具有电流阻挡层的量子级联激光器的制作方法

文档序号:11334865阅读:361来源:国知局
具有电流阻挡层的量子级联激光器的制造方法与工艺



背景技术:

本发明涉及半导体激光器,特别地涉及在ir光谱范围内(即以1mm至780nm的波长,尤其是在3—50μm的中ir范围内)发射的量子级联激光器(qcl)。

中ir光谱范围对于感测应用而言是重要的,由于大量分子在此区域中显示出基频谐振。量子级联激光器(qcl)对于此类应用而言已变成频繁使用且高效的激光源。示例是maulini美国专利7944959和faist美国专利申请2003/0174751。在vurgaftman美国专利8290011中也示出了产生中ir光谱的qcl激光器。

用来形成用于量子级联激光器(qcl)的波导的典型横向引导结构是深蚀刻脊形波导、浅蚀刻脊形波导或深埋异质结构(bh)波导。针对高功率和高性能装置,掩埋式异质结构配置是有利的,因为其呈现较高导热性的inp掩埋层,并且同时保证低损耗。beck美国专利6665325是一示例。

更具体地,通过出现在fe掺杂的inp与n掺杂的inp接触层之间的界面处的内建电位来保证fe掺杂inp的情况下的电流阻断。由于fe在inp中充当深施主能级,所以其还主动地帮助俘获电子并因此防止漏电流。可以通过调整inp中的fe掺杂来控制内建电位的量值。遗憾的是,内建电位的量值参数与生长参数有很强关联,并且内建电位通常局限于50—100kv/cm。通常,在高电场中操作的qcl的情况下,因此部分地在绝缘掩埋层内部驱动电流。此效果减少注入到激光器活性区中的实际电流,并且同时,其耗散热并因此降低激光器性能。

另外,众所周知的是掩埋层内部的fe杂质的引入在半导体禁隙内部产生缺陷状态,参见p.b.klein等人的phys.rev.b29,1947(1984):time-dependentphoto-luminescenceofinp:fe。此能级呈现出吸收,尤其是在3—4μm光谱范围内,防止在此范围内产生掩埋式异质结构激光装置。

然而,此光谱区域对于光谱学和感测应用而言受到很大关注,由于在此光谱区域中存在许多分子的基频谐振。本发明的目的中的一个是克服上述限制并发明一种用于制造在此光谱范围内也具有低光学损耗的bh激光器的方法。

然而,应理解的是本发明不限于此波长的qcl,而是一般地适用于跨光谱范围的qcl,例如任何bh激光器设计,无论其是具有多彩色发射器的qcl还是任何其它bh激光器。



技术实现要素:

原则上,本发明公开了一种通过将特定量子势垒包括到多个不同的、潜在地掺杂半导体层的结构中作为掩埋层而实现的深蚀刻掩埋式异质结构量子级联激光器(即bhqcl)的新型结构。有用的势垒材料包括alas和inalas、ingaas、ingaasp以及ingasb。

通过引入特定的量子势垒并修改组成掩埋层的各种层的数目、厚度和/或掺杂,可以调整(一个或多个)掩埋层的传导性;尤其是在高施加场的情况下可以将其降低。

本发明的概念适用于未掺杂/本征inp以及作为掩埋层的主要结构组件的fe掺杂inp。有利地,在掩埋层中不存在fe杂质允许在不会通过引入附加损耗而损害激光器性能的情况下制造甚至在3—4μm光谱区域内的高性能bh激光器。

在附图中图示出的多个示例的以下描述中将示出本发明的细节和其它优点。

附图说明

附图在以下图中示出:

图1a现有技术掩埋式异质结构设计,

图1b用于图1a的现有技术设计的示意性能带结构,

图2a根据本发明的第一实施例,

图2b用于图2a的实施例的示意性能带结构,

图3a根据本发明的第二实施例,

图3b用于图3a的实施例的示意性能带结构,

图4第三实施例的示意性能带结构。

具体实施方式

以下描述涉及示出了本发明的现有技术和某些实施例的附图。

图1a和1b示意性地示出了现有技术掩埋式异质结构量子级联激光器bhqcl以及在此现有技术结构中使用的n:inp-inp:fe-ar结的示意性能带结构。ar通常代表活性区。

在典型的现有技术结构中,具有后面或背面电极6(通常为au)的基板5(通常为inp)在其顶部上承载活性区(ar)2,通常为ingaas/alinas,横向地受到阻挡或掩埋层4(即fe掺杂inp或fe掺杂ingaas)的限制。顶部电极3(通常也为au)以及n掺杂包层1(通常由inp和/或诸如inalas或ingaas之类的三元组(ternary)构成)使该结构完整。

