功率模块封装件的制作方法

文档序号:7014729阅读:137来源:国知局
功率模块封装件的制作方法
【专利摘要】本发明提供一种功率模块封装件。所述功率模块包括:大致平面绝缘金属衬底,其具有至少一个切口区域;至少一个大致平面陶瓷衬底,其布置在所述切口区域内,其中所述陶瓷衬底在至少两侧由所述绝缘金属衬底形成框架,所述陶瓷衬底包括在第一侧的第一金属层和在第二侧的第二金属层;至少一个功率半导体器件,其联接到所述陶瓷衬底的所述第一侧;至少一个控制器件,其联接到所述绝缘金属衬底的第一表面;功率覆盖层,所述功率覆盖层电连接所述至少一个半导体功率器件和所述至少一个控制器件;以及冷却流体容器,所述冷却流体容器可操作地连接到所述至少一个陶瓷衬底的所述第二金属层,其中多个冷却流体通道设在所述冷却流体容器中。
【专利说明】功率模块封装件
【技术领域】
[0001]本发明总体上涉及电子封装,并且在一些实施例中,涉及提供高器件性能和高热性能的可应用于功率半导体器件的功率电子器件封装件。
【背景技术】
[0002]为了充分利用高功率半导体器件的能力,需要提供与它们的封装要求兼容的电气、结构和热环境。先进器件的发展使得越来越难以冷却功率半导体器件。一般而言,高功率半导体器件用钎焊或直接结合铜(Direct bond copper ;简称DBC)进行封装。这样的封装昂贵并且因此典型地被限制到高性能应用。已经通过减小衬底材料的量来降低一定的成本,并且当例如如共同转让的Ozmat等人的美国专利第6,377,461号中所述的功率覆盖组件用于代替焊线(wire bond)时增加一定的可靠性。另外,一些功率电子器件封装技术也包含衬底中的毫管道(mill1-channel)技术以改善功率模块中的热性能。
[0003]给予一种经济的方式以提供高度的热消散的一种技术是通常被称为MS的绝缘金属衬底技术。典型的绝缘金属衬底包括通常是铝合金的至少一个金属支撑衬底,借助于电绝缘和导热材料的层将通常是铜的导电金属粘合在所述至少一个金属支撑衬底上。然而,在功率电子器件中,由绝缘金属衬底技术提供的热消散典型地小于DBC技术,并且在某些应用中它不能充分确保没有热疲劳。
[0004]所以期望提供一种成本效益高的功率电子器件封装件,其进一步提高现有技术的功率模块热性能,同时提供出色的电气功能特性。额外的成本节约和可靠性改善也将是期望的。

【发明内容】

[0005]根据一个实施例,功率模块包括一种集成功率模块,其包括:大致平面绝缘金属衬底,所述大致平面绝缘金属衬底具有至少一个切口区域;至少一个大致平面陶瓷衬底,所述至少一个大致平面陶瓷衬底布置在所述切口区域内,其中所述陶瓷衬底在至少两侧由所述绝缘金属衬底形成框架,所述陶瓷衬底包括在第一侧的第一金属层和在第二侧的第二金属层;至少一个功率半导体器件,所述至少一个功率半导体器件联接到所述陶瓷衬底的所述第一侧;至少一个控制器件,所述至少一个控制器件联接到所述绝缘金属衬底的第一表面;功率覆盖层,所述功率覆盖层电连接所述至少一个半导体功率器件和所述至少一个控制器件;以及冷却流体容器,所述冷却流体容器可操作地连接到所述至少一个陶瓷衬底的所述第二金属层,其中多个冷却流体通道设在所述冷却流体容器中。
[0006]其中,所述冷却流体容器与所述至少一个陶瓷衬底的所述第二金属层成一体地形成。
[0007]其中,所述冷却流体通道成一体地形成于所述至少一个陶瓷衬底的所述第二金属层中。
[0008]其中,所述冷却流体容器附连到所述至少一个陶瓷衬底的所述第二金属层。[0009]其中,所述冷却流体容器通过焊料附连到所述第二金属层。
[0010]所述集成功率模块还包括设在所述冷却流体容器和所述第二金属层之间的密封件。
[0011]其中,至少一个间隙形成于所述至少一个陶瓷衬底和所述绝缘金属衬底之间并且所述至少一个间隙由填充材料填充。
[0012]其中,所述填充材料包括环氧树脂。
