氧化钼/二氧化钛纳米管的制备方法与流程

文档序号:17294788发布日期:2019-04-03 04:17阅读:450来源:国知局
氧化钼/二氧化钛纳米管的制备方法与流程
本发明属于电极材料
技术领域
,具体涉及一种氧化钼/二氧化钛纳米管的制备方法。
背景技术
:随着科学技术的发展,人类生活环境的改善,对能源的要求也越来越多样化,要求储能设备具有更高的能量密度和功率密度,来替代或者辅助当前使用的电池;对电动汽车发展的要求更促使了对新型储能设备的研制,于是电化学电容器应运而生;超级电容器,是20世纪70年代及80年代发展起来的基于电极/电解质界面的电化学过程的新型储能元件;主要依靠双电层和氧化还原赝电容电荷储存电能,它存储的能量可以达到静电电容器的100倍以上,同时又具有比电池高出10—100倍的功率密度。电极材料和电解液是决定超级电容器性能的两大关键因素,故电极材料已成为超级电容器研究的热点,近年来出现的超级电容器电极材料主要为炭材料、金属氧化物、导电聚合物三大系列,碳材料由于具有较高的电导率,较高的比表面积,良好的抗腐蚀性,高温下较好的稳定性,合理的孔径分布,易于处理,与别的材料复合时,相容性好而且价格相对较便宜等独特的物理和化学性质而最早被用作超级电容器电极材料,但是其内阻较大、正极比容量相对较低,影响其在超级电容器中的发展应用;1975年,conway在研究法拉第假电容储能原理时首次提出将过渡金属氧化物作为超级电容器电极材料,目前这一系列材料中研究最多的为贵金属氧化物ruo2.xh2o,但此类材料有一致命缺点,即材料成本太高且金属钌对环境产生污染,为了降低材料成本并改善其性能,已有研究采用其它金属氧化物来代替,其中,moox电化学活性高并具有电致变色、电化学催化等性能,已引起广泛关注,导电聚合物用作超级电容器电极材料是近年来发展起来的一个新的研究领域,其最大优点是可以在高压下工作(3一3.2v),可以弥补过渡金属氧化物系列工作电压不高的缺点,代表着超级电容器电极材料的一个发展方向。一维高度有序的tio2纳米管(tio2nts)具有高的比表面积、好的可控性、简单的合成方法、稳定的电化学性能和较短的离子与电子传输路径,是前景诱人的超级电容器电极材料,然而二氧化钛纳米管是n型半导体材料,其导电性差因而比电容低,这限制了它在超级电容器方面应用;为了提高二氧化钛纳米管的电化学活性及导电性,获得电化学性能优良的电极材料,对二氧化钛纳米管进行改性是必须的;常用的二氧化钛纳米管本体改性方法有高温热处理、掺杂和复合,而纳米三氧化钼属于金属氧化物,它作为近年发展起来的具有独特一维层状结构的新型材料,在电化学领域有着广阔的应用前景,因具有小尺寸效应、比表面效应、界面效应、宏观量子隧道和限域效应等特点,且资源广泛、价格低廉,其作为超级电容器电极材料受到了人们越来越多的关注,并在催化剂、信息显示与储存器、传感器、智能伪装装置、电池电极等领域均展现出极大的应用价值。目前报道的制备氧化钼/二氧化钛纳米管复合电极的方法主要集中在溶胶凝胶法、水热合成法、火焰喷雾燃烧法等,尽管这些方法各有一定的优点,但却受限于高成本以及繁杂的处理步骤,不适于实际应用;另外,对于新颖的一维纳米结构(比如纳米线、纳米管和纳米带)来说,上述“剧烈”的处理方式不适合对一维纳米结构进行改性,因为很容易破坏其表面形貌和结构;因此,急需开发一种简便、温和的方法来制备氧化钼/二氧化钛纳米管复合电极材料。技术实现要素:有鉴于此,本发明的主要目的在于提供一种氧化钼/二氧化钛纳米管的制备方法。为达到上述目的,本发明的技术方案是这样实现的:本发明实施例提供一种氧化钼/二氧化钛纳米管的制备方法,该制备方法通过以下步骤实现:步骤(1),阳极氧化法制备二氧化钛纳米管:将预处理后的钛片作为工作电极,铂电极为对电极;将所述工作电极和对电极置于含有nh4f和去离子水的乙二醇溶液中进行第二次电化学氧化处理,之后,再置于高温炉中进行高温煅烧,获得二氧化钛纳米管;步骤(2),微波法制备氧化钼/二氧化钛纳米管复合电极:将所述步骤(1)获得的二氧化钛纳米管浸渍在钼酸铵溶液中,并且进行微波加热,获得氧化钼/二氧化钛纳米管复合电极。