衬底处理装置以及反应管的制作方法

文档序号:11289498阅读:190来源:国知局
衬底处理装置以及反应管的制造方法

本发明涉及衬底处理装置以及反应管。



背景技术:

作为半导体制造工序的一例,具有使用cvd(chemicalvapordeposition,化学气相沉积)法等在衬底上沉积规定的薄膜的成膜工序。

在进行成膜工序时,例如使用立式衬底处理装置。立式衬底处理装置例如具有以下结构:具有由内管和外管构成的处理管,在内管的筒中空部中搬入由舟皿保持的多个晶片,内管的下端与外管的下端之间通过形成为圆环状的金属制的炉口凸缘而被气密密封(专利文献1)。

现有技术文献

专利文献

专利文献1:日本专利第4820850号说明书



技术实现要素:

在反应管的下端设有炉口部且在该炉口部固定气体导入管的情况下,存在在反应管下部的炉口部内的壁面等低温部上附着副产物的情况。该附着的副产物成为微粒等的原因。

本发明的目的是提供一种能够抑制炉口部周围的副产物的附着的技术。

根据本发明的一个方式,提供一种技术,具有:

反应管,其在内部具有处理衬底的衬底处理区域;以及

炉口部,其配置于上述反应管的下部,

上述反应管具有:

突出部,其向上述反应管的下方的外周侧突出;以及

延伸部,其从上述反应管的下端向下方延伸,比与上述衬底处理区域对应的位置处的上述反应管的厚度形成得更厚,覆盖上述炉口部的内周面。

发明效果

根据本发明,能够抑制炉口部周围的副产物的附着。

附图说明

图1是在本发明的实施方式中适合使用的衬底处理装置的概要结构图。

图2是表示在本发明的实施方式中适合使用的反应管的下端的剖视图。

图3是表示在本发明的实施方式中适合使用的反应管的下端、且炉口部周围的剖视图。

图4是表示在本发明的另一实施方式中适合使用的反应管的下端、且炉口部周围的剖视图。

图5是在本发明的实施方式中适合使用的衬底处理装置的控制器的概要结构图,是利用框图表示控制器的控制系统的图。

具体实施方式

接下来,基于附图说明本发明的实施方式。

如图1所示,处理炉202具有作为加热手段(加热机构)的加热器207。加热器207为圆筒形状,通过被作为保持板的加热器基座支承而垂直地安装。

在加热器207的内侧,与加热器207同心圆状地配置有反应管203。反应管203例如由石英(sio2)、碳化硅(sic)等耐热性材料构成,形成为上端封闭且下端开口的圆筒形状。在反应管203的筒中空部中形成有处理室201,构成为能够将作为衬底的晶片200在通过作为衬底保持件的舟皿217以水平姿势在垂直方向上排列成多层的状态下进行收纳。

在反应管203的下方设有排出处理室201内的环境气体的排气管231。在排气管231上,经由作为压力检测器的压力传感器245和作为压力调整器的apc(autopressurecontroller:自动压力控制)阀243而连接有作为真空排气装置的真空泵246,构成为通过根据由压力传感器245检测到的压力信息来调整apc阀243的开度,能够以使处理室201内的压力成为规定的压力(真空度)的方式进行真空排气。此外,apc阀243是如下构成的开闭阀,其能够对阀进行开闭来实现处理室201内的真空排气/真空排气停止,并且能够调整阀开度来调整处理室201内的压力。

另外,在反应管203的下方,以贯穿反应管203的方式连接有作为第一气体导入部的第一喷嘴233a、作为第二气体导入部的第二喷嘴233b和作为第三气体导入部的第三喷嘴233c。第一喷嘴233a、第二喷嘴233b和第三喷嘴233c分别为具有水平部和垂直部的l字形状,水平部连接于反应管203的侧壁,垂直部在反应管203的内壁与晶片200之间的圆弧状的空间中以从反应管203的下部沿着上部的内壁而朝向晶片200的堆叠方向立起的方式设置。在第一喷嘴233a、第二喷嘴233b、第三喷嘴233c的垂直部的侧面,分别设置有供给处理气体的供给孔即第一气体供给孔248a、第二气体供给孔248b、第三气体供给孔248c。