[0013]其中,所述绝缘金属衬底包括突起,所述突起配置成接合所述至少一个陶瓷衬底并且在所述陶瓷衬底上施加压力。
[0014]所述集成功率模块还包括至少一个紧固件,所述至少一个紧固件配置成将所述绝缘金属衬底对准并固定到至少一个散热器。
[0015]所述集成功率模块还包括多个热过孔,所述多个热过孔设在所述至少一个陶瓷衬底的所述第二金属层之间并且延伸通过所述绝缘金属衬底的绝缘材料层。
[0016]根据另一实施例,一种制造功率模块的方法包括:在夹具中将至少一个陶瓷衬底组装在绝缘金属衬底的切口区域内;将装载环氧树脂(loading epoxy)分配到所述绝缘金属衬底上;将焊膏分配到所述绝缘金属衬底和所述至少一个陶瓷衬底上;将部件放置在所述绝缘金属衬底和所述至少一个陶瓷衬底上;提供功率覆盖层,所述功率覆盖层配置成将所述绝缘金属衬底的部件电连接到所述至少一个陶瓷衬底的部件;以及回流所述焊膏以将所述功率覆盖层连接到所述绝缘金属衬底和所述至少一个陶瓷衬底,同时将所述部件连接到所述绝缘金属衬底和所述至少一个陶瓷衬底。
[0017]所述的方法还包括:提供冷却流体容器,所述冷却流体容器具有通到所述至少一个陶瓷衬底的多个冷却流体通道。
[0018]其中,至少所述多个冷却流体通道成一体地形成于设在所述至少一个陶瓷衬底的一侧上的金属层中。
[0019]其中,所述冷却流体容器连接到所述金属层。
[0020]所述的方法还包括密封所述冷却流体容器和所述金属层之间的连接。
[0021]所述的方法还包括:在将所述部件组装到所述绝缘金属衬底上之前将焊膏分配到所述至少一个陶瓷衬底上并且将所述功率覆盖层组装到所述至少一个陶瓷衬底上;以及通过在比第二温度高的第一温度下回流所述焊膏将所述功率覆盖层连接到所述至少一个陶瓷衬底,在所述第二温度下,所述焊膏被回流以将所述功率覆盖层连接到所述绝缘金属衬底并且将所述部件连接到所述绝缘金属衬底。
[0022]其中,所述第一温度大约为240°C并且所述第二温度大约为180°C。
[0023]其中,所述焊膏在大约200°C下回流。
[0024]所述的方法还包括:在所述功率覆盖层之下回填环氧树脂;以及固化所述回填的环氧树脂。
【专利附图】

【附图说明】
[0025]当参考附图阅读以下详细描述时本发明的这些和其它特征、方面和优点将变得更好理解,在附图中相似的附图标记始终表示相似的部分,其中:
[0026]图1是分解组装视图,示出根据一个实施例的集成功率模块,所述功率模块包括绝缘金属衬底(頂S)、陶瓷衬底和功率覆盖层(POL);
[0027]图2是透视组装视图,示出根据一个实施例的图1的集成功率模块;所述集成功率模块包括绝缘金属衬底(IMS)、陶瓷衬底;
[0028]图3是在从过程框架分离并且安装到MS和陶瓷衬底之前的多层POL的侧视图;
[0029]图4是图1中所示的功率模块的横截面图,其中POL是根据图3的多层POL ;
[0030]图5是根据另一实施例的功率模块的横截面图,描绘了一体化冷却;
[0031]图6是横截面图,示出根据另一实施例的功率模块,描绘了通过热过孔进行冷却;
[0032]图7是流程图,示出根据一个实施例的功率模块的制造过程;以及
[0033]图8是流程图,示出根据另一实施例的功率模块的制造过程。
[0034]尽管上述附图陈述了替代的实施例,但是也可以预料本发明的其它实施例,如论述中所述。在所有情况下,本公开作为示例而不是限制呈现本发明的所示实施例。本领域技术人员可以设计属于本发明的原理的范围和精神内的许多其它修改和实施例。
[0035]本公开包括涉及集成功率模块的实施例,所述集成功率模块包括绝缘金属衬底(MS)、陶瓷衬底以及可操作地联接到MS和陶瓷衬底的散热器。至少一个功率半导体器件结合到平面互连件(POL)并且然后结合到陶瓷衬底的表面,并且至少一个控制器件结合到IMS0窗口形成于MS中以允许陶瓷衬底直接接触散热器。这样封装的功率模块有利地以减小的成本提供高电气性能和高热性能,并且由此使它对更大范围的应用(例如航空学、医疗系统和能量)具有吸引力。`【具体实施方式】
