铁氧体磁铁的制作方法

文档序号:16507887发布日期:2019-01-05 09:08阅读:658来源:国知局
铁氧体磁铁的制作方法

本发明涉及一种铁氧体磁铁,特别是涉及铁氧体磁铁的剩余磁通密度(br)的提高。



背景技术:

作为由氧化物构成的永久磁铁的材料,已知有六方晶系的m型(磁铅石型)sr铁氧体或ba铁氧体。由这些铁氧体构成的铁氧体磁铁以烧结磁铁或粘结磁铁的形态作为永久磁铁进行供给。近年来,随着电子部件的小型化、高性能化,对于由铁氧体磁铁构成的永久磁铁,也要求小型且具有较高的磁特性。

作为永久磁铁的磁特性的指标,通常使用剩余磁通密度(br)及矫顽力(hcj),这些指标较高的永久磁铁被评价为具有较高的磁特性。一直以来,从提高永久磁铁的br及hcj的观点来看,进行着铁氧体磁铁中含有规定的元素等组成的变更的研究。

例如,日本专利第4591684号(专利文献1)中提出有一种la-co铁氧体烧结磁铁,其具有现有的m型sr铁氧体或m型ba铁氧体烧结磁铁不能达成的较高的剩余磁通密度和较高的矫顽力。该铁氧体烧结磁铁至少含有la及co,因此,被称为la-co铁氧体烧结磁铁。另外,日本特开2005-45167号(专利文献2)中提出了la-co铁氧体磁铁含有二价铁离子的专利。

另一方面,日本特开2012-209295号公报(专利文献3)中提出了除了m型ca铁氧体-la-co铁氧体相以外,还含有正铁氧体相,由此,hcj提高。进一步,国际公开号wo2012/090935(专利文献4)中提出了通过在m型calaco铁氧体磁铁中具有la的原子比率比包含la的主相高的第三相,由此,hcj或hk/hcj提高。

现有技术文献

专利文献

专利文献1:日本专利第4591684号公报

专利文献2:日本特开2005-45167号公报

专利文献3:日本特开2012-209295号公报

专利文献4:国际公开第2012/090935号小册子



技术实现要素:

发明所要解决的课题

如上所述,永久磁铁优选br和hcj较高,但良好地得到这些特性还不容易,从而寻求简单且良好地得到这些特性的铁氧体磁铁。另一方面,近年来,作为可变磁力磁铁,特别寻求br较高的铁氧体磁铁。

专利文献1及专利文献2的la-co铁氧体记载了具有较高的磁特性。但是,专利文献1及专利文献2的la-co铁氧体的br未超过4.7kg。

专利文献3及专利文献4中记载了通过ca-la-co铁氧体含有正铁氧体相或第三相,从而hcj提高。但是,记载了与不含有这些相的铁氧体相比,br同等或劣化。

本发明是鉴于这样的情况而研发的,其目的在于得到与现有的la-co铁氧体烧结磁铁的磁特性相比,br飞跃性地提高的铁氧体磁铁。

用于解决课题的技术方案

为了达成上述目的,本发明的铁氧体磁铁其特征在于,

所述铁氧体磁铁具有铁氧体相和正铁氧体相,所述铁氧体相具有磁铅石结构,将a、r、fe及me各自的金属元素的总量的构成比率以a1-xrx(fe12-ymey)z的式(1)表示时,

(式(1)中,a是选自sr、ba、ca及pb中的至少一种元素,r是选自稀土元素(包含y)及bi中的至少一种元素,并且至少包含la,me为co、或者co及zn。)

式(1)中,x、y、及z满足下述式(2)、(3)、(4)及(5),

0.71≤x≤0.84(2)

0.30≤y≤0.60(3)

0.80≤z<1.10(4)

1.60<x/yz<4.00(5)

所述正铁氧体相的含量(m)以摩尔%计为0<m<28.0。

本发明的铁氧体磁铁中,通过正铁氧体相的含量(m)以摩尔%计为0<m<28.0,从而能够得到较高的br。因此,本发明的铁氧体磁铁作为永久磁铁具有充分的br及hcj。

通常,在m型铁氧体磁铁中含有具有磁铅石结构的铁氧体相(以下,也称为m型铁氧体相或m相)以外的相的情况下,处于其比例越多,则对磁特性造成越不优选的影响的倾向。特别是已知在含有正铁氧体相的情况下,br降低。