在本实施方式中,在第一喷嘴233a上连接有供给第一处理气体的气体供给部232a,在第二喷嘴233b上连接有供给第二处理气体的气体供给部232b。在第三喷嘴233c上连接有供给第三处理气体的气体供给部232c。

在反应管203的下部配置有与反应管203同心圆状地形成的炉口部209(也存在称为进气口或者集流腔(manifold)的情况)。炉口部209例如由不锈钢(sus材料)、镍(ni)合金等金属构成,形成为上端及下端开口的圆筒形状。在该炉口部209上固定非活性气体供给部等。另外,炉口部209以支承反应管203的方式设置。此外,在炉口部209与反应管203之间,设有作为密封部件的o型密封圈220a。通过反应管203和炉口部209形成反应容器。

在炉口部209的下方(下端)设有能够气密地密封炉口部209的下端开口的作为炉口盖体的密封盖219。密封盖219从垂直方向下侧与炉口部209的下端抵接。密封盖219例如由不锈钢等金属构成,形成为圆盘状。在密封盖219的上表面设有与炉口部209的下端抵接的作为密封部件的o型密封圈220b。在密封盖219的与处理室201相反一侧设有使后述的舟皿217旋转的旋转机构267。旋转机构267的旋转轴255贯穿密封盖219并与舟皿217连接,且构成为通过使舟皿217旋转来使晶片200旋转。舟皿217和密封盖219构成为通过在反应管203的外部配置的作为升降机构的舟皿升降机215而在垂直方向上升降,由此能够将舟皿217相对于处理室201内搬入搬出。

舟皿217例如由石英(sio2)、碳化硅(sic)等构成。

此外,在舟皿217的下部设有例如由石英(sio2)、碳化硅(sic)等耐热材料构成的隔热部件218,构成为来自加热器207的热量不容易传递到密封盖219侧。

如图2和图3所示,炉口部209例如由不锈钢(sus材料)、镍(ni)合金等金属构成,形成为上端和下端开口的圆筒形状。炉口部209具有上表面209a、内周面209b和下表面209c,在内周面209b上形成有供给非活性气体的非活性气体供给口321,在该非活性气体供给口321上安装有非活性气体供给部232d、232e。

非活性气体供给部232e设置于与非活性气体供给部232d相对的位置。由此,能够在炉口部209与反应管203之间均匀地供给非活性气体。

从非活性气体供给部232d、232e供给n2(氮)气体等非活性气体。

在反应管203的下方(下端)形成有在外周侧整周突出的突出部203a、和与该突出部203a相比向下方延伸的延伸部203b。

具体地说,反应管203的下方(下端)的外周(外壁)侧,与舟皿217位于处理室201内的区域、换言之收纳和处理晶片200的区域(以下,记为衬底处理区域。)的外周面相比向外侧突出地形成。反应管203的下方的外周侧由面203a~203g形成。第一面203a为以从反应管203的衬底处理区域的外周面倾斜的方式形成的倾斜面。第二面203b从第一面203a沿铅垂方向连续地设置。第三面203c为倾斜面,且与第二面203b连续地设置。第四面203d与第三面203c连续地设置,且以向相对于反应管203的外周面正交的方向突出的方式设置。第五面203e从第四面203d沿铅垂方向连续地设置。第六面203f从第五面203e向处理室201侧连续地设置,并沿相对于反应管203的外周面正交的方向设置。第七面203g从第六面203f沿铅垂方向连续地设置,且该第七面203g与第六面203f的连接面形成为弯曲状(r形状)。

由第四面203d、第五面203e和第六面203f形成作为凸缘的突出部203a。也可以将第一面203a~第三面203c包含在突出部203a中来考虑。突出部203a经由o型密封圈220a设置于炉口部209的上表面209a。

反应管203的下方(下端)的内周(内壁)侧即内表面,与衬底处理区域的内周面即内表面相比向内侧(处理室201侧)突出地形成。反应管203的下方的内周侧由面203h、203i形成。第八面203h为以从反应管203的衬底处理区域的内周面倾斜的方式形成的倾斜面。第九面203i从第八面203h沿铅垂方向连续地设置。通过像这样在内壁侧设置倾斜面203h,能够改善处理室201内的气体的流动,能够防止气体在突出的部分滞留而对成膜产生不良影响。另外,通过向内周侧突出,能够使反应管203的下端部的厚度比反应管203的上方(与衬底处理区域对应的位置)的厚度更厚,因此能够延长从处理室201侧向炉口部209的物理距离,能够防止气体向炉口部209的侵入。另外,通过向反应管203的内周侧突出,与以向内周侧突出的量而向外周侧突出的情况相比,能够抑制反应管203在径向上变大,因此能够缩小用于设置反应管203的区域(占地面积)。

