封装结构及其制造方法与流程

文档序号:15166846发布日期:2018-08-14 17:35阅读:144来源:国知局

本发明是关于一种封装结构及其制造方法。



背景技术:

随着封装结构的发展,具有低成本的重分布层及凸块技术已有显著的进步。由聚酰亚胺(polyimide;pi)所制成的钝化层由于具有弹性,因此对配置于其上方的凸块具有良好的缓冲能力。然而,聚酰亚胺层与其下方的层具有低粘着力,故在成品阶段时,聚酰亚胺容易剥落并产生损坏。另一方面,在工艺中,聚酰亚胺亦容易萎缩,而成品的品质,如节距(pitch),也相应地受到影响。

由硬质材料,如二氧化硅(sio2),所制成的钝化层虽可提供较高的精准度。然此类钝化层对于底层的凸块会产生高内部应力,而对整体结构造成影响。因此,为了达到高精准品质以及高稳定性,改良的封装结构制造方法是必须的。



技术实现要素:

本发明的目的在于提供一种具有较高的精准度以及较佳的节距品质的封装结构及其制造方法。

本发明的一实施例为一种封装结构,包含内连接层、钝化层、至少一个弹性凸块,以及导电层。钝化层配置于内连接层上,且具有至少一个开口。弹性凸块配置于内连接层上,其中弹性凸块的一部分嵌入至开口中。导电层配置于弹性凸块以及钝化层上。

在部分实施例中,弹性凸块的材料包含聚酰亚胺、聚二甲基硅氧烷,或聚胺酯。

在部分实施例中,钝化层的材料包含二氧化硅。

在部分实施例中,封装结构还包含至少一个耦接块,配置于开口中,其中耦接块嵌入至弹性凸块中。

在部分实施例中,封装结构还包含附着层,配置于开口中。

本发明的另一实施例为一种形成封装结构的方法,包含形成内连接层。在内连接层上形成钝化层。开槽钝化层以形成至少一个开口。在开口中形成至少一个弹性凸块,其中弹性凸块的一部分嵌入至开口中。在弹性凸块以及钝化层上形成导电层。

在部分实施例中,此方法还包含在开口中形成至少一个耦接块,使得耦接块嵌入至弹性凸块中。

在部分实施例中,开槽钝化层还包含在钝化层及内连接层中开槽内连接层以形成开口。

本发明的又一实施例为一种形成封装结构的方法,包含形成内连接层。开槽内连接层以形成至少一个开口。在开口中形成至少一个弹性凸块,其中弹性凸块的一部分嵌入至开口中。在弹性凸块以及钝化层上形成导电层。

在部分实施例中,其中开槽内连接层后,至少一个金属线自内连接层中曝露。

本发明的结构与现有技术相比,具有较高的精准度以及较佳的节距品质。

附图说明

阅读以下详细叙述并搭配对应的附图,可了解本发明的多个方面。应注意,根据业界中的标准做法,多个特征并非按比例绘制。事实上,多个特征的尺寸可任意增加或减少以利于讨论的清晰性。

图1a至图1g为本发明的部分实施例的制造封装结构的方法在各步骤的剖面图。

图1h为本发明的部分实施例的封装结构的剖面图。

图2a至图2e为本发明的部分实施例的制造封装结构的方法在各步骤的剖面图。

图3a至图3e为本发明的部分实施例的制造封装结构的方法在各步骤的剖面图。

图4a至图4d为本发明的部分实施例的封装结构的剖面图。

具体实施方式

以下公开提供众多不同的实施例或范例,用于实施本发明提供的主要内容的不同特征。下文描述一特定范例的组件及配置以简化本发明。当然,此范例仅为示意性,且并不拟定限制。举例而言,以下描述“第一特征形成在第二特征的上方或之上”,在实施例中可包括第一特征与第二特征直接接触,且也可包括在第一特征与第二特征之间形成额外特征使得第一特征及第二特征无直接接触。此外,本发明可在各范例中重复使用元件符号及/或字母。此重复的目的在于简化及厘清,且其自身并不规定所讨论的各实施例及/或配置之间的关系。