[0036]在本发明中描述了一个或多个具体实施例,并且为了设法提供这些实施例的简洁描述,可能未在说明书中被描述实际实现方式的所有特征。应当领会在任何这样的实际实现方式的开发中,与任何工程或设计项目中一样,必须做出许多针对该实现方式特定的决定以实现开发者的特定目标,例如符合可能在实现方式之间彼此不同的系统相关和商业相关的限制。
[0037]当介绍本公开的各实施例的要素时,冠词“一”(“a”or “an”,)、“该”和“所述”旨在表示有一个或多个要素。术语“包括”、“包含”和“具有”旨在是包含性的并且表示可以有除了列出要素以外的附加要素。而且,参考附图并且为了方便起见使用“顶部”、“底部”、“之上”、“之下”和这些术语的变型,但是并不要求部件的任何特定取向,除非另外说明。当在本发明中使用时,术语“布置在…上” (“disposed on”)或“安装在…上” (“mounted on”)表示固定或布置成直接接触或通过具有其间的介入层间接接触。
[0038]当在本发明中使用时,术语“和/或”包括列出要素的任何和所有组合。
[0039]除非另外说明,近似语言可以应用于修饰任何定量的表示,该定量的表示可以容许变化而会不导致它可以大约相关的基本功能的变化。因此,由诸如“大约”(“about”)的术语修饰的值不限于所指定的精确值。在一些情况下,近似语言可以对应于用于测量数值的仪器的精度。
[0040]当在本发明中限定时,“大致平面表面”(“substantially planar surface”)通常表示大致平坦的表面。表面可以是平滑的,但是它可以包括较小程度(例如,总表面积的大约20%)的纹理(例如,糙度)、凹痕和各种不平整。在一些实施例中,衬底可以呈现出挠性。而且,在一些实施例中,衬底的表面可以为弯曲的,通常具有较大曲率半径。
[0041]图1和图2显示透视俯视图,示出根据一个实施例的半导体功率模块10,所述半导体功率模块10包括大致平面绝缘金属衬底(MS) 12和大致平面陶瓷衬底14、功率覆盖层(POL) 60以及散热器16。为了清楚起见未在图2中显示POL 60。IMS 12具有绝缘材料层13 (参照图4-图6)和至少一个切口区域(Cut-out region)18,并且陶瓷衬底14布置在切口区域18内使得陶瓷衬底14在至少两侧由MS 12形成框架。在一个实施例中,陶瓷衬底14在所有侧上由MS 12形成框架。图2示出当陶瓷衬底14放置在MS 12的切口区域18内时的半导体功率模块10的俯视图。MS 12因此形成围绕陶瓷衬底14的框架,并且该组件也可以被称为复合衬底组件2。在一些其它实施例中,MS衬底12可以具有一个以上切口区域18,每个切口区域18包含陶瓷衬底14。切口区域18的形状和尺寸使得匹配陶瓷衬底14。然而,在一些其它实施例中陶瓷衬底14可以在形状和尺寸上不同于切口区域18。
[0042]功率模块10在一个实施例中也包括联接到陶瓷衬底14的一个或多个功率半导体器件20,以及联接到MS 12上的顶部金属化层的一个或多个互连插入器或垫片22,然后所述顶部金属化层提供到模块输入输出的连接或到MS 12上的控制器件的连接性。为了清楚起见未显示的功率半导体器件20和控制器件,插入器22被电连接并且结合到集成到陶瓷衬底14和MS 12中的相应的导电图案24、26。
