盖层,遮盖层中的注入的杂质离子的导电类型与第二杂质离子的导电类型相反。
13.—种CMOS图像传感器像素结构,其特征在于,包括: 半导体衬底,所述半导体衬底中掺杂有第一杂质离子; 位于半导体衬底内的凹槽; 位于凹槽的两侧侧壁表面的隔离层; 位于凹槽内的外延硅层,所述外延层覆盖所述隔离层和凹槽两侧的部分半导体衬底的表面并填充满凹槽,所述外延硅层中掺杂有第二杂质离子,第二杂质离子的导电类型与第一杂质离子的导电类型相反,所述外延娃层和半导体衬底构成光电二极管; 位于外延娃层一侧的半导体衬底上的栅极结构; 位于栅极结构的远离外延硅层的一侧的半导体衬底内的浮置扩散区。
14.如权利要求13所述的CMOS图像传感器像素结构,其特征在于,所述外延硅层的顶部表面高于半导体衬底的表面,高于半导体衬底表面的外延层覆盖凹槽两侧的部分半导体衬底的表面。
15.如权利要求14所述的CMOS图像传感器像素结构,其特征在于,覆盖凹槽两侧的部分半导体衬底的外延娃层的宽度为0.1?I微米。
16.如权利要求13所述的CMOS图像传感器像素结构,其特征在于,所述隔离层的材料为二氧化硅。
17.如权利要求13所述的CMOS图像传感器像素结构,其特征在于,所述隔离层的厚度为8?20纳米。
18.如权利要求13所述的CMOS图像传感器像素结构,其特征在于,还包括:位于外延硅层的表面的遮盖层,遮盖层中的杂质离子的导电类型与第二杂质离子的导电类型相反。
19.如权利要求13所述的CMOS图像传感器像素结构,其特征在于,所述第一杂质离子的导电类型为P型,第二杂质离子的导电类型为N型,浮置扩散区中掺杂的杂质离子的导电类型为N型。
20.如权利要求13所述的CMOS图像传感器像素结构,其特征在于,所述第一杂质离子的导电类型为N型,第二杂质离子的导电类型为P型,浮置扩散区中掺杂的杂质离子的导电类型为P型。
【文档编号】H01L27/146GK104517976SQ201310461748
【公开日】2015年4月15日 申请日期:2013年9月30日 优先权日:2013年9月30日
【发明者】魏琰, 宋化龙, 马燕春 申请人:中芯国际集成电路制造(北京)有限公司, 中芯国际集成电路制造(上海)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1