但是,在本发明中,通过la-co铁氧体磁铁含有成为使br降低的主要原因的正铁氧体相,相反地能够得到可以使br提高的惊人的效果。该原因的详情不清楚,但还认为在本发明的组成范围内,在正铁氧体相与m型铁氧体相之间某种磁相互作用在发挥作用。

从更良好地得到上述效果的观点来看,铁氧体磁铁优选正铁氧体相的含量(m)以摩尔%计为0<m≤25.1,更优选为0<m≤16.3。

另外,本发明的铁氧体磁铁优选含有si,且si的含量以sio2换算超过0.002质量%且低于0.15质量%。

现有的铁氧体烧结磁铁通过含有以si为晶界成分的烧结助剂,从而得到较高的br和较高的hcj。但是,为了得到这些效果,含有比较多的si,具体而言,将以sio2换算计的si的含量设定为0.3~1.3质量%的程度。

但是,在本发明中,如上所述,通过将si的含量控制成本领域技术人员的常识以外的微量,由此能够得到特别是br飞跃性地提高的惊人的效果。

从更良好地得到上述效果的观点来看,更优选si的含量以sio2换算为0.03~0.11质量%。进一步优选si的含量以sio2换算为0.03~0.09质量%。

发明的效果

根据本发明,可以提供与现有的la-co铁氧体烧结磁铁的磁特性相比,br飞跃性地提高的铁氧体磁铁。

附图说明

图1是表示铁氧体磁铁的正铁氧体含量与br的关系的图。(实验例1)

图2是表示铁氧体磁铁的正铁氧体含量与hcj的关系的图。(实验例1)

图3是表示铁氧体烧结磁铁的sio2的含量与br的关系的图。(实验例4)

图4是表示铁氧体烧结磁铁的sio2的含量与hcj的关系的图。(实验例4)

具体实施方式

本实施方式的铁氧体磁铁是具有铁氧体相和正铁氧体相的铁氧体磁铁,其中,所述铁氧体相具有磁铅石结构,将a、r、fe及me各自的金属元素的总量的构成比率以下述的组成式(1)表示时,

a1-xrx(fe12-ymey)z(1)

(组成式(1)中,a是选自sr、ba、ca及pb中的至少一种元素,r是选自稀土元素(包含y)及bi中的至少一种元素,并且至少包含la,me为co、或者co及zn。)

组成式(1)中,x、y及z满足下述式(2)、(3)、(4)及(5),

0.71≤x≤0.84(2)

0.30≤y≤0.60(3)

0.80≤z<1.10(4)

1.60<x/yz<4.00(5)

所述正铁氧体相的含量(m)以摩尔%计为0<m<28.0。

此外,本实施方式中,将铁氧体磁铁整体的组成换算成上述的组成式(1)进行表示。因此,在本实施方式的铁氧体磁铁含有具有磁铅石结构的铁氧体相以外的相(例如,正铁氧体、赤铁矿、尖晶石等)的情况下,将这些相中所含的各元素量换算成组成式(1)。

换而言之,将铁氧体磁铁整体所含的各元素量应用于组成式(1),算出x、y及z。

以下,更详细地说明上述的铁氧体磁铁。

a:

a是选自sr、ba、ca及pb中的至少一种元素。作为a,从矫顽力(hcj)提高的观点来看,最优选至少使用sr。

r(x):

上述组成式(1)中的x表示r置换a的比例。上述组成式(1)中,当x低于0.71时,即r的量过少时,铁氧体磁铁的r的固溶量变得不充分,br及hcj降低。但是,当x超过0.84时,br及hcj降低。因此,本发明将x的范围设为0.71≤x≤0.84。优选x的值为0.74≤x≤0.84,更优选x的值为0.76≤x≤0.84,进一步优选x的值为0.76≤x≤0.81。

r是选自包含y的稀土元素及bi中的至少一种元素,但作为r,从剩余磁通密度(br)提高的观点来看,优选使用la。因此,本发明中将la设为必须。

me(y):

上述组成式(1)中的y表示me置换fe的比例,即co量或co+zn量。y也与x同样地,在本发明中从得到较高的剩余磁通密度(br)的观点出发进行设定。若y低于0.30,则铁氧体磁铁中的me的固溶量变得不充分,br及hcj降低。另一方面,当y超过0.60时,六方晶m型铁氧体中存在不能置换固溶的过量的元素me。因此,本发明将y的范围设为0.30≤y≤0.60。优选y的值为0.30≤y≤0.55,更优选y的值为0.30≤y≤0.51,进一步优选y的值为0.34≤y≤0.51。

z:

上述组成式(1)中的z表示fe及me的合计相对于a及r的合计的比。当z过小时,含有a及r的非磁性相增加,因此,饱和磁化变低。另一方面,当z过大时,α-fe2o3相或含有me的尖晶石铁氧体相增加,因此,饱和磁化变低。因此,本发明将z的范围设为0.80≤z<1.10。优选z的值为0.80≤z≤1.04,更优选z的值为0.84≤z≤1.04,进一步优选z的值为0.84≤z≤1.00。

x/yz:

上述组成式(1)中的x/yz表示r的置换量与me的置换量的比率。本实施方式中,x/yz设为1.60<x/yz<4.00。通过x、y及z满足该关系,可以得到良好的br和hcj。在该比率过高的情况和过低的情况下,br及hcj索性处于降低的倾向。优选x/yz的值为1.62≤x/yz≤2.97,更优选x/yz的值为1.75≤x/yz≤2.97,进一步优选x/yz的值为1.75≤x/yz≤2.62。

正铁氧体相(m):

本实施方式的铁氧体磁铁含有m相(具有磁铅石结构的铁氧体相)作为主相,作为m相以外的相,至少含有正铁氧体相。本实施方式中,正铁氧体相的含量(m)以摩尔%计为0<m<28.0。通过正铁氧体相的含量满足这样的条件,可以得到具有较高的br的铁氧体磁铁。

但是,当正铁氧体相为0摩尔%时,得不到充分的效果,br及hcj降低。另外,当正铁氧体相的含量过多时,有时发现br及hcj的降低,因此,优选正铁氧体相的含量的上限根据期望的br及hcj进行确定。从得到适当的br及hcj的观点来看,优选正铁氧体相的含量(m)为0.03摩尔%以上,更优选为0.1摩尔%以上,更优选为4.0摩尔%以上。另一方面,从得到适当的br及hcj的观点来看,正铁氧体相的含量(m)优选为25.1摩尔%以下,进一步优选为16.3摩尔%以下,特别优选为11.0摩尔%以下。

正铁氧体(orthoferrite)是化学式以rfeo3(r为稀土元素或钇)表示的铁氧化物。正铁氧体具有钙钛矿型结构。另外,正铁氧体在室温下具有较弱的磁性。

另外,对于正铁氧体的r与fe与o的比率,1:1:3是代表性的。但是,根据组成或气氛,它们的比率会发生变动。另外,也有时置换有fe以外的元素。即使在如这些的情况下,也作为本实施方式的铁氧体磁铁中的正铁氧体相包含。

对于正铁氧体,例如,专利文献2的第0026段中记载了通过使被认为是现有磁铁中不必要的相的正铁氧体相存在于磁铁中,从而使磁铁的矫顽力(hcj)提高。

但是,向较强的磁性成分中导入较弱的磁性成分或非磁性成分,由此,降低br并提高hcj是本领域技术人员的技术常识。根据本发明,尽管向较强的磁性成分中导入较弱的磁性成分来减少较强的磁性成分,但由此,源自铁磁性的br显著提高。这是颠覆现有的常识的划时代的知识。

专利文献1中,对于正铁氧体相的存在,没有给出任何启示。反而通过将煅烧温度设为1350~1450℃,从而提高m相比率,并排除正铁氧体相的存在。但是,本实施方式中,通过在本组成范围内控制煅烧温度、保持于煅烧温度的时间、煅烧工序中的升降温速度等,在铁氧体磁铁中形成正铁氧体相。

本发明的铁氧体磁铁可以由m相及正铁氧体相构成,也可以进一步含有m相及正铁氧体相以外的相。作为m相及正铁氧体相以外的相,例如可以列举赤铁矿相、尖晶石相等。

本实施方式中,铁氧体磁铁中,m相及正铁氧体相的合计优选为98.7摩尔%以上,更优选为99.2摩尔%以上。另外,铁氧体磁铁中,m相优选为74.9摩尔%以上,更优选为83.7摩尔%以上。