[0043]参考图1、3和4,如图所示的POL 60是多层P0L,但是应当领会可以使用单层P0L。P0L60包括上部或顶部金属化层64 (等同于64)、多个介电/绝缘层62、导电层66以及粘合剂层69。应当领会粘合剂层69也可以设在导电层66和介电/绝缘层62之间。顶部金属化层64和/或导电层66可以是金属,例如铜。框架68被提供以为了在连接到陶瓷衬底14和MS 12之前制造POL 60的目的。POL 60还包括到功率器件20的连接过孔70和到插入器22的连接过孔72以制造到MS 12的顶部金属化层38的连接。POL 60的导电层66也可以包括用于提供连接的内部过孔71。介电/绝缘层62例如可以是聚酰亚胺膜(例如 KAPTON ⑩)。
[0044]陶瓷衬底14在一个实施例中包括具有结合到陶瓷层的顶部和底部金属层15、17的衬底,所述陶瓷层结合到陶瓷衬底。陶瓷层包括电绝缘和导热材料,其材料的非限定性例子包括氧化铝、氮化铝、氧化铍和氮化硅。在非限定性实施例中,金属层15、17可以包括铜。因此,陶瓷衬底14可以具有直接结合铜(DBC)或活性金属铜焊(AMB)结构。DBC和AMB表示铜层直接结合到陶瓷层的过程。替代地,金属层可以包括其它金属,而不限于铝、金、银和它们的合金。在一个特定实施例中,陶瓷衬底是DBC。
[0045]多个紧固件40帮助将复合衬底组件2对准并固定到散热器16。在下面进一步详细描述的散热器16包括允许冷却流体通过冷却通道50流动进出散热器16的入口 42和出口 44。根据一个方面,散热器16经由加压密封而附连到MS 12和陶瓷衬底14。
[0046]图4是透视横截面图,在一个实施例中示出如图1中所示的功率模块。陶瓷衬底14配合在切口区域18内。在一个实施例中,陶瓷衬底14布置在与MS 12大致相同的水平或表面平面中。在一个实施例中,MS 12和陶瓷衬底14具有大致相同的厚度使得衬底的顶表面是大致共面的,即在近似单平面中。应当领会IMS 12和陶瓷衬底14的厚度可以不同。如图4中所示,陶瓷衬底14的顶部金属层15与MS12的顶表面大致共面。MS 12和陶瓷衬底14的厚度可以根据具体设计和应用而在一定范围内变化。陶瓷衬底14在一个实施例中布置在MS 12内,但是不直接联接或结合到MS框架12。MS 12支撑和/或定位陶瓷衬底14,并且在陶瓷衬底14上施加一定的压力以具有与散热器16的更好热接触。陶瓷衬底14在该实施例中就位于切口区域18中,并且可以不与MS 12的所有侧物理接触。这样形成的复合衬底组件可以限定MS 12和陶瓷衬底14的边缘或侧面之间的间隙25。间隙25可以允许陶瓷衬底14膨胀和收缩,并且在一些实施例中可以避免由于在热循环期间导致的应力引起的陶瓷衬底14的破裂。间隙25可以填充有填充材料(例如柔性环氧树脂)以将MS 12结合到陶瓷衬底14。
[0047]参考图4,功率半导体器件20安装在陶瓷衬底14的顶部金属层15上,并且连接件72提供从POL 60的顶层64到MS 12的顶层38的连接性。功率半导体器件20可以包括下部、薄金属化层65。MS 12和陶瓷衬底14上的焊料19、21分别可以用于将POL 60联结到复合衬底组件2。尽管为了简化起见未显示,但是控制器件(例如栅极驱动器部件)被结合并且位于金属衬底中,并且经由顶部金属MS层38被连接。
[0048]这些器件还根据功率模块10的操作要求彼此连接(未显示)并且连接到其它部件。各种技术可以用于进行所需的连接。例如,功率模块可以使用焊线接合技术、倒装芯片技术、MCM技术或功率覆盖层(POL)技术。
[0049]在一个实施例中,功率模块使用POL 60将功率器件20安装在陶瓷衬底14上。POL60使用(一个或多个)聚酰亚胺介电膜62和内部导电层66的覆盖层,连接件70、72通过所述覆盖层提供从器件20和插入器22分别到上部金属化层64的连接以构造若干连接。POL技术提供胜过其它已知技术的优点。高封装密度、低封装寄生效应、高可靠性、低重量和尺寸以及高效率是POL技术的优点中的一些。