此外,空间相对术语,诸如“下方(beneath)”、“以下(below)”、“下部(lower)”、“上方(above)”、“上部(upper)”等等在本文中用于简化描述,以描述如附图中所图示的一个元件或特征结构与另一个元件或特征结构的关系。除了描绘图示的方位外,空间相对术语也包含元件在使用中或操作下的不同方位。此设备可以其他方式定向(旋转90度或处于其他方位上),而本发明中使用的空间相对描述词可相应地进行解释。

图1a至图1g为本发明的部分实施例的制造封装结构的方法在各步骤的剖面图。本发明所提及的半导体元件中可能具有其他结构位于基板以及内连接结构之间,如晶体管或其他元件(如接触点)等等。然于图1b至图1g(以及图1h、图2a至图2e,及图3a至图3e)的细节图示将省略,以便简洁描述的目的。应了解可在图1a至图1g(以及图2a至图2e,及图3a至图3e)之前、之后,或其中添加额外工艺,且部分工艺可以取代或省略。部分工艺的顺序也可改变。

图1a中,内连接层10形成于下层结构5上方,其中下层结构5配置于基板4上方。下层结构5可包含晶体管、电阻、电容、局部导线、隔离结构,及/或元件隔离层等。其中为了简化描述的目的,下层结构5以及基板4在后续图示中将省略。

内连接层10可为单层或多层结构。内连接层10包括金属线、导电通孔,以及一层或多层的层间电介质(interlayerdielectric;ild)。金属线及导电通孔设计于提供电性连接。而层间介电质包覆金属线及导电通孔。在部分实施例中,层间介电质包括氧化硅(sio2)、氮氧化硅(sion)、碳氧化硅(sioc)、碳氮氧化硅(siocn)、碳氢氧化硅(sicoh),以及氮化硅基的材料,如氮化硅(sin)、氮碳化硅(sicn),等等。

图1b中,衬垫102及多个耦接块104经图案化并形成于内连接层10上。衬垫102电性连接至内连接层10(如金属线或导孔)。在部分实施例中,耦接块104为金属线,且可依据设计需求电性连接至内连接层10。衬垫102可由相同的材料,如金属(银或铜等),且可同时形成。在部分实施例中,耦接块104的材料可不同于衬垫102,例如耦接块104可为介电质。

接着,第一钝化层110形成内连接层10、衬垫102,以及耦接块104上方。在部分实施例中,第一钝化层110是由二氧化硅(sio2)形成,使整体结构具有较高的精准度以及较佳的节距品质。在部分实施例中,第一钝化层110可为聚酰亚胺。

图1c中,第一钝化层110经开槽,并形成多个开口112及114于第一钝化层110中。衬垫102经由开口112自第一钝化层110中曝露。而部分的耦接块104及内连接层10的上表面的一部分经由开口114自第一钝化层110中曝露。换句话说,开口112是由第一钝化层110、内连接层10,以及耦接块104界定的。开口112及114可由适合的方法形成,如光微影工艺及蚀刻。蚀刻剂的材料、第一钝化层110、衬垫102、耦接块104,及/或内连接层10经挑选以提供蚀刻选择性。

图1d中,附着层120形成于开口114中。详细地,附着层120是共形地形成于第一钝化层110、曝露的耦接块104,以及曝露的内连接层10的侧壁以及表面上。在部分实施例中,附着层120可为树酯,如环氧树脂(epoxy)。在部分其他实施例中,附着层120可省略。