上述方案中,所述步骤(1)中将所述工作电极和对电极置于含有nh4f和去离子水的乙二醇溶液中进行电化学氧化处理之前,还包括,将所述工作电极和对电极置于含有nh4f和去离子水的乙二醇溶液中进行第一次电化学氧化处理,之后,再通过超声去除氧化膜。上述方案中,所述步骤(1)中所述预处理,具体为:将钛片分别用600目和1500目砂纸进行机械打磨,然后通过1wt%hf和3wt%hno3的水溶液进行化学抛光。上述方案中,所述步骤(1)中,所述含有nh4f和去离子水的乙二醇溶液中,所述nh4f的浓度为0.5~3wt%,所述去离子水的浓度为2~4vol%;所述第一次电化学氧化处理的过程中氧化电压为60~80v,氧化时间为2~3h。上述方案中,所述步骤(1)中将所述工作电极和对电极置于含有nh4f和去离子水的乙二醇溶液中进行第二次电化学氧化处理的过程中氧化时间为0.5~1.5h。上述方案中,所述步骤(1)中所述高温煅烧的温度为300~600℃,时间为1~3h。上述方案中,所述步骤(2)中微波加热采用从小到大火,加热时间为5~20min。上述方案中,所述步骤(2)中钼酸铵溶液的浓度为0.1~2mol/l。与现有技术相比,本发明以高纯度的钛片基材,进行两步法阳极氧化制得二氧化钛纳米管,再对纳米管进行改性,最后采用微波法制备氧化钼/二氧化钛纳米管复合电极,所得复合电极导电性良好、比电容量高。附图说明图1为本发明实施例1所得氧化钼/二氧化钛纳米管的x-射线光电子能谱;图2为本发明中对比例1所得二氧化钛纳米管的x-射线光电子能谱。具体实施方式为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本发明实施例提供一种氧化钼/二氧化钛纳米管的制备方法,该制备方法通过以下步骤实现:步骤(1),阳极氧化法制备二氧化钛纳米管:将预处理后的钛片作为工作电极,铂电极为对电极;将所述工作电极和对电极置于含有nh4f和去离子水的乙二醇溶液中进行第二次电化学氧化处理,之后,再置于高温炉中进行高温煅烧,获得二氧化钛纳米管;进一步地,将所述工作电极和对电极置于含有nh4f和去离子水的乙二醇溶液中进行电化学氧化处理之前,还包括,将所述工作电极和对电极置于含有nh4f和去离子水的乙二醇溶液中进行第一次电化学氧化处理,之后,再通过超声去除氧化膜。具体地,所述预处理为:将钛片分别用600目和1500目砂纸进行机械打磨,然后通过1wt%hf和3wt%hno3的水溶液进行化学抛光。所述含有nh4f和去离子水的乙二醇溶液中,所述nh4f的浓度为0.5~3wt%,所述去离子水的浓度为2~4vol%;两次所述电化学氧化处理过程中的氧化电压为60~80v,第一次电化学氧化处理过程中的氧化时间为2~3h,第二次电化学氧化处理过程中的氧化时间为0.5~1.5h。所述高温煅烧的温度为300~600℃,时间为1~3h。步骤(2),微波法制备氧化钼/二氧化钛纳米管复合电极:将所述步骤(1)获得的二氧化钛纳米管浸渍在钼酸铵溶液中,并且进行微波加热,获得氧化钼/二氧化钛纳米管复合电极。具体地,所述微波加热可以采用微波炉进行,当然也可以采用其他设备进行微波加热。所述微波加热采用从小到大火,加热时间为5~20min。所述钼酸铵溶液的浓度为0.1~2mol/l。