层压玻璃发光聚光器的制作方法

文档序号:17214573发布日期:2019-03-27 11:09阅读:331来源:国知局
层压玻璃发光聚光器的制作方法

本申要求于2016年5月25日提交的与本文具有相同发明人和相同标题的美国临时申请号62/341,238的优先权权益,并且所述申请的内容以引用的方式整体并入本文。

政府资助的声明

本发明是在政府的支持下根据国家科学基金会(nationalsciencefoundation)授予的合同号1622211进行的。政府享有本发明中的某些权利。

本公开总体涉及以嵌入在玻璃片材之间的光致发光材料为特征的装置,并且更具体地涉及包含光致发光材料(诸如具有高量子产量和低自吸收度的量子点)的层压的玻璃发光聚光器和使用所述层压的玻璃发光聚光器结合光伏电池用于发电的系统。



背景技术:

发光聚光器(lc)是利用发光材料来采集电磁辐射的通常用于发电的目的的装置。用于这一目的的这种装置的常见设置101在图1中描绘。如其中所见,lc102用来在相当大面积上收集太阳能辐射103,并且将所述太阳辐射103聚集在相对小的面积(在此为光伏电池104的有源表面)上。光伏电池104然后将辐射转换成电以向终端用户装置提供电力105。lc102作为波导起作用,所述波导包括既产生所述发光又透射所述发光的发光材料。波导通常是具有光学质量的聚合物材料。当日光或其他辐射投射到发光材料上时,所述材料经历发光(并且最常见地,荧光)并且将光发射到波导中。自此,所截留的光被引导到光伏电池104。由于由发光材料发射的辐射通常在与初始地由发光材料吸收的辐射不同的波长下被发射,因而太阳能聚光器102具有既聚集投射到其上的辐射光谱又修改所述辐射光谱的作用。

lsc的第一报告中的一个可见于1979年提交的、题为“luminescentsolarenergyconcentratordevices”的u.s.4,227,939(zewail等人)。这一参考文献指出“斯涅尔定律规定大部分(通常75%)的再发射以大于临界角的入射角撞击基板表面,使得这部分的光然后通过内部反射被截留在基板中,直到连续的反射将所述光传播至板的边缘,在所述板的边缘处,所述光进入放置在板边缘处的吸收器中”。由于聚合物材料在户外条件下频繁地不可靠,这种方法的最大缺点之一在于其依赖于单块聚合物面板/片材作为用于窗户、建筑物或车辆的结构材料。此外,在这种应用中可用的典型的聚合物材料易于磨损。除扰乱通过窗户的视野之外,磨损也通过将光散射中心引入波导中而损害lc性能。

玻璃在现代社会中无所不在并且可见于消费者电子器件、建筑物立面、汽车结构和窗户。尽管玻璃具有作为耐用的lc材料的潜力,但是它具有两个主要的缺点:(1)目前本领域中尚无可在玻璃的熔融温度/工艺中幸存的足够的发光材料,以及(2)典型的浮法玻璃在长的距离中由于金属杂质(诸如铁)而具有差的传递性。

玻璃的一个重要的创新是层压“安全”玻璃的发展。与层压玻璃相关的第一已知专利是法国专利号321,651(lecarbon),其于1902年提交并且指出用赛璐珞涂覆玻璃物体可使它们更不易于开裂或破裂。然而,层压玻璃的发明通常归功于法国化学家edouardbenedictus,他明显地受已经用塑料涂覆的玻璃烧瓶在掉落之后并未破裂的1903实验室事故启发。benedictus于1909年提交法国专利号405,881,并且然后他创立了三联玻璃公司(societeduverretriplex),其加工玻璃塑料复合材料。

大约在同时,johncrewewood(英国)提交了题为“transparentscreen”的u.s.830,398,其指出“赛璐珞屏幕不久就被刮擦并且变得不太透明,[然而]本人的发明防止了这个问题,在于提供两个玻璃片材,在所述两个玻璃片材之间胶合有片材”。因此将理解,虽然层压聚合物夹层增加了玻璃的抗碎性,但是玻璃也增加了聚合物的耐磨性。

