具有金属海绵的金属柱的制作方法

文档序号:11179231阅读:577来源:国知局
具有金属海绵的金属柱的制造方法与工艺

本发明涉及一种电子组件的电性耦合结构,特别是涉及一种具有金属海绵的金属柱作为电性耦合单元的电子组件。



背景技术:

图1a显示现有电子组件的金属柱(metalpillar)电性连接至金属垫(metalpad)的状况:

第一电子组件11的底侧,配置有多个金属柱11a、11b;第二电子组件12的顶侧,配置有多个金属焊垫121。金属柱11a、11b分别电性耦合到对应的一个金属垫121。然而,基于制作技术的误差关系,金属柱11a、11b可能具有高度差d1;例如,图中显示在金属柱11a和金属柱11b下端,出现高度差d1。因此,当组件11电性连接到组件12时,高度差d1使得较短的金属柱11a下端无法电性连接到对应的金属焊垫121。

图1b显示现有电子组件的金属柱(metalpillar)电性连接金属柱(metalpillar)的状况:

图1b显示出与图1a类似的问题。图1b显示在第三电子组件13的底面配置有多个第三金属柱13a,13b;第四电子组件14的顶面配置有多个第四金属柱142。然而,制程误差的关系,造成金属柱之间的高度差。例如,在金属柱13a和金属柱13b之间出现高度差d2。当组件13电性连接到组件14时,高度差d12将使得较短的金属柱13a下端无法电性连接到对应的金属柱142。

前述电子组件的电性耦合结构中,当半导体组件技术愈趋精密时,这种极其微小制程误差,使得产品的连接可靠度产生了上述问题,半导体行业需要有新的技术来解决这种金属柱连接的可靠度问题。



技术实现要素:

针对现有技术的上述不足,根据本发明的实施例,希望提供一种可以吸收金属柱之间的高度差,从而提高金属柱电性连接可靠度的具有金属海绵的金属柱。

根据实施例,本发明提供的一种具有金属海绵的金属柱,包括第一金属柱、第二金属柱、第一金属海绵和第二金属海绵,其中:

第一金属柱与第二金属柱配置在第一电子组件的底面,且所述第一金属柱和所述第二金属柱之间具有高度差;

第一金属海绵配置在所述第一金属柱的前端,第二金属海绵配置在所述第二金属柱的前端;

所述金属海绵具有压缩性,后续在电性耦合时,可以吸收所述第一金属柱和所述第二金属柱之间的高度差。

根据一个实施例,本发明前述具有金属海绵的金属柱中,还包括第一金属焊垫和第二金属焊垫、第一焊料层和第二焊料层,其中:

第一金属焊垫和第二金属焊垫配置在第二电子组件的表面;

第一焊料层配置在所述第一金属焊垫的表面;

第二焊料层配置在所述第二金属焊垫的表面;

当所述第一金属柱的金属海绵和第二金属柱的金属海绵分别电性耦合至所述第一金属焊垫、第二金属焊垫时,焊料层受热熔化过程中,至少局部被吸收到所述金属海绵中,增强所述金属柱电性耦合到所述金属焊垫的稳固度。

根据一个实施例,本发明前述具有金属海绵的金属柱中,还包括第三金属柱与第四金属柱、第三金属海绵、第四金属海绵和第二金属,其中:

第三金属柱与第四金属柱配置在所述第二电子组件的表面;

第三金属海绵配置在所述第三金属柱的前端;

第四金属海绵配置在所述第四金属柱的前端;

第二金属分别设置于所述第三金属海绵和所述第四金属海绵的前端,所述第二金属的硬度大于所述金属海绵的硬度;

所述金属海绵具有压缩性,可以弥补所述第一金属柱和所述第二金属柱之间的高度差,也可以弥补所述第三金属柱和所述第四金属柱之间的高度差;