由于n掺杂包层1是导体,所以其具有到横向限制/阻挡层4中的漏电流。通常通过如上所述那样在inp阻挡层中使用fe杂质来解决掩埋式异质结构装置存在的这个主要问题。

在图1b中示出了此现有技术设计中的n:inp-inp:fe-ar结的示意性能带结构。如所述,通过在inp阻挡层4中引入fe掺杂来减少从n掺杂inp包层1移动到inp阻挡层4中的载流子的数目。这样形成的n:inp-inp:fe结阻挡从n掺杂inp包层1到(一个或多个)inp:fe阻挡层4的载流子泄露。因此,电流受到限制,并且所述多个载流子被注入到活性区(ar)2中。

事实上,fe在inp中产生深施主态,将费米能级钉扎在半导体禁隙的中间。n掺杂包层与(一个或多个)fe掺杂阻挡层之间的界面处的内建电位充当用以阻挡电子的势垒。遗憾的是,此内建电位取决于可以结合在inp中并因此不能任意地增加的最大fe掺杂。可以通过外延生长而结合的最大fe受到生长温度的严重影响。增加生长温度由于fe前体分子的改善的裂开而导致较高的fe掺杂水平。

遗憾的是,可以在明显低于获得高fe掺杂所必需的温度的温度下执行qcl的生长。因此,尤其是对于高度应变结构而言,不能任意地增加用于生长掩埋层的温度而不使活性层的质量退化。

因此,fe掺杂一般地局限于在2×10e16cm-3与8×10e16cm-3之间的值,导致50与100kv/cm之间的阻断场。这足以阻断qcl中一般地小于100kv/cm的操作场在中ir范围的较长波长区域中发射的电子。然而,这对于短波长qcl而言是不够的,特别是对于在3—5μm范围内进行发射的激光器而言,其中,操作场可以超过10kv/cm,导致漏电流流过掩埋层。

此外,fe掺杂层的生长受到被用于生长的机器的所谓“本底掺杂”的严重影响。此本底掺杂是在生长期间非故意地添加的载流子的数目。例如已知inp在“未掺杂”生长的情况下具有被略微n掺杂的趋势。本底掺杂的量取决于在其中执行生长的设备,即生长室条件。必须采取附加预防措施以防止在外延再生长开始时引入任何泄露路径。例如o.ostinelli等人在出版于journalofappliedphysics,108卷,11号,14502页,2010中的“growthandcharacterizationofiron-dopedsemi-insulatinginpbufferlayersforal-freegainp/galnashighelectronmobilitytransistors”中对此进行了描述。

为了规避上述问题,本发明引入了由例如alinas/alas、ingaas、ingaasp或ingasb组成的附加量子势垒,其改善了电子的阻挡。这些势垒独立于其掺杂而阻挡载流子输运,并且因此可以被引入而不增加光学损耗。

通过修改此类量子载流子的数目和厚度,可以调整和/或降低掩埋层内部的传导性,这使得这样的qcl适合于施加的高电场。

显著的优点是此类量子载流子的生长完全独立于掺杂,并且因此对生长条件远不那么敏感。如上所述,掩埋层内部的fe掺杂对于由于能级fe3+和fe2+的吸收线的存在而在3—5μm光谱区域中引入损耗而言是众所周知的。这由于c-h、o-h和n-h键的基频谐振的存在而阻止在感兴趣的光谱学窗口(即针对对于许多医学和感测应用而言感兴趣的波长)中制造高性能激光器。

用本发明,创造了一种用以在掩埋层中阻挡电子的新型技术。特别地,可以根据激光器的操作场且独立于任何fe掺杂而调整“阻挡”量子势垒的数目。

此外,根据本发明的量子势垒的使用与fe掺杂的使用完全相容以进一步减小该区域中的电导,其中,这将不会在激光器中引入附加光学损耗。

概括地说,本发明介绍了一种用于产生掩埋式异质结构量子级联激光器的新型方法,该方法不受生长条件(尤其是生长温度)的限制,并且该方法可以产生在期望的中ir光谱范围内具有低损耗的光学波导。

多个实施例的以下描述制定了将在执行本发明时使用的某些材料,例如inp(本征的(i:inp)和掺杂的两者,尤其是fe掺杂的(inp:fe))以及inalas。应显而易见的是在不脱离本发明的精神和主旨的情况下,如ingaas、alas、inas、ingaasp、inalgaas等其它材料可以替换所提到的那些材料。