[0050]功率半导体器件20可以是用于功率变换或功率控制的功率电路芯片,例如伺服驱动器、逆变器、功率调节器或变换器。例如,功率半导体器件20可以包括功率金属氧化物半导体场效应晶体管(MOSFET )、双极型晶体管(B JT )、绝缘栅双极晶体管(IGBT )、二极管或它们的组合。换句话说,功率半导体器件20可以包括列出项中的全部或一些。
[0051]为了简化起见未显示的、安装在MS 12上的控制器件通常包括可以控制功率半导体器件20的操作的半导体芯片。控制器件的实施例可以包括微处理器、存储器、无源器件(例如电阻器或电容器)和/或有源器件(例如晶体管)。一个功率模块可以包括几个到几十个控制半导体芯片。可以根据功率半导体器件的类型和数量确定控制半导体芯片的类型和数量。除了控制芯片以外,MS 12还可以包括支撑电子器件,例如电流传感器二极管和其它半导体。
[0052]在一些实施例中,MS 12的一部分在切口区域18的边缘处突出,如图4和图5中所示。在切口区域18的边缘处的该突起28像画框一样将陶瓷衬底14定位和/或保持就位在区域18内。突起28还可以在陶瓷衬底14上施加压力。在一个实施例中,突起28可以不与陶瓷衬底14结合。在另一实施例中,MS 12的突起28可以通过使用填充材料与陶瓷衬底14附连以在陶瓷衬底14上施加足够的压力。
[0053]复合衬底组件的设计在一个实施例中保证足够的压力均匀地分布在陶瓷衬底14上以具有与陶瓷衬底与散热器16的良好热接触并且减小陶瓷衬底14上的应力。可以使用IMS 12的任何形状,例如多边形、圆形、半圆形、卵形或椭圆形、星形,优选使得由IMS 12施加的压力均匀地分布在陶瓷衬底14上的形状。[0054]参考图5,毫或微冷却管道(Milli or micro cooling channel )52可以形成用于冷却流体的冷却流体通道(Cooling fluid passage)540管道52和通路54可以形成于陶瓷衬底14的底部金属层17上,或者它们可以形成为可以附连到底部金属层17或与底部金属层成一体形成的冷却流体容器或散热器58的一部分。例如冷却流体容器(Cooling fluidreservoir) 58可以通过连接件56 (例如焊料或密封件或垫圈)附连到底部金属层17。
[0055]参考图6,根据另一实施例的功率模块10包括源极46和漏极48。多个热过孔(Thermal vias)32形成于陶瓷衬底14的底部金属层17之下的焊料21之间并且延伸通过IMS 12的绝缘材料层13。热过孔32通过将热从POL和半导体功率器件引导到MS金属衬底上的直接金属连接而提供增强冷却。
[0056]实施例中的散热器16可以可操作地联接到复合衬底组件。当在本发明中使用时,术语“可操作地联接”表示将散热器热附连到复合衬底组件2使得其消散在功率器件20的操作期间生成的热。在一个实施例中,散热器16可以至少联接到陶瓷衬底14。在另一实施例中,散热器16可以联接到陶瓷衬底14和MS 12两者。参考图1-6,散热器16大体上附连到包括MS 12的基部金属层和陶瓷衬底14的底部金属层17的复合衬底组件2的底表面。多个紧固件40有助于将复合衬底组件2对准并固定到散热器16。在一个方面中,散热器16经由加压密封而附连到复合衬底组件2。IMS 12和陶瓷衬底14的底部金属层17可以包括并且不限于铜或铝(或由不限于铜或铝构成)。复合或框架衬底组件2安装或附连到散热器16。散热器16包含入口 42和出口 44以及关联的歧管以将液体冷却剂输送到冷却流体通道50。在另一实施例中,MS 12和/或陶瓷衬底14的底部金属层17可以具有嵌入的冷却通道以便从衬底组件2移除加热的冷却剂。结果是集成功率模块10具有高器件性能和高热性能。
[0057]在一些实施例中,功率模块10可以包括一个以上散热器,如图1-6中所不。一个散热器可以附连到陶瓷衬底14,并且一个散热器可以附连到MS 12。根据热消散要求,两个散热器可以相同或不同。为了方便和精确,未提供其它所述特征(上面和下面)的描述。