本实施方式的铁氧体磁铁中的m相、正铁氧体相、赤铁矿相及尖晶石相的存在能够通过利用以下的条件的x射线衍射或电子衍射等进行确认。这些相在铁氧体磁铁的组织中所占的摩尔比通过将m型铁氧体、正铁氧体、赤铁矿、尖晶石各自的粉末试样以规定比率进行混合,并比较计算关于该混合物得到的x射线衍射强度和关于实际制造的铁氧体磁铁得到的x射线衍射强度而算出。

x射线发生装置

连续额定值:3kw

管电压:45kv

管电流:40ma

采样宽度:0.02deg

扫描速度:4.00deg/min

发散狭缝:1.00deg

散射狭缝:1.00deg

受光狭缝:0.30mm

本实施方式的组成式(1)表示a、r、fe及me各自的金属元素的总量的构成比率,但在也包含氧o的情况下,能够以a1-xrx(fe12-ymey)zo19表示。在此,氧o的原子数成为19,但这表示me全部为二价,fe及r全部为三价,且x=y、z=1时的氧的化学计量组成比。

但是,x、y、z在上述的范围内进行变化,可以取得各种值,因此,根据x、y、z的值不同,氧的原子数不同。另外,例如在烧成气氛为还原性气氛的情况下,有可能产生氧的缺损(空缺)。另外,fe在m型铁氧体中通常以三价存在,但其有可能变化成二价等。另外,co及/或me的价数也有可能变化,r中也有可能取得三价以外的价数,另外,包含正铁氧体相,因此,根据这些,氧相对于金属元素的比率进行变化。根据以上,实际的氧的原子数有时呈现偏离19的值,本申请发明也包含这样的情况。

优选本实施方式的铁氧体磁铁进一步含有si。具体而言,优选si的含量以sio2换算超过0.002质量%且低于0.15质量%。通过si的含量满足这样的条件,可以得到具有较高的br和hcj的铁氧体磁铁。但是,以sio2换算为0.002质量%以下时,得不到充分的效果,烧结不足,因此,br及hcj降低。另外,当si的含量过多时,有时发现br及hcj的降低,因此,优选si的含量根据期望的br及hcj进行确定。

从得到适当的br和hcj的观点来看,更优选si的含量以sio2换算为0.03~0.11质量%。进一步优选si的含量以sio2换算为0.03~0.09质量%。

本实施方式的铁氧体磁铁除了si以外,能够含有ca作为副成分。si及ca以六方晶m型铁氧体的烧结性的改善、磁特性的控制及烧结体的晶粒的调整等为目的进行添加。

本实施方式的铁氧体磁铁也可以含有si及ca以外的成分作为副成分。作为其它的副成分,例如也可以具有al及/或cr。通过含有这些元素,处于永久磁铁的hcj提高的倾向。从得到良好的hcj的提高效果的观点来看,al及/或cr的含量相对于铁氧体磁铁整体以al2o3及cr2o3换算,合计优选为0.1质量%以上。但是,这些成分有时使永久磁铁的br降低,因此,从得到良好的br的观点来看,合计优选设为3质量%以下。

另外,作为副成分,也可以含有b作为例如b2o3。通过含有b,能够降低得到由铁氧体磁铁构成的烧结体时的煅烧温度或烧成温度,生产性良好地得到永久磁铁。但是,当b过多时,有时永久磁铁的饱和磁化降低,因此,相对于铁氧体磁铁整体,b的含量优选以b2o3换算为0.5质量%以下。

另外,本实施方式的铁氧体磁铁也可以作为副成分,将ga、mg、cu、mn、ni、in、li、ti、zr、ge、sn、v、nb、ta、sb、as、w、mo等以氧化物的形态含有。它们的含量换算成各原子的化学计量组成的氧化物,优选:氧化镓5质量%以下、氧化镁5质量%以下、氧化铜5质量%以下、氧化锰5质量%以下、氧化镍5质量%以下、氧化铟3质量%以下、氧化锂1质量%以下、氧化钛3质量%以下、氧化锆3质量%以下、氧化锗3质量%以下、氧化锡3质量%以下、氧化钒3质量%以下、氧化铌3质量%以下、氧化钽3质量%以下、氧化锑3质量%以下、氧化砷3质量%以下、氧化钨3质量%以下、氧化钼3质量%以下。但是,在将它们组合多种含有的情况下,为了避免磁特性的降低,优选其合计成为5质量%以下。

此外,优选本实施方式的铁氧体磁铁作为副成分不含碱金属元素(na、k、rb等)。碱金属元素处于容易降低永久磁铁的饱和磁化的倾向。但是,碱金属元素也有时包含于例如用于得到铁氧体磁铁的原料中,如果是这样不可避免地含有的程度,则也可以包含于铁氧体磁铁中。不会大幅影响磁特性的碱金属元素的含量以合计为3质量%以下。