下面描述本发明的三个实施例。

实施例a

本实施例是在3.3μm处发射的掩埋式异质结构qcl。

图2a示出了具有分层布置的此qcl,其包括限制掩埋式异质结构的几个势垒。该结构包括嵌入本征未掺杂inp的层中的inalas的六个量子势垒。根据本发明,此异质结构提供低损耗波导和电子阻挡序列。下面描述其细节。

具有后面或背面电极16(通常为au)的基板15(在这里为inp)在其顶部上承载横向地受到异质结构14a/14b/14c限制的ingaas/inalas的活性区12。此异质结构包括三组不同的层。每个层14a包括本征或未掺杂i:inp,并且每个层14b包括半导体(在这里为i:inp或ingaas)。第三组是alinas的势垒层14c;其在图2a中被用黑色实线示为薄层。

在图2a中还示出了通常为au的顶部电极3以及inp的n掺杂包层11和诸如inalas或ingaas之类的三元组。势垒14a—c的倾斜末端18是由于围绕着蚀刻区域发生的外延再生长过程而引起的。其取决于通常垂直于蚀刻表面的生长方向。

在这里是图2a中所示的结构的某个近似尺寸。活性区ar12为约3μm厚和3—20μm宽。势垒层异质结构为约6μm厚,如活性区ar12加包层1一样,其通常为几μm(在这里为3μm)厚。

下面进一步详细地描述势垒层的异质结构。基板25具有约0.1—0.5mm的厚度。图2a中所示的整个结构为约2mm长和0.5mm宽。请注意,这些仅仅是近似尺寸;其根据优选波长和/或装置的预定用途而改变。并且,图2a如所有图一样并未按比例。

图2b显示图2a中所示的qcl的量子势垒序列的示意性能带结构。请注意,“i:inp”或“i-inp”代表本征inp,即未掺杂inp。势垒层14c充当量子势垒17,其位置以及数目可以改变(在图2a中示出了六个此类势垒14c)减少电子传递而不增加光学损耗。重要的是要理解在实施例a中通过使用所示的势垒可以甚至在不使用inp.fe的情况下防止载流子泄露。

下表公开了包括量子势垒14a—c的厚度的物理结构。通过引入这些量子势垒,在不增加光学损耗的情况下降低了异质结构14a/14b/14c的导电性,如上所述。

如图1a中所示的现有技术掩埋或阻挡层与如图2a中描绘的根据本发明的阻挡层之间的差别是明显的:鉴于现有技术阻挡层自始至终由fe掺杂inp、即inp:fe组成,而根据本发明的新型阻挡层包括多个不同的层,其包括本征/未掺杂inp。

下表示出了图2a描绘的限制分层异质结构的尺寸,其具有根据本实施例a的量子势垒14a—c。着眼于下表和图2a,请注意,“开始”定义异质结构的底部,因为这是开始再生长的位置。这意味着表中所示的序列在图2a中所示的堆叠中是颠倒的。此外,层14b可以包括本征inp(即如表中所示的i:inp)或inalas,如上文所解释的。因此,层14a和14b可以包括不同的材料。最后,如上所述,图2a并未真正按比例,即在图中并未反映表中给定的样本尺寸和关系。请注意,用黑体字示出了势垒层。

实施例a

实施例b

实施例b是在3.3μm处发射的另一掩埋式异质结构qcl。其总尺寸类似于实施例a的尺寸。

然而,为了进一步降低用于给定数目的量子势垒的导电性,部分地再引入inp区域的fe掺杂,但是仅仅远离活性区。在这种情况下,fe掺杂仅在接近于与在该处注入电子的n掺杂接点的结处存在且不在该处光模相关的活性区ar附近存在,在该n掺杂接点处注入电子。

图3a示出了根据本发明的第二实施例。该结构包括基板25(此处为inp),其具有后面或背面电极26(通常为au)、顶部电极23(通常也为au)以及n掺杂包层21,其包括inp和/或在其ingaas/inalas的活性区22的顶部上的三元组(诸如inalas或ingaas)。

如在实施例a中,活性区22在两侧横向地受到具有三组层24a/24b/24c的势垒异质结构的限制,层24a/24b/24c中的六个层24c充当阻挡层,其由inalas组成。如在实施例a中,inalas的六个量子势垒24c被用于电子阻挡:此外,层24c的倾斜末端28是由于围绕着蚀刻区域发生的外延再生长过程而引起的。

实施例b与实施例a的不同之处在于用fe、inp:fe掺杂最接近于电接点23的五个inp层24a和24b。与实施例a的另一差别是由fe掺杂inp(inp:fe)的沉积物以及本征inp(i:inp)的沉积物(每个在所示示例中具有300nm厚度)组成的双组分掩埋层24a。