[0058]许多冷却剂可以用于(一个或多个)散热器,并且实施例不限于特定冷却剂。示例性冷却剂包括水、乙二醇、丙二醇、油、飞机燃料和它们的组合。根据一些实施例,冷却剂包括单相液体、多相液体或包含微胶囊颗粒、相变颗粒或其它材料的浆料混合物。
[0059]参考图7,用于制造功率模块10的方法或过程包括在SlO中制造或提供P0L。该过程还可以包括在Sll中制造或提供管芯(die),在S12中制造或提供垫片或插入器,并且在S13中制造或提供无源部件。在S20中,制造或提供陶瓷衬底,并且在S30中制造或提供IMS0在S32中装载环氧树脂可以分配到MS上。在S40中制造或提供石墨夹具并且在S50中将陶瓷衬底和頂S组装到石墨夹具中。在S55中将焊膏分配(例如丝网印刷)到石墨夹具中的已组装的陶瓷衬底和MS上。
[0060]在S60中安装MS的部件并且在S70中,功率模块的部件被拾取并且放置在已组装的陶瓷衬底和頂S上。在S80中例如通过将具有已组装的陶瓷衬底和IMS的石墨夹具输送通过烤炉,进行焊料回流。在焊料的回流期间,在S32中分配的装载环氧树脂固化。在S90中从石墨夹具去除或拆卸组件并且在S100中清洁复合功率模块。在SllO中,在功率模块的POL之下回填环氧树脂,并且在S120中固化回填料。在S130中该过程结束。
[0061]尽管不限于任何公开的实施例,但是图7的方法可以用于形成例如图4和5中所示的功率模块。用于形成功率模块的方法的另一实施例在图8中被显示,该方法可以用于形成例如图6的功率模块。
[0062]如图8中所示,在S22中可以将焊膏分配到陶瓷衬底上并且在S24中可以将POL组装到陶瓷衬底上。在S25中焊料可以被回流。应当领会S25的焊料回流可以在比S80中的焊料回流高的温度下被执行。还应当领会图7的单焊料回流可以在与图8的双焊料回流不同的温度下被执行。例如,图7的S80中的单焊料回流可以在大约200°C下被执行,图8的S25中的焊料回流可以在大约240°C下被执行并且图8中的S80中的焊料回流可以在大约180°C下被执行。
[0063]因此,本发明的实施例使用包括陶瓷衬底和绝缘金属衬底的复合衬底组件提供集成功率模块。如先前所述,使用IMS的功率模块可以导致成本效益高的高性能功率变换。然而,由于MS的不良传导绝缘层,具体地使用MS和POL组合的这样的功率模块的热性能可能欠佳。因此本发明提供使用复合衬底的集成功率模块,所述复合衬底提供成本效益高的高性能MS和用于功率器件的高热性能的陶瓷衬底的组合。
[0064]尽管在本发明中仅仅示出和描述本发明的某些特征,但是本领域的技术人员将想到许多修改和变化。所以,应当理解附带的权利要求旨在涵盖所有这样的修改和变化。
【权利要求】
1.一种集成功率模块(10),其包括: 大致平面绝缘金属衬底(12),所述大致平面绝缘金属衬底(12)具有至少一个切口区域(18);至少一个大致平面陶瓷衬底(14),所述至少一个大致平面陶瓷衬底(14)布置在所述切口区域(18)内,其中所述陶瓷衬底(14)在至少两侧由所述绝缘金属衬底(12)形成框架,所述陶瓷衬底(14)包括在第一侧的第一金属层(15)和在第二侧的第二金属层(17);至少一个功率半导体器件(20),所述至少一个功率半导体器件(20)联接到所述陶瓷衬底(14)的所述第一侧; 至少一个控制器件(22),所述至少一个控制器件(22)联接到所述绝缘金属衬底(12)的第一表面; 功率覆盖层(60),所述功率覆盖层(60)电连接所述至少一个半导体功率器件(20)和所述至少一个控制器件(22);以及 冷却流体容器(58),所述冷却流体容器(58)可操作地连接到所述至少一个陶瓷衬底(14)的所述第二金属层(17),其中多个冷却流体通道(54)设在所述冷却流体容器(58)中。