本实施方式的铁氧体磁铁的组成能够通过荧光x射线定量分析等进行测定。

本实施方式的铁氧体磁铁只要具有上述的组成,则其形态没有特别地限制,例如可以列举铁氧体烧结磁铁、铁氧体磁铁粉末、铁氧体磁铁粉末分散于树脂中的粘结磁铁及铁氧体磁铁粉末包含于磁记录介质的膜状的磁性层等。

例如,铁氧体烧结磁铁、及粘结磁铁可以加工成规定的形状,并用于如以下所示的广泛的用途。

例如,能够作为燃油泵用、电动车窗用、abs(防抱死制动系统)用、风扇用、刮水器用、动力转向用、主动悬挂系统用、起动器用、门锁用、电动后视镜用等的汽车用马达来使用。

另外,能够用作为fdd主轴用、vtr主导轴用、vtr旋转头用、vtr卷盘用、vtr加载用、vtr摄像机主导轴用、vtr摄像机旋转头用、vtr摄像机变焦用、vtr摄像机聚焦用、收录机等主导轴用、cd/ld/md主轴用、cd/ld/md加载用、cd/ld光拾取器用等的oa/av设备用马达来使用。

进一步,也能够作为空调压缩机用、冷冻库压缩机用、电动工具驱动用、电吹风风扇用、剃须刀驱动用、电动牙刷用等的家电设备用马达来使用。另外,还能够作为机器人轴、关节驱动用、机器人主驱动用、机床工作台驱动用、机床皮带驱动用等的fa设备用马达来使用。

作为其它的用途,适合用于摩托车用发电器、扬声器·耳机用磁铁、磁控管、mri用磁场发生装置、cd-rom用夹持器、配电盘用传感器、abs用传感器、燃料·燃油液位传感器、磁锁、隔离器等。

另外,在本实施方式的铁氧体磁铁形成粉末的形态的情况下,优选将其平均粒径设为0.1~5.0μm。粘结磁铁用粉末的更优选的平均粒径为0.1~2.0μm,进一步优选的平均粒径为0.1~1.0μm。在制造粘结磁铁时,将铁氧体磁铁粉末与树脂、金属、橡胶等的各种粘合剂进行混炼,在磁场中或无磁场中进行成型。作为粘合剂,优选为nbr(丙烯腈丁二烯橡胶)、氯化聚乙烯、聚酰胺树脂等。成型后,进行固化,制成粘结磁铁。

(铁氧体烧结磁铁的制造方法)

接着,如上所述的铁氧体磁铁中,对铁氧体烧结磁铁表示其制造方法的一例。本实施方式的铁氧体烧结磁铁的制造方法中,铁氧体烧结磁铁能够经由配合工序、煅烧工序、粉碎工序、成型工序及烧成工序进行制造。以下说明各工序。

<配合工序>

配合工序中,配合铁氧体磁铁的原料,得到原料组成物。首先,作为铁氧体磁铁的原料,可以举出含有构成铁氧体磁铁的元素中的1种或2种以上的化合物(原料化合物)。原料化合物优选为例如粉末状的化合物。作为原料化合物,可以举出各元素的氧化物、或通过烧成而成为氧化物的化合物(碳酸盐、氢氧化物、硝酸盐等),例如能够示例:srco3、la(oh)3、pr6o11、nd2o3、zno、fe2o3、baco3、caco3及co3o4等。原料化合物的粉末的平均粒径从例如能够进行均质的配合的观点来看,优选设为0.1~2.0μm的程度。

另外,原料粉末中,根据需要也可以配合其它的副成分的原料化合物(元素单质、氧化物等)。配合能够通过例如将各原料以得到期望的铁氧体磁铁的组成的方式称量,使用湿式磨碎机、球磨机等进行混合、粉碎处理0.1~20小时的程度来进行。此外,该配合工序中,不需要混合全部的原料,一部分也可以在后述的煅烧后进行添加。

<煅烧工序>

煅烧工序中,将配合工序中得到的原料粉末进行煅烧。煅烧能够在例如空气中等的氧化性气氛中进行。煅烧的温度优选设为1000~1340℃的温度范围,更优选为1100~1340℃,进一步优选为1250~1340℃。通过设为优选的温度范围,能够使正铁氧体相包含于铁氧体磁铁中。煅烧的时间能够设为1秒钟~10小时,优选为1秒钟~3小时。通过煅烧得到的煅烧体合计含有98.7摩尔%以上的主相(m相)及正铁氧体相。主相的一次粒径优选为10μm以下,更优选为2μm以下。