实施例1(1)阳极氧化法制备二氧化钛纳米管:以高纯钛片为基底,在氧化之前,首先,要将钛片打磨光滑,具体方法为依次用600目和1500目砂纸进行机械打磨;然后,将其放在含有1wt%hf和3wt%hno3水溶液中进行化学抛光处理;最后,以抛光后的钛片为工作电极,铂电极为对电极,首先在0.5wt%nh4f和2vol%去离子水的乙二醇溶液中,在60v的电压下氧化2h,超声去除氧化膜;然后以去除氧化膜的钛片为工作电极,铂电极为对电极,在所述电解液中进行第二次氧化,氧化电压60v,氧化时间30min;最后将其置于高温炉中煅烧,煅烧温度为450℃、煅烧时间为2h,最终得到二氧化钛纳米管。(2)微波法制备氧化钼/二氧化钛纳米管复合电极:将上述制备好的二氧化钛纳米管浸渍在装有0.5m钼酸铵溶液的烧杯中,放置在微波炉中,采用中火加热,加热时间为10min。充放电测试使用仪器为电化学工作站(autolab,metrohmpgstat100,瑞士万通),采用恒电流方式进行,测试电解液为1.0mol/l的硫酸溶液,电流密度1.0a/g,采用三电极体系进行测试,其中本实施例得到的氧化钼/二氧化钛纳米管复合电极为工作电极,铂电极为对电极,银/氯化银为参比电极。根据充放电曲线及活性物质重量计算出电极的电容量,其结果见表1所示。由表一可知,经过氧化钼改性后的二氧化钛纳米管比电容得到了很大的提高。实施例2与实施例1相比,本实施例不同之处在于步骤(2)中的加热时间为5min,其余部分完全相同。实施例3与实施例1相比,本实施例的不同之处在于步骤(2)的加热时间为20min,其余部分完全相同。实施例4与实施例1相比,本实施例的不同之处在于步骤(2)的钼酸铵溶液浓度为0.1m,其余部分完全相同。实施例5与实施例1相比,本实施例的不同之处在于步骤(2)的钼酸铵溶液浓度为2.0m,其余部分完全相同。实施例6与实施例1相比,本实施例不同之处在于步骤(2)中采用小火加热,其余部分完全相同。实施例7与实施例1相比,本实施例不同之处在于步骤(2)中采用大火加热,其余部分完全相同。实施例8与实施例1相比,本实施例不同之处在于步骤(1)中煅烧温度为600℃、煅烧时间为1h,对比例1本对比例的一种二氧化钛纳米管电极的制备,制备过程为:以高纯钛片为基底,在将钛片打磨光滑;以抛光后的钛片为工作电极,铂电极为对电极,置于高温炉中煅烧获得二氧化钛纳米管。对本发明实施例1-8所得氧化钼/二氧化钛纳米管复合电极、以及对比例1所得二氧化钛纳米管电极分别进行充放电测试,测试结果如表1所示。表1各实施例及对比例所得电极的比电容比电容实施例1450.8f/g实施例2420.5f/g实施例3398.6f/g实施例4350.5f/g实施例5370.8f/g实施例6333.6f/g实施例7300.8f/g实施例8432.6f/g对比例16.2f/g从表1可以看出,本发明实施例1-8所得的氧化钼/二氧化钛纳米管复合电极的比电容明显高于对比例1。如图1、2所示,对本发明实施例1所得氧化钼/二氧化钛纳米管复合电极、以及对比例1所得二氧化钛纳米管电极分别进行x-射线光电子能谱测试,由图1(a)ti2p的xps谱图可知,位于459.0和464.7ev的二个峰分别归属于ti4+的ti2p3/2和ti2p1/2;由图1(b)o1s的xps谱图可知,位于530.1ev处的峰归属于ti-o的特征峰,位于530.7ev处的峰归属于mo-o的特征峰;由图1(c)mo1s的xps谱图可知,位于233.0ev和235.9ev处的峰归属于mo6+的特征峰,位于232.5ev和236.5ev处的峰归属于mo5+的特征峰。mo5+存在可能是ti3+还原mo6+所致;由图2(a)可知,位于529.8ev处的峰归属于ti-o-ti的特征峰,位于531.7ev处的峰归属于ti-oh的特征峰;由图2(b)可知,位于459.0和464.7ev的二个峰分别归属于ti4+的ti2p3/2和ti2p1/2;。对图1和图2进行对比,可以证明通过本发明能够得到氧化钼/二氧化钛纳米管复合电极。以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1