第七面203g和第九面203i通过第十面203j而被大致水平地连接,通过面203a~203j形成反应管203的下端部。

由第七面203g、第九面203i和第十面203j形成延伸部203b,该延伸部203b构成为覆盖炉口部209的内周面209b(内壁面)。

在炉口部209的内周面209b与延伸部203b的外表面(第七面203g)之间形成有第一间隙322。在反应管203的下端部(第十面203j)与密封盖219之间形成有第二间隙324。

从非活性气体供给部232d、232e供给的非活性气体经由非活性气体供给口321朝向延伸部203b供给,流过第一间隙322、第二间隙324而向处理室201内供给,炉口部209的内周面通过非活性气体而被吹扫。非活性气体以比处理室201内的压力高的压力向第一间隙322内供给,从而第一间隙322内和第二间隙324内的压力变得高于处理室201内的压力。由此,形成从第二间隙324向处理室201内流动的非活性气体的气流,因此能够抑制气体从处理室201侧向第二间隙324及第一间隙322内的逆扩散。因而,能够抑制炉口部209的内周面与处理气体的接触,即使对处理气体使用腐蚀性气体,也能够抑制炉口部的腐蚀,并抑制微粒的产生。

另外,使从非活性气体供给部232d供给的非活性气体的流量与从非活性气体供给部232e供给的非活性气体的流量相同。另外,使从未图示的非活性气体供给源至非活性气体供给部232d、232e的配管长度大致相同。由此,能够在反应管203的下端部整周范围内形成均匀的气流,能够使第一间隙322内的压力在整周范围内大致均匀,因此能够使从第二间隙324向处理室201内流动的非活性气体的流速在整周范围内大致均匀。由此,能够从反应管203的下端部整周以大致均匀的流速向处理室201内供给非活性气体,能够避免处理室201内的处理气体浓度不均匀,从而能够抑制衬底的成膜的均匀性恶化。

第一间隙322的水平方向上的宽度即炉口部209的内周面209b与延伸部203b之间的间隙c的宽度比延伸部203b的壁厚t1小(窄)。由此,即使向第一间隙322内供给的非活性气体的流量小,也能够使第一间隙322内及第二间隙324内的压力高于处理室201内的压力,能够形成从第二间隙324向处理室201内流动的非活性气体的气流,因此能够抑制气体从处理室201侧的逆扩散。

反应管203的下端即延伸部203b的壁厚t1比反应管203的与衬底处理区域对应的位置的厚度即壁厚t2大。通过如此设置,能够延长从处理室201侧至炉口部209为止的处理气体的到达距离,能够更高效率地抑制处理气体从处理室201侧的逆扩散,能够抑制副产物向炉口部209的附着。另外,通过该延伸部203b的壁厚t1,在延伸部203b的内壁部分(内周面)隔热,因此热量不会向炉口部209侧逃散,从而延伸部203b的内壁部分(内周面)被保温。由此,延伸部203b的内壁(内周面侧)部分难以冷却,因此能够抑制副产物向延伸部203b的内壁部分的附着。另外,在维护等时,即使将反应管203放置于地板的情况下,也能够通过延伸部203b的壁厚t1使反应管203自行竖立,因此能够提高维护性。并且,通过将反应管203的下方(炉口部周围)的壁厚设为比衬底处理区域的壁厚更厚,能够抑制由于热应力、膜应力导致的反应管203表面的裂纹的产生,能够在反应管203的下方防止破损,从而能够提高反应管203的强度。

另外,与突出部203a的上部、且是反应管203的外周面的第二面203b相比,延伸部203b的外周面即第七面203g配置于内侧(处理室201侧)。由此,即使形成延伸部203b的壁厚t1,也无需使突出部203a向径向外侧偏移,因此能够抑制炉口部209向反应管203的径向的外周方向偏移,能够缩小用于设置的区域(占地面积)。另外,无需改造以往装置的炉口部209就能设置反应管203,因此能够降低成本。