2.根据权利要求1所述的集成功率模块(10),其特征在于,所述冷却流体容器(58)与所述至少一个陶瓷衬底(14)的所述第二金属层(17)成一体地形成。
3.根据权利要求1所述的集成功率模块(10),其特征在于,所述冷却流体通道(54)成一体地形成于所述至少一个陶 瓷衬底(14)的所述第二金属层(17)中。
4.根据权利要求1所述的集成功率模块(10),其特征在于,所述冷却流体容器(58)附连到所述至少一个陶瓷衬底(14)的所述第二金属层(17)。
5.根据权利要求1至4中任一项所述的集成功率模块(10),其特征在于,至少一个间隙(25)形成于所述至少一个陶瓷衬底(14)和所述绝缘金属衬底(12)之间并且所述至少一个间隙(25)由填充材料填充。
6.根据权利要求1至4中任一项所述的集成功率模块(10),其特征在于,所述绝缘金属衬底(12)包括突起(28),所述突起(28)配置成接合所述至少一个陶瓷衬底(14)并且在所述陶瓷衬底(14)上施加压力。
7.根据权利要求1至4中任一项所述的集成功率模块(10),其特征在于,其还包括多个热过孔(32),所述多个热过孔(32)设在所述至少一个陶瓷衬底(14)的所述第二金属层(17)之间并且延伸通过所述绝缘金属衬底(12)的绝缘材料层(13)。
8.—种制造功率模块的方法,其包括: 在夹具中将至少一个陶瓷衬底(14)组装在绝缘金属衬底(12)的切口区域(18)内; 将装载环氧树脂分配到所述绝缘金属衬底(12)上; 将焊膏分配到所述绝缘金属衬底(12)和所述至少一个陶瓷衬底(14)上; 将部件放置在所述绝缘金属衬底(12)和所述至少一个陶瓷衬底(14)上; 提供功率覆盖层(60),所述功率覆盖层(60)配置成将所述绝缘金属衬底(12)的部件电连接到所述至少一个陶瓷衬底(14)的部件;以及 回流所述焊膏以将所述功率覆盖层(60)连接到所述绝缘金属衬底(12)和所述至少一个陶瓷衬底(14),同时将所述部件 连接到所述绝缘金属衬底(12)和所述至少一个陶瓷衬底(14)。
9.根据权利要求8所述的方法,其特征在于,其还包括: 提供冷却流体容器(58),所述冷却流体容器(58)具有通到所述至少一个陶瓷衬底(14)的多个冷却流体通道(54)。
10.根据权利要求9所述的方法,其特征在于,至少所述多个冷却流体通道(54)成一体地形成于设在所述至少一个陶瓷衬底(14)的一侧上的金属层(17)中。
11.根据权利要求9或10所述的方法,其特征在于,所述冷却流体容器(58)连接到所述金属层(17) ο
12.根据权利要求8至10中任一项所述的方法,其特征在于,其还包括密封所述冷却流体容器(58)和所述金属层(17)之间的连接。
13.根据权利要求8至10中任一项所述的方法,其特征在于,其还包括: 在将所述部件组装到所述绝缘金属衬底(12)上之前将焊膏分配到所述至少一个陶瓷衬底(14)上并且将所述功率覆盖层(60)组装到所述至少一个陶瓷衬底(14)上;以及 通过在比第二温度高的第一温度下回流所述焊膏将所述功率覆盖层连接到所述至少一个陶瓷衬底(14),在所述第二温度下,所述焊膏被回流以将所述功率覆盖层(60)连接到所述绝缘金属衬底(12)并且将所述部件连接到所述绝缘金属衬底(12)。
14.根据权利要求13所述的方法,其特征在于,所述第一温度大约为240°C并且所述第二温度大约为180°C。
15.根据权利要求8至10 中任一项所述的方法,其特征在于,所述焊膏在大约200°C下回流。
【文档编号】H01L23/473GK103887247SQ201310704329
【公开日】2014年6月25日 申请日期:2013年12月19日 优先权日:2012年12月19日
【发明者】E.C.德尔加多, J.S.格拉泽, B.L.罗登 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1