图1e中,形成弹性凸块130于开口114以及内连接层10上方。弹性凸块130是由弹性材料所组成,例如聚酰亚胺(pi)、聚二甲基硅氧烷(polydimethylsiloxane;pdms),或聚胺酯(polyurethane;pu)。详细而言,弹性凸块130具有嵌入部分130a以及凸出部分130b。凸出部分130b自第一钝化层110中曝露。嵌入部分130a则是嵌入至第一钝化层110中并与耦接块104相接。由于耦接块104耦接至嵌入部分130a,故弹性凸块130与耦接块104之间的接触面积增加了,使得弹性凸块130的附着力上升。

参照回图1b,诚如上述,由于耦接块104可以增加和弹性凸块130之间的接触面积。故耦接块104并不限定于电性连接至内连接层10。在部分实施例中,耦接块104与衬垫102是于不同步骤中以不同材料形成。例如,耦接块104可为硬质遮罩。然而,在部分实施例中,耦接块104与衬垫102为相同材料(如金属),故耦接块104不但可用于和其他元件之间的电性连接,也可用于增加和弹性凸块130之间的接触面积。

图1f中,形成导电层140于开口112内以及第一钝化层110及弹性凸块130上方。导电层140直接配置于第一钝化层110及弹性凸块130上方。换句话说,导电层140经由衬垫102电性连接至内连接层10以及下层结构5(如图1a所示)。导电层140可由适合的技术形成,如化学气相沉积(chemicalvapordeposition;cvd)、物理气相沉积(physicalvapordeposition;pvd),或原子层沉积(atomiclayerdeposition;ald)等。此外,导电层140可进一步根据需求而进行图案化。

详细来说,导电层140是形成于弹性凸块130的凸出部分130b的表面。因此,弹性凸块130以及导电层140可合并称为导电凸块,其中导电凸块电性连接至内连接层10以及其他元件。

图1g中,形成第二钝化层150于导电层140以及第一钝化层110上方。接着,图案化第二钝化层150。因此,覆盖于弹性凸块130的凸出部分130b上方的导电层140自第二钝化层150中曝露,使得导电凸块(即弹性凸块130以及导电层140)可电性连接至其他元件。

此外,在第二钝化层150内形成开口152以曝露衬垫102上方的导电层140,使得内连接层10可通过导电层140以及衬垫102电性连接至其他元件。在部分实施例中,第二钝化层150可由二氧化硅组成,故结构具有较高的精准度以及较佳的节距品质。在部分其他实施例中,第二钝化层150可为聚酰亚胺。在又其他实施例中,第二钝化层150可省略。

在传统封装结构当中,具有高硬度(如二氧化硅)的钝化层可用于增加准度以及节距品质。然而,形成于高硬度钝化层上的传统凸块(如锡凸块)可能会产生高应力并产生损坏。本发明使用弹性凸块,可以释放钝化层内的应力。此外,传统封装结构中的翘曲现象会产生不均匀的表面,而本发明的弹性凸块也可用于释放封装结构的不均匀表面以及其他元件之间的应力。

图1h为本发明的部分实施例的封装结构的剖面图。不同于图1g,图1g的耦接块104以及附着层120在图1h中省略。而本实施例中,弹性凸块130的凸出部分130b侧向延伸至第一钝化层110的上表面。亦即,弹性凸块130的凸出部分130b的宽度wb大于弹性凸块130的嵌入部分130a的宽度wa。而此配置也增加了弹性凸块130与第一钝化层110的接触面积,并增加了附着力。

应了解上述实施例仅以一个凸块作为解释,但本发明并不限定于此。在部分实施例中,弹性凸块的数量根据设计需求可为二个或更多。

图2a至图2e为本发明的部分实施例的制造封装结构的方法在各步骤的剖面图。部分细节类似于图1a至图1h将省略。图2a中,形成内连接层10。内连接层10包含衬垫102以及多条金属线106,其中金属线106是于先前步骤中形成于内连接层10中的。在部分实施例中,衬垫102与金属线106为金属,如银或铜,且可同时形成。在本实施例中,内连接层10为多层结构,而衬垫102及金属线106位于内连接层10的最上层。换句话说,衬垫102及金属线106是曝露自内连接层10。