煅烧中,升温速度优选为5℃/分钟以上,更优选为15℃/分钟以上。另外,降温速度优选为7~1000℃/分钟,更优选为50~1000℃/分钟。

<粉碎工序>

粉碎工序中,将通过煅烧工序制成颗粒状或块状的煅烧体进行粉碎,再次制成粉末状。由此,后述的成型工序中的成型变得容易。该粉碎工序中,也可以添加配合工序中未配合的原料(原料的后添加)。粉碎工序也可以由例如在将煅烧体以成为较粗的粉末的方式粉碎(粗粉碎)之后,将其进一步微细地粉碎(微粉碎)的两个阶段的工序来构成。

粗粉碎能够使用例如振动磨等进行至平均粒径成为0.5~5.0μm。微粉碎中,将粗粉碎中得到的粗粉碎材料进一步利用湿式磨碎机、球磨机、喷射磨机等进行粉碎。微粉碎中,以得到的微粉碎材料的平均粒径优选成为0.08~2.0μm,更优选成为0.1~1.0μm,进一步优选成为0.2~0.8μm的程度的方式进行粉碎。微粉碎材料的比表面积(例如通过bet法而求得。)优选设为7~14m2/g的程度。优选的粉碎时间根据粉碎方法而不同,例如在湿式磨碎机的情况下,优选为30分钟~10小时,若是利用球磨机的湿式粉碎,则优选为10~50小时的程度。

在粉碎工序中添加原料的一部分的情况下,例如添加能够在微粉碎工序中进行。本实施方式中,能够在微粉碎时添加作为正铁氧体成分的la(oh)3或fe2o3或co3o4等,但也可以在配合工序或粗粉碎工序中添加这些。另外,也可以在配合工序或粗粉碎工序或微粉碎工序中添加正铁氧体。

另外,微粉碎工序中,为了提高烧成后得到的烧结体的磁取向度,优选添加例如以通式cn(oh)nhn+2表示的多元醇。在此,作为多元醇,通式中,n优选为4~100,更优选为4~30,进一步优选为4~20,更加优选为4~12。作为多元醇,例如可以举出山梨糖醇。另外,也可以并用2种以上的多元醇。另外,除了多元醇以外,也可以并用其它公知的分散剂。

在添加多元醇的情况下,其添加量相对于添加对象物(例如粗粉碎材料)优选为0.05~5.0质量%,更优选为0.1~3.0质量%,进一步优选为0.2~2.0质量%。此外,微粉碎工序中添加的多元醇在后述的烧成工序中进行热分解而被除去。

<成型工序>

成型工序中,将在粉碎工序后得到的粉碎材料(优选为微粉碎材料)在磁场中进行成型,得到成型体。成型能够以干式成型及湿式成型的任一方法进行。从提高磁取向度的观点来看,优选以湿式成型进行。在通过湿式成型进行成型的情况下,优选例如通过将上述的微粉碎工序以湿式进行而得到浆料后,将该浆料浓缩成规定的浓度,得到湿式成型用浆料。浆料的浓缩能够通过离心分离或压滤机等来进行。湿式成型用浆料优选在其总量中,微粉碎材料占30~80质量%的程度。浆料中,作为将微粉碎材料分散的分散介质,优选为水。在该情况下,浆料中也可以添加葡萄糖酸、葡萄糖酸盐、山梨糖醇等的表面活性剂。另外,作为分散介质,也可以使用非水系溶剂。作为非水系溶剂,能够使用甲苯或二甲苯等的有机溶剂。在该情况下,优选添加油酸等的表面活性剂。此外,湿式成型用浆料也可以通过向微粉碎后的干燥状态的微粉碎材料中添加分散介质等来制备。

湿式成型中,接着对该湿式成型用浆料进行磁场中成型。在该情况下,成型压力优选为9.8~49mpa(0.1~0.5ton/cm2)的程度,施加的磁场优选设为398~1194ka/m(5~15koe)的程度。

<烧成工序>

烧成工序中,将成型工序中得到的成型体进行烧成制成烧结体。由此,得到如上所述的由铁氧体磁铁的烧结体构成的永久磁铁(铁氧体烧结磁铁)。烧成能够在大气中等的氧化性气氛中进行。烧成温度优选为1050~1340℃,更优选为1250~1340℃。另外,烧成时间(保持于烧成温度的时间)优选为0.5~3小时的程度。