替换地,实施例b中的所有层24a和24b可以是fe掺杂的,即包括inp:fe,由此在活性区22的附近降低fe掺杂水平。

层24b还可以由ingaas而不是如实施例a、图2a中的inp组成。此类ingaas层将是fe掺杂的,如上文结合相应的inp层所解释的。如所述,限制或分离掩埋层24a和24b的量子势垒24c由未掺杂inalas组成,再次地如在实施例a中。因此,与实施例a的差别在于层24a和b的所述fe掺杂和如上所述的提供至少一个双组分掩埋层24a。

图3b显示图3a中所示的qcl的量子势垒序列的示意性能带结构。在这种情况下量子势垒24c及fe掺杂层24a和24b用于阻挡载流子。下表示出了根据图3a的结构的样本尺寸:

实施例b

实施例c

本实施例是第三掩埋式异质结构qcl,具有高操作场以减少电子泄露的在4.3μm的波长处发射的结构。

本实施例的基本结构与实施例a的结构相同,即限制分层势垒异质结构包括三组层,由inalas组成的势垒组、inp的第二组和inp或ingaas层的第三组。与两个上述实施例的差别是所有inp或ingaas层都是fe掺杂的。因此量子势垒和fe掺杂两者都用于阻挡载流子,这对于在高电场中操作的qcl而言可以是重要且决定性的。

下表示出了本第三实施例的结构和尺寸:

实施例c

图4示出了根据本发明的本第三qcl实施例的示意性能带结构。作为根据上表的结构的替换,在这种情况下可以将八个量子势垒用于电子阻挡。

本发明的功能和各种实施例的以上详细描述允许本领域的技术人员在不脱离本发明的精神和范围的情况下设计其它实施方式。

权利要求书(按照条约第19条的修改)

1.一种半导体量子级联激光器,尤其是以在中ir范围内的波长处发射,具有基板(15;25)、活性区(12;22)、包层(11;21)、提供到所述活性区(12;22)中的电流注入的至少两个电极(13、16;23、26)以及掩埋式异质结构波导(14a—14c;24a、24b),

其特征在于

所述异质结构波导包括第一iii-v半导体化合物的多个势垒层(14c;24c)的堆叠,其与至少一个第二iii-v半导体化合物的多个掩埋层(14a、14b;24a、24b)交替地交错。

2.根据权利要求1所述的量子级联激光器,其中,

所述势垒层(14c;24c)中的至少一个由alas、inalas、ingaas、ingaasp或ingasb的组中的一个的化合物组成。

3.根据前述权利要求中的任一项所述的量子级联激光器,其中,所述掩埋层(14a;24a)中的至少一个包括第一iii-v半导体化合物,并且所述掩埋层(14b;24b)中的至少另一个包括第二、不同的iii-v半导体化合物。

4.根据权利要求3所述的量子级联激光器,其中,

所述掩埋层(14a、14b;24a、24b)的第一半导体化合物是本征化合物,特别是i:inp,而第二化合物是掺杂化合物,特别是fe掺杂化合物,尤其是fe掺杂inp。

5.根据权利要求3所述的量子级联激光器,其中,

所述掩埋层(24a)中的至少一个包括本征化合物和第二、掺杂化合物两者,所述本征化合物特别是i:inp,所述掺杂化合物特别是fe掺杂化合物、尤其是fe掺杂inp。

6.根据权利要求3所述的量子级联激光器,其中,

所述掩埋层(14a、14b;24a、24b)的第一半导体化合物和所述第二化合物两者都是掺杂化合物,特别是fe掺杂化合物,尤其是fe掺杂inp。

7.根据前述权利要求中的任一项所述的量子级联激光器,包括

第一数目的、优选地六个势垒层(14c;24c)和第二数目的、优选地六个掩埋层(14a14b;24a、24b)的掩埋式异质结构波导,所述势垒层与所述掩埋层交替地堆叠。

8.根据权利要求7所述的量子级联激光器,其中,

每个势垒层(14c;24c)在5和200nm之间、优选地约50nm厚,而掩埋层在约50nm与约3μm之间、优选地600nm厚。

9.根据前述权利要求中的任一项所述的量子级联激光器,包括以下结构的掩埋式异质结构波导:

10.根据权利要求1至8中的任一项所述的量子级联激光器,包括以下结构的掩埋式异质结构波导:

11.根据权利要求1至8中的任一项所述的量子级联激光器,包括以下结构的掩埋式异质结构波导:

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1