接着,形成第一钝化层110于内连接层10上方。在部分实施例中,第一钝化层110是由二氧化硅组成。第一钝化层110经图案化并形成开口112及116于第一钝化层110中,其中开口112曝露衬垫102,而开口116曝露部分金属线106以及内连接层10的表面。在本实施例中,第一钝化层110可在后续工艺中做为遮罩。开口116界定了后续所要形成的凸块的位置。

图2b中,内连接层10经开槽以形成开口118。开口118的形成使得金属线106的侧壁曝露。开口118可由适当的方法形成,如光微影工艺及蚀刻。蚀刻工艺可经调控使得开口118具有适当的深度。部分实施例中,金属线106的侧壁可局部地曝露。

开口118界定了后续所要形成的弹性凸块的位置。然而,由于实际绕线的布局,弹性凸块的下方未必会有金属线106。因此,部分实施例中,开口118内并不包含金属线。

形成附着层120于开口118内。特别地,附着层120是共形地性成于第一钝化层110的侧壁,曝露的金属线106,以及内连接层10的曝露表面。在部分实施例中,附着层120可为树酯,如环氧树酯。在部分其他实施例中,附着层120可省略。

图2c中,形成弹性凸块130于内连接层10上方及开口118内。弹性凸块130是由弹性材料所组成,例如聚酰亚胺(pi)、聚二甲基硅氧烷(polydimethylsiloxane;pdms),或聚胺酯(polyurethane;pu)。详细而言,弹性凸块130具有嵌入部分130a以及凸出部分130b。凸出部分130b自第一钝化层110中曝露。嵌入部分130a则是嵌入至第一钝化层110中并与金属线106相接。由于金属线106耦接至嵌入部分130a,故弹性凸块130与金属线106之间的接触面积增加了,使得弹性凸块130的附着力上升。

图2d中,形成导电层140于开口112内以及第一钝化层110及弹性凸块130上方。导电层140直接配置于第一钝化层110及弹性凸块130上方。换句话说,导电层140经由衬垫102电性连接至内连接层10以及下层结构5(如图1a所示)。此外,导电层140可进一步根据需求而进行图案化。

详细来说,导电层140是形成于弹性凸块130的凸出部分130b的表面。因此,弹性凸块130以及导电层140可合并称为导电凸块,其中导电凸块电性连接至内连接层10以及其他元件。

图2e中,形成第二钝化层150于导电层140以及第一钝化层110上方。接着,图案化第二钝化层150。因此,覆盖于弹性凸块130的凸出部分130b上方的导电层140自第二钝化层150中曝露,使得导电凸块(即弹性凸块130以及导电层140)可电性连接至其他元件。

此外,在第二钝化层150内形成开口152以曝露衬垫102上方的导电层140,使得内连接层10可通过导电层140以及衬垫102电性连接至其他元件。在部分实施例中,第二钝化层150可由二氧化硅组成,故结构具有较高的精准度以及较佳的节距品质。在部分其他实施例中,第二钝化层150可为聚酰亚胺。在其他实施例中,第二钝化层150可省略。

图3a至图3e为本发明的部分实施例的制造封装结构的方法在各步骤的剖面图。图3a中,形成内连接层10。内连接层10包含多条金属线106及108,其中金属线108及106是于先前步骤中形成于内连接层10中的。在本实施例中,内连接层10为多层结构,而金属线106是位于内连接层10的最上层,金属线108则是位于内连接层10的内层,其中金属线106及108可以通过其他内连接结构连接,例如导孔或金属层。因此,金属线108包覆于内连接层10内,而金属线106则曝露于内连接层10。

图3b中,内连接层10经开槽以形成开口119。开口119可由适当的方法形成,如光微影工艺及蚀刻。蚀刻工艺可经调控使得开口119具有适当的深度。使得位于内层的金属线108可以全部或局部地经由开口119自内连接层10中曝露。