另外,优选地,可以使延伸部203b的外周面与突出部203a的接合部(角部)、即第七面203g与第六面203f的接合部朝向上方外侧成为弯曲(r)形状。由此,能够防止热应力集中在角部而导致反应管破损,从而提高强度。另外,在朝向延伸部203b供给非活性气体等时,能够抑制非活性气体在角部滞留,从而能够在反应管203的下端部整周形成均匀的气体流动。

另外,优选地,可以将延伸部203b的端部(第七面203g与第十面203j的接合部以及第九面203i与第十面203j的接合部)设为弯曲(r)形状。

另外,优选地,可以将延伸部203b的下端的两端部(第七面203g与第十面203j的接合部以及第九面203i与第十面203j的接合部)设为比延伸部203b与突出部203a的接合部小的弯曲(r)形状(曲率大的形状)。由此,易于将沿着延伸部203b的外周面(第七面203g)向下方向流动的非活性气体的气流向第二间隙324导入,因此不会使非活性气体在第一间隙322滞留,从而能够形成从第一间隙322流向第二间隙324的无滞留的流动。另外,第二间隙324比第一间隙322窄,因此能够确保从第二间隙324通过的非活性气体的流速。另外,第九面203i与第十面203j的接合部为弯曲(r)形状,由此能够将第二间隙324的高流速的非活性气体向处理室201内的上方排出,能够抑制气体从处理室201侧向第一间隙322侧的逆扩散。需要说明的是,在此,为了方便起见,将延伸部203b的端部设为了弯曲(r)形状,但如图3所示,在该延伸部203b的端部的弯曲(r)形状中也包含以45度的角度呈直线状地进行c倒角的形状。另外,不限于弯曲(r)形状,即使设为切缺形状也能够得到相同作用,但是当存在角部时容易产生气体容易停滞、滞留等问题,因此优选地,可以以去除角部的方式构成。

另外,优选非活性气体供给部232d、232e朝向延伸部203b的外周面与突出部203a的接合部的弯曲(r)形状部分供给非活性气体。通过朝向弯曲(r)形状的接合部供给非活性气体,能够在第一间隙322内顺畅地形成朝向周向的非活性气体的流动,能够在反应管203的下端部整周形成均匀的气流。

如图5所示,控制部(控制机构)即控制器280构成为具备cpu(centralprocessingunit:中央处理器)280a、ram(randomaccessmemory:随机存取存储器)280b、存储装置280c以及i/o端口280d的计算机。ram280b、存储装置280c以及i/o端口280d构成为能够经由内部总线280e与cpu280a交换数据。在控制器280上连接有例如构成为触摸面板等的输入输出装置122。

存储装置280c例如由快闪存储器、hdd(harddiskdrive:硬盘驱动器)等构成。在存储装置280c内可读取地存储有控制衬底处理装置的动作的控制程序、记载有后述的衬底处理的步骤和条件等的工艺配方(processrecipe)等。工艺配方以使控制器280执行后述的衬底处理工序中的各步骤,并能够得到规定结果的方式组合,作为程序而发挥功能。以下,将该工艺配方、控制程序等也仅统称为程序。在本说明书中使用程序这一术语的情况下,存在仅包括工艺配方单体的情况、仅包括控制程序单体的情况、或者包括这两者的情况。ram280b构成为暂时保持由cpu280a读取的程序、数据等的存储区域(工作区)。

i/o端口280d与分别对在上述气体供给部232a、232b、232c、232d、232e中流动的气体流量进行控制的作为流量控制装置的未图示的mfc(质量流量控制器)和开关阀、压力传感器245、apc阀243、真空泵246、加热器207、未图示的温度传感器、旋转机构267、舟皿升降机215等连接。

cpu280a构成为,从存储装置280c读取并执行控制程序,并且根据来自输入输出装置122的操作命令的输入等从存储装置280c读取工艺配方。cpu280a以按照所读取的工艺配方的内容的方式来控制apc阀243、加热器207、真空泵246、旋转机构267、舟皿升降机215等的动作。