此外,在以如上所述的湿式成型得到成型体的情况下,在使该成型体未充分干燥的状态下进行烧成时,含有分散介质等的成型体骤然被加热,剧烈地发生分散介质等的挥发,成型体中有可能产生裂纹。因此,从避免这样的不良情况的观点来看,优选在到达上述的烧成温度之前,例如从室温到100℃左右,以0.5℃/分钟左右的缓慢的升温速度进行加热而使成型体充分干燥,由此,抑制裂纹的产生。另外,在添加了表面活性剂(分散剂)等的情况下,优选在例如100~500℃程度的温度范围内,以2.5℃/分钟左右的升温速度进行加热,由此,将它们充分除去(脱脂处理)。此外,这些处理可以在烧成工序的开始进行,也可以在烧成工序之前单独进行。

另外,从500℃左右到烧成温度的升温速度、及/或降温速度优选为6~200℃/分钟,更优选为25~200℃/分钟。

以上,说明了铁氧体烧结磁铁的优选的制造方法,但只要至少使用本实施方式的铁氧体磁铁,制造方法就不限定于上述,条件等能够适当变更。

另外,作为磁铁,在不制造铁氧体烧结磁铁,而制造粘结磁铁的情况下,例如,在进行至上述的粉碎工序之后,将得到的粉碎物与粘合剂进行混合,将其在磁场中进行成型,由此,能够得到包含本实施方式的铁氧体磁铁的粉末的粘结磁铁。

实施例

以下,通过实施例来更详细地说明本发明,但本发明不限定于这些实施例。

[实验例1](铁氧体烧结磁铁的制造)

首先,作为铁氧体磁铁的主组成的原料,准备氧化铁(fe2o3)、碳酸锶(srco3)、氧化钴(co3o4)及氢氧化镧(la(oh)3),将这些原料以煅烧后的组成成为以下的组成式的方式进行称量。

组成式:

a1-xrx(fe12-ymey)z

式中,a=sr、r=la、me=co。另外,x=0.80、y=0.35、z=1.10。

接着,将称量后的原料以湿式磨碎机混合1小时,进行粉碎,得到浆料(配合工序)。将该浆料进行干燥后,在大气中进行将升温速度和降温速度设为15℃/分钟、并以1310℃保持2小时的煅烧(煅烧工序)。

将得到的煅烧粉利用小型棒振动磨粗粉碎10分钟。向该粗粉碎材料中,以烧成后的烧结体成为以下的组成式且成为表1的组成的方式,分别添加氧化铁、碳酸锶、氧化钴及氢氧化镧。另外,相对于烧成后的烧结体,以成为0.04质量%的方式添加sio2。将该混合物利用湿式球磨机微粉碎40小时,得到浆料(以上,粉碎工序)。

组成式:

a1-xrx(fe12-ymey)z

式中,a=sr、r=la、me=co。

将在微粉碎后得到的浆料以固体成分浓度成为73~75%的方式调整,制成湿式成型用浆料。使用湿式磁场成型机,将该湿式成型用浆料在796ka/m(10koe)的施加磁场中进行成型,得到具有直径30mm×厚度15mm的圆柱状的成型体(成型工序)。

得到的成型体在大气中以室温充分干燥,将室温至500℃设为升温速度5℃/分钟,将500至1310℃设为升温速度55℃/分钟,在1310℃下保持1小时。保持后,进行将降温速度以100℃/分钟冷却至室温的烧成工序,由此,得到铁氧体烧结磁铁(烧成工序)。

另外,对实验例1中得到的各铁氧体烧结磁铁的圆柱的上下表面进行了加工后,使用最大施加磁场955ka/m(12koe)的b-h测量仪,求得它们的br及hcj。另外,通过上述的x射线衍射求得实验例1中得到的各铁氧体烧结磁铁中的m相(具有磁铅石结构的铁氧体相)、正铁氧体相及赤铁矿相的比率(摩尔%)。将得到的结果一并示于表1中。

[表1]

根据表1判明,当正铁氧体相的含量(m)超过0摩尔%且低于28.0摩尔%时,得到br具有4.7(kg)以上且hcj具有2.0(koe)以上的烧结体,可以得到较高的br和良好的hcj。另外,判明当z为0.80以上且低于1.10时,得到br具有4.7(kg)以上且hcj具有2.0(koe)以上的烧结体,可以得到较高的br和良好的hcj。

[实验例2](铁氧体烧结磁铁的制造)