开口119界定了后续所要形成的弹性凸块的位置。然而,由于实际绕线的布局,弹性凸块的下方未必会有金属线。因此,部分实施例中,开口119内并不包含金属线。

图3c中,形成弹性凸块130于内连接层10上方及开口118内。弹性凸块130是由弹性材料所组成,例如聚酰亚胺(pi)、聚二甲基硅氧烷(polydimethylsiloxane;pdms),或聚胺酯(polyurethane;pu)。详细而言,弹性凸块130具有嵌入部分130a以及凸出部分130b。凸出部分130b自内连接层10中曝露。嵌入部分130a则是嵌入至内连接层10中并与金属线108相接。由于金属线108耦接至嵌入部分130a,故弹性凸块130与金属线108之间的接触面积增加了,使得弹性凸块130的附着力上升。

图3d中,形成导电层140于内连接层10及弹性凸块130上方。导电层140直接配置于内连接层10及弹性凸块130上方。此外,导电层140与内连接层10的金属线106接触,其中部分导电层140与金属线106电性连接的部分可以定义为衬垫部分142。换句话说,导电层140经由导电层140的衬垫部分142电性连接至内连接层10以及下层结构5(如图1a所示)。此外,导电层140可进一步根据需求而进行图案化。

详细来说,导电层140是形成于弹性凸块130的凸出部分130b的表面。因此,弹性凸块130以及导电层140可合并称为导电凸块,其中导电凸块电性连接至内连接层10以及其他元件。

图3e中,形成第一钝化层110于导电层140以及内连接层10上方。接着,图案化第一钝化层110。因此,覆盖于弹性凸块130的凸出部分130b上方的导电层140自第一钝化层110中曝露,使得导电凸块(即弹性凸块130以及导电层140)可电性连接至其他元件。

此外,在第一钝化层110内形成开口152以曝露导电层140的衬垫部分142,使得内连接层10可通过衬垫部分142电性连接至其他元件。在部分实施例中,第一钝化层110可由二氧化硅组成,故结构具有较高的精准度以及较佳的节距品质。在部分其他实施例中,第一钝化层110可为聚酰亚胺。在又其他实施例中,第一钝化层110可省略。

图4a至图4d为本发明的部分实施例的封装结构的剖面图。图4a中,弹性凸块130包括凸出部分130b以及嵌入部分130a,其中凸出部分130b具有半圆顶表面。凸出部分130b具有宽度wb,而嵌入部分具有宽度wa,其中宽度wa大于宽度wb。嵌入部分130a具有较大的宽度可以增加弹性凸块130的接触面积。

图4b中,弹性凸块130的凸出部分130b具有平坦上表面。

图4c中,弹性凸块130的凸出部分130b的剖面为三角形。

图4d中,弹性凸块130包括凸出部分130b以及嵌入部分130a,其中凸出部分130b具有半圆顶表面。嵌入部分130a具有渐变的宽度,其中嵌入部分130a的宽度从底部往上由宽度wb变化至宽度wa。此设计可增加弹性凸块130与钝化层110之间的附着力,由于具有较宽底部宽度的弹性凸块130较难自第一钝化层110中剥落。

图4d中,弹性凸块130的轮廓可由调整钝化层110的图案化条件而得。意即,图案化(如蚀刻)将会影响钝化层110的轮廓。因此,通过调整图案化参数,如蚀刻时间、蚀刻剂等,可相应地调整弹性凸块130的轮廓。

上文概述了若干实施例的特征,以便本领域的技术人员可更好地理解本发明的各个方面。本领域的技术人员应当了解到他们可容易地使用本发明作为基础来设计或者修改其他工艺及结构,以实行相同目的及/或实现相同优势的。本领域的技术人员也应当了解到,此类等效构造不脱离本发明的精神及范畴,以及在不脱离本发明的精神及范畴的情况下,其可对本文进行各种改变、取代及变更。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1