后续在电性耦合时,第三金属海绵以及第四金属海绵前端较硬的第二金属,分别可以刺入第一金属柱和所述第二金属柱的前端金属海绵。

根据一个实施例,本发明前述具有金属海绵的金属柱中,所述金属海绵是铜金属,所述第二金属是镍金属,较硬的镍金属设置于金属海绵的前端,提高金属海绵的前端坚硬度。

根据一个实施例,本发明前述具有金属海绵的金属柱中,还包括金au,设置于所述镍ni金属的表面;较硬的镍金ni-au构成所述第二金属,设置于金属海绵的前端,提高金属海绵的前端坚硬度。

根据一个实施例,本发明前述具有金属海绵的金属柱中,还包括多个凹槽金属垫,配置在第二电子组件的顶面;每个凹槽金属垫包括凹槽以及配置在凹槽表面的金属;凹槽金属垫适于对应的金属柱插入,第一电子组件与第二电子组件电性耦合以后,金属柱的金属海绵卡固于凹槽,紧密接触凹槽的表面金属而获得良好的电性耦合。

根据一个实施例,本发明前述具有金属海绵的金属柱中,所述凹槽金属垫,从截面图观之,呈矩形或多边形。

根据一个实施例,本发明前述具有金属海绵的金属柱中,电性耦合以后,所述金属柱前端挤压变形,形成凸块;所述凸块膨胀卡固于对应的凹槽,紧密接触凹槽的表面金属而获得良好的电性耦合。

根据一个实施例,本发明前述具有金属海绵的金属柱中,还包括焊料,配置在相应凹槽的表面金属的顶面;电性耦合以后,当焊料受热熔化过程中,至少局部被吸收到所述金属海绵中,增强所述金属柱电性耦合到所述凹槽金属垫的稳固度。

根据一个实施例,本发明前述具有金属海绵的金属柱中,所述凹槽金属垫的表面金属,延伸至凹槽上方基材表面,提供电性连接。

相对于现有技术,本发明具有金属海绵的金属柱作为电性耦合单元的电子组件。金属海绵缓冲层可以吸收金属柱之间的高度差,提供金属柱电性连接的可靠度。此外,本发明提供的具有金属海绵的金属柱,前端金属海绵缓冲层用以补偿多根金属柱之间的高度差,使得多根金属柱之间纵使有些微高度差,在电性耦合至对应的金属接点以后,整体的电性连接没有电性耦合不良的缺陷,提高电子组件的电性耦合可靠度。

附图说明

图1a-1b是现有技术中电子组件的金属柱(metalpillar)电性连接金属柱(metalpillar)的结构示意图。

图2a-2b是本发明的第一实施例的结构示意图。

图3a-3b是本发明的第一实施例的运用示意图。

图4a-4b是本发明的第二实施例的结构示意图。

图5a-5b是本发明的第三实施例的结构示意图。

图6a-6b是本发明的第四实施例的结构示意图。

图7a-7b是本发明的第五实施例的结构示意图。

其中:21为电子组件;21a、21b为金属柱;211为金属柱;d3为高度差;212为金属海绵;221为金属焊垫;222为平坦表面;22s为焊料;321为金属柱;32为电子组件;322为金属海绵;323为第二金属;42为电子组件;42s为焊料;42p为凹槽金属垫;42m为金属;421为多边形凹槽;422为矩形凹槽;455为金属凸块。

具体实施方式

下面结合附图和具体实施例,进一步阐述本发明。这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等效变化和修改同样落入本发明权利要求所限定的范围。

图2a-2b显示本发明的第一实施例。

图2a显示前端具有的金属海绵212的多根金属柱21a、21b,设置于电子组件21的底部;其中,系假设金属柱21a和金属柱21b本体之间存在有高度差d3。金属海绵212是导电的并且是可压缩的,以便金属柱之间的高度差d3可由金属海绵212的可压缩特性,使得金属柱21a、21b电性耦合至对应的金属接点以后,整体的电性连接没有因为金属柱高度差d3所产生的电性耦合不良的缺陷。

图2b显示多个金属柱21a、21b的前端具有金属海绵212;其中,金属柱21a、21b之间的高度差能够通过金属海绵212的可压缩性,使得电性耦合时获得平坦的连接表面222,因此,金属柱的高度差d3不会产生电性耦合不良的缺陷。