控制器280不限于构成为专用计算机的情况,也可以构成为通用计算机。例如,也能够通过准备存储有上述程序的外部存储装置(例如,磁带、软盘、硬盘等磁盘、cd、dvd等光盘、mo等光磁盘、usb存储器、存储卡等半导体存储器)123并使用该外部存储装置123对通用计算机安装程序等,来构成本实施方式的控制器280。但是,用于对计算机供给程序的手段不限于经由外部存储装置123供给的情况。例如,也可以使用因特网、专用线路等通信手段而不经由外部存储装置123地供给程序。存储装置280c、外部存储装置123构成为计算机可读取的记录介质。以下,也将这些仅统称为记录介质。在本说明书中使用记录介质这一术语的情况下,存在仅包括存储装置280c单体的情况、仅包括外部存储装置123单体的情况、或者包括这两者的情况。

接着,对本发明的一个实施方式的衬底处理工序进行说明。关于本实施方式的衬底处理工序,对如下结构进行说明:作为第一处理气体而使用作为含硅气体的二氯硅烷(sih2cl2,简称dcs)气体,作为第二处理气体而使用作为含氮气体的nh3(氨)气体,作为第三处理气体而使用作为非活性气体的n2(氮化)气体,在多个晶片200上形成si3n4膜(以下,记作sin膜)。此外,在以下说明中,构成衬底处理装置的各部分的动作由控制器280控制。

在此,从在反应管203的下端部供给的非活性气体供给部232d、232e,至少在晶片200被处理的状态下供给作为非活性气体的n2气体。作为非活性气体,除了n2气体以外,例如也可以使用ar气体、he气体、ne气体、xe气体等稀有气体。

当多个晶片200被装入舟皿217(晶片填充)时,炉口部209的下端开口开放。支承着多个晶片200的舟皿217由舟皿升降机215抬起并被搬入至处理室201内(舟皿装载)。在该状态下,成为密封盖219经由o型密封圈220b将炉口部209的下端密封的状态。

通过压力传感器245、apc阀243和真空泵246进行压力调整,以使处理室201内成为期望的压力(真空度)。另外,通过未图示的温度传感器和加热器207进行加热、温度调整,以使处理室201内成为期望的温度。

在使真空泵246动作的状态下,从第一喷嘴233a流动dcs气体。dcs气体通过质量流量控制器(未图示)而被进行流量调整。经流量调整的dcs气体经由第一喷嘴233a向处理室201内供给,并从排气管231排出。此时,同时从第三喷嘴233c流动n2气体。n2气体与dcs气体一起向处理室201内供给,并从排气管231排出。

在晶片200的表面等形成含硅层之后,停止供给dcs气体。此时,在排气管231的apc阀243打开的状态下,由真空泵246对处理室201内进行真空排气,从处理室201内排除残留的dcs气体等。此时,若从第三喷嘴233c向处理室201内供给(吹扫)n2气体,则排除残留的dcs气体的效果进一步提高。

对处理室201内进行吹扫之后,从第二喷嘴233b流动nh3气体。此时,同时从第三喷嘴233c流动n2气体。nh3气体和n2气体供给到处理室201内之后,被从排气管231排出。

接着,停止供给nh3气体。此时,在气体排气管231的apc阀243打开的状态下,由真空泵246对处理室201内进行真空排气,将在处理室201内残留的未反应或者参与氮化之后的nh3气体从处理室201内排除。此外,此时,维持n2气体从第三喷嘴233c向处理室201内的供给。由此,提高将在处理室201内残留的未反应或者参与氮化之后的nh3气体从处理室201内排除的效果。

通过重复上述处理,能够在晶片200上成膜规定膜厚的含有硅和氮的sin膜。

当完成了形成规定膜厚的sin膜的成膜处理时,将n2气体等非活性气体向处理室201内供给并排气,由此利用非活性气体对处理室201内进行吹扫。之后,处理室201内的环境气体被非活性气体置换(非活性气体置换),处理室201内的压力恢复常压(大气压恢复)。

之后,通过舟皿升降机215使密封盖219下降,炉口部209的下端开口,并且处理过的晶片200在支承于舟皿217的状态下被从炉口部209的下端搬出到反应管203的外部(舟皿卸载)。之后,从舟皿217取出处理过的晶片200(晶片排出)。

通过上述步骤,能够使用dcs气体和nh3气体在晶片200的表面成膜sin膜。

此外,不仅在作为在成膜sin膜时使用的处理气体而使用dcs气体和nh3气体的情况下能够适用,即使在使用六氯乙硅烷(si2cl6,hcds)和nh3的情况下、使用除此以外的si原料和氮化原料的情况下也能够适用,另外,不仅能够适用于交替地供给si原料和氮化原料来成膜sin膜的情况,也能够适用于同时供给si原料和氮化原料并通过cvd法成膜sin膜的情况。