实验例2中,除了以烧成后的烧结体的组成成为表2的组成式的方式,并且以si的含量相对于烧成后的烧结体以sio2换算成为0.05质量%的方式相对于粗粉碎材料添加sio2,并且将烧成温度设为1290℃以外,与实验例1同样地进行铁氧体烧结磁铁的制造。

该实验例2中,特别是以大幅改变la(x=0.51~0.91)的原子比率的方式,制造样品2-1~2-8的各种铁氧体烧结磁铁。使用实验例2中得到的各铁氧体烧结磁铁,与实验例1同样地求得它们的br(g)、hcj(oe)、m相、正铁氧体相及赤铁矿相的比率。将得到的结果示于表2中。

[表2]

根据表2判明,la的比率(x)为0.71以上且0.84以下时,得到br具有4.7(kg)以上且hcj具有2.0(koe)以上的烧结体,可以得到较高的br和良好的hcj。

[实验例3](铁氧体烧结磁铁的制造)

实验例3中,除了以烧成后的烧结体的组成成为表3的组成式的方式、并且以si的含量相对于烧成后的烧结体以sio2换算成为0.05质量%的方式,相对于粗粉碎材料施加sio2以外,与实验例1同样地进行铁氧体烧结磁铁的制造。

该实验例3中,特别是以大幅改变co(y=0.20~0.61)的原子比率的方式,制造样品3-1~3-7的各种铁氧体烧结磁铁。使用实验例3中得到的各铁氧体烧结磁铁,与实验例1同样地求得它们的br(g)、hcj(oe)、m相、正铁氧体相、赤铁矿相及尖晶石相的比率。将得到的结果示于表3中。

[表3]

根据表3判明,当co的比率(y)为0.30以上且低于0.61时,得到br具有4.7(kg)以上且hcj具有2.0(koe)以上的烧结体,可以得到较高的br和良好的hcj。另外,当x/yz超过1.60且低于4.00时,得到br具有4.7(kg)以上且hcj具有2.0(koe)以上的烧结体,可以得到较高的br和良好的hcj。

[实验例4](铁氧体烧结磁铁的制造)

实验例4中,作为铁氧体磁铁的主组成的原料,准备氧化铁(fe2o3)、碳酸锶(srco3)、氧化钴(co3o4)及氢氧化镧(la(oh)3),将这些原料以煅烧后的组成成为以下的组成式的方式进行称量。

组成式:

a1-xrx(fe12-ymey)z

式中,a=sr、r=la、me=co。另外,x=0.80、y=0.35、z=0.94。

接着,将称量后的原料以湿式磨碎机混合1小时,进行粉碎,得到浆料(配合工序)。将该浆料进行干燥后,在大气中进行将升温速度和降温速度设为15℃/分钟,且在1310℃下保持2小时的煅烧(煅烧工序)。

将得到的煅烧粉利用小型棒振动磨粗粉碎10分钟。向该粗粉碎材料中,以si的含量相对于烧成后的烧结体以sio2换算成为表1的值的方式,添加sio2。将该混合物利用湿式球磨机微粉碎40小时,得到浆料(以上,粉碎工序)。

将在微粉碎后得到的浆料以固体成分浓度成为73~75%的方式调整,制成湿式成型用浆料。将该湿式成型用浆料使用湿式磁场成型机,在796ka/m(10koe)的施加磁场中进行成型,得到具有直径30mm×厚度15mm的圆柱状的成型体(成型工序)。

得到的成型体在大气中以室温充分干燥,将室温至500℃设为升温速度5℃/分钟,将500至1300℃设为升温速度55℃/分钟,在1300℃下保持1小时。保持后,进行以降温速度100℃/分钟冷却至室温的烧成工序,由此,得到铁氧体烧结磁铁(烧成工序)。

使用实验例4中得到的各铁氧体烧结磁铁,与实验例3同样地求得它们的br(g)、hcj(oe)、m相、正铁氧体相、赤铁矿相及尖晶石相。将得到的结果示于表4中。

[表4]

根据表4判明,sio2的含量超过0.002质量%且低于0.15质量%时,得到br具有4.7(kg)以上且hcj具有2.0(koe)以上的烧结体,可以得到较高的br和良好的hcj。

产业上的可利用性

本发明的铁氧体烧结磁铁适用作可变磁力磁铁,另外,也能够适用于各种马达、发电机、扬声器等的汽车用电器元件、电气设备用部件等,特别是能够有助于这些部件的小型·轻量化、高效率化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1