图3a-3b显示本发明的第一实施例的运用。

图3a显示第一电子组件21下端具有多个金属柱21a、21b;金属柱21a、21b下端分别具有金属海绵212,金属柱21a和金属柱21b之间有高度差d3;第一电子组件21准备电性耦合到第二电子组件22。第二电子组件22具有多个金属垫221设置在上方;焊料222设置于每个金属焊垫221的顶面。

图3b显示第一电子组件电性耦合至第二电子组件,焊料222熔化并有部分被金属海绵212吸收至隙缝中,提高了电性连接的稳定性。金属柱21a、21b电连接到对应金属垫221。每个金属海绵212压缩不等高度,吸收高度差d3的差异,使得两个组件之间的电性耦合完整无缺陷。

图4a-4b显示本发明的第二实施例。

图4a显示第一电子组件21与图2的第一电子组件相同;准备电性耦合到第二电子组件32。第二电子组件32与第一电子组件21结构类似,第二电子组件32具有多个金属柱321安置于上方,金属海绵322分别配置于金属柱322的前端。

金属海绵322的前端更设置有第二金属323,第二金属323的硬度比金属海绵322的第一金属的硬度大。例如,第一金属(金属海绵322)是铜、第二金属323是镍(ni)。另外,可以更增加第三金属(图中未显示)如金(au),镀覆在镍(ni)的上端,形成cu/ni/au的缓冲层,配置于金属柱321的前端。

图4b显示图4a的电性耦合状态。图4a显示,顶部金属柱21a、21b和底部金属柱321d之间的金属海绵212、323互相交错接触达到电性耦合的目的,所述第二金属323具有较大硬度可以插入金属海绵212,得到金属柱之间良好的电性连接。

图5a-5b显示本发明的第三实施例。

图5a显示了第一电子组件21,如同图2a中所示的第一电子组件21,准备电性耦合到第二电子组件42。

多个凹槽金属垫42p设置于第二电子组件42上方,每个凹槽金属垫42p包含凹槽421与覆盖在凹槽底部及边壁的金属层42m。金属层42m的结构,可以是以铜(cu)金属做底层,然后镀镍、金,形成铜镍金(cu/ni/au)层。金属层42m延伸至第二电子组件上方,提供电性连接至其他地方使用。凹槽金属垫42p配合金属柱21a、21b设置,提供对应的金属柱21a、21b的下端金属海绵212的插入接合用。金属海绵212与凹槽金属垫42p挤压,达到紧密的电性耦合,且金属海绵的可压缩性,可以弥补金属柱21a、21b的高度差,使得电性耦合无缺陷。凹槽金属垫42p的形状,在截面视图中,可以是多边形凹槽421、矩形凹槽422或是其他形状凹槽。

图5b显示图5a的电性耦合完成的状态。图中显示多个金属柱21a、21b和凹槽金属垫42p之间的电性耦合,经由金属海绵212与凹槽金属垫42p的挤压,使紧密卡固于凹槽金属垫42p中,达到电性耦合的目的。

图6a-6b显示本发明的第四实施例。

图6a与图5a相同,故省略不再说明

图6b是图5b的修饰实施例。图6b显示,第一电子组件21与第一电子组件42压合时,施予事先设定好的较大压力,使得金属海绵212压扁以后,金属柱下端更压扁变形,在凹槽金属垫42p中挤成金属凸块455,更增加电性接合的可靠度,同时也可以吸收金属柱之间的高度差缺陷,使电性耦合没有缺陷。

图7a-7b显示本发明的第五实施例。

图7a-7b与图6a-6b主要不同点,在于焊料42s的有无。

图7a显示焊料42s配置在对应的凹槽金属垫42p的金属42m的顶面。

图7b类似于图6b,图7b显示加热熔化的焊料42s会被吸收在金属海绵212中,使得金属柱21a、21b与凹槽金属垫42p的接合获得了更好的电性耦合。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1