图4是表示另一实施方式的反应管303的下端部的放大剖视图。

另一实施方式的反应管303与上述实施方式的反应管203,在延伸部203b的下端部具有凸部304这一点上不同。

延伸部303b的下端部具有多个向下方突出的凸部304。密封盖219的上表面具有多个分别与凸部304卡合的凹部306。即,通过使反应管303的下端部的凸部304与密封盖219的凹部306卡合,反应管303的一部分嵌入于密封盖219。

在反应管303中也是,从非活性气体供给部232d、232e供给的非活性气体朝向延伸部303b供给,流过第一间隙322、第二间隙324而向处理室201内供给。非活性气体以比处理室201内的压力高的压力被供给,抑制副产物向第二间隙324和第一间隙322内侵入,并利用非活性气体对炉口部209的内周面进行吹扫。即,通过使反应管303的下端部的凸部304与密封盖219的凹部306卡合,第二间隙324的处理气体所通过的路径与未形成凸部304的情况相比,至少与凹部306的内表面相应地伸长,因此处理气体不容易到达炉口部209。由此,能够减少炉口部209的内周面与处理气体的接触量,即使对于处理气体使用腐蚀性气体,也能够抑制炉口部的腐蚀,并抑制微粒的产生。

此外,对在延伸部303b的下端部设置多个凸部304、在密封盖219的上表面设置分别与凸部304卡合的凹部306的结构进行了说明,但是不限于此,也可以在延伸部的下端部设置多个凹部、在密封盖的上表面设置分别与凹部卡合的凸部。在该情况下,通过使反应管的下端部的凹部与密封盖的凸部卡合,反应管的一部分嵌入于密封盖。另外,也可以并非形成多个凸部304、而是在整周范围内形成凸部304,在该情况下,在密封盖219的上表面在整周范围内设置凹部306。

此外,对在反应管203、303的下部(下端)使用非活性气体供给部232d、232e供给非活性气体的例子进行了说明,但是不限于此,也可以代替非活性气体而供给氟化氢(hf)等清洗气体,还可以同时供给非活性气体和清洗气体。通过在炉口部209的内周面与反应管203、303之间供给清洗气体,能够去除副产物,防止产生微粒。

因而,通过以覆盖炉口部的上表面的方式设置反应管的突出部,以覆盖炉口部的内周面的方式设置反应管的延伸部,并在该炉口部的内壁侧与延伸部之间供给非活性气体和/或清洗气体,由此,炉口部的内壁面被非活性气体和/或清洗气体覆盖,能够防止副产物对炉口部的附着、腐蚀。

而且,在衬底处理装置中,能够防止晶片的污染,延长保养周期,提高生产效率。

此外,本发明不限于上述实施方式,虽然说明了仅为反应管的单层管规格,但不限于此,例如也可以是外管、内管的双层管规格,即使是3层管以上的规格也可适用。

另外,在本实施方式中,说明了炉口部209由金属材料构成的情况,但是不限于此,即使是非金属材料也可适用。

另外,在本实施方式中,在反应管的下部设置有两个非活性气体供给部,但是不限于此,即使一个也可以。在一个的情况下,设置于与排气管相对的一侧。由此,能够在气体的供给和排气的整体中形成畅通的流路。

本发明涉及半导体制造技术,特别是,涉及在将被处理衬底收纳于处理室并由加热器进行了加热的状态下实施处理的热处理技术,例如,能够应用于有效利用于衬底处理装置的技术,该衬底处理装置适用于对嵌入有半导体集成电路装置(半导体器件)的半导体晶片进行氧化处理、扩散处理、离子注入后的载流子活化、用于平坦化的回流(reflow)、退火以及基于热cvd反应的成膜处理等。

该申请以2015年2月4日提出申请的日本申请特愿2015-019919为基础主张优先权的利益,并通过引用来取入其全部公开内容。

附图标记说明

100:衬底处理装置

200:晶片

201:处理室

203、303:反应管

209:炉口部

217:舟皿

219:密封盖

231:气体排气管

232:气体供给部

322:第一间隙

324:第二间隙

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1