在1927年,聚乙烯醇缩丁醛(pvb)层压夹层由matheson和skirrow发现。这种复合材料在题为“vinylesterresinsandprocessofmakingsame”的美国u.s.1,725,362(matheson等人)中有所描述。这种材料不易于脱色并且具有抗穿透性。在几年内,pvb安全玻璃风靡市场,并且在1930年,英国议会要求所有新车都配备有层压挡风玻璃。在随后的几年中,层压玻璃技术由各种组织(包括libbeyowens-ford玻璃公司、dupontdenemours、pittsburg平板玻璃公司及其他)进一步发展和改善。

附图说明

图1是典型的lc的示意图,其中荧光团嵌入在聚合物介质中。聚光器耦接到光伏电池以用于将光转换成电。

图2是层压玻璃lc的示意图,其中荧光团嵌入在设置在两个玻璃片材之间的介质中。聚光器耦接到光伏电池以用于将光转换成电。在一些实施方案中,lc是部分透明的并且可用作窗户。

图3是层压玻璃lc的示意图,其中荧光团嵌入在位于两个玻璃片材之间的介质中。聚光器将电磁辐射的光谱和光子通量转换成在边缘处具有更高光子通量的新光谱。

图4是用于示例性cuinsexs2-x/zns量子点的典型的吸收和光致发光光谱的曲线图。由于在吸收与光致发光之间大的间距,这些qd具有低自吸收。另外,这些qd避免了在大多数qd中发现的有毒元素,诸如镉、铅或汞。

图5是由不同尺寸和组成的量子点产生的光致发光光谱的曲线图,所述量子点由cuins2、cuinse2、zns、znse及其组合构成。这些材料的可达到峰值发射为400nm-1300nm,并且它们可被制备成具有高达100%的量子产量。

图6是层压玻璃lc的示意图,其中多个量子点嵌入在位于两个玻璃片材之间的介质中。在一些实施方案中,夹层通过挤压工艺制备。

图7是层压玻璃lc的示意图,其中多个量子点嵌入在位于玻璃片材之间的界面和一个或多个夹层处。

图8是层压玻璃lc的示意图,其中荧光团嵌入在设置在两个竖直玻璃片材之间的液体介质中,之后将液体固化到固体夹层中。

图9是层压玻璃lc的示意图,其中荧光团嵌入在设置在两个水平玻璃片材之间的液体介质中,之后将所述液体固化到固体夹层中。

图10是层压玻璃lc组合绝缘玻璃单元、窗户框架和光伏件的示意图。

图11是层压玻璃lc组合绝缘玻璃单元、窗户框架和光伏件的示意图。

图12是层压玻璃lc组合建筑物结构的示意图。



技术实现要素:

在一方面,提供一种lc,所述lc包括(a)至少两个玻璃片材,所述至少两个玻璃片材与至少一个固体介质直接接触;以及(b)设置在所述介质中的多个荧光团,所述多个荧光团在光源下激活时在介质中表现出引导的发光。

在另一方面,提供一种lc,所述lc包括(a)至少两个玻璃片材;(b)固体介质;以及(c)设置在所述介质中的多个荧光团,所述多个荧光团在光源下激活时表现出大于20%的量子产量和低自吸收,使得光致发光由嵌入在所述介质中的所述荧光团在1mm至10m的距离上跨整合光谱吸收少于50%。

在另外的方面以及组合光伏件,lc有能力将光(例如,日光)转换成电。在一个实施方案中,所述光跨整合入射光谱被部分地吸收小于50%。在一个实施方案中,所述光跨整合入射光谱被大部分地吸收多于50%。

在又一方面,提供一种lc,所述lc包括第一玻璃片材和第二玻璃片材以及包含多个荧光团的固体介质。固体介质设置在所述第一玻璃片材与所述第二玻璃片材之间并且与所述第一玻璃片材和所述第二玻璃片材直接接触。

在另外的方面,提供一种用于制备发光聚光器的方法。所述方法包括提供第一玻璃片材和第二玻璃片材;用发光材料涂覆涂覆第一玻璃片材的第一表面,从而形成第一涂覆表面,其中所述发光材料包括包含多个荧光团的固体介质;以及将第一玻璃片材和第二玻璃片材组装成构建体,使得第一涂覆表面面向第二玻璃片材。

在又一方面,提供一种用于制备发光聚光器的方法。所述方法包括提供第一玻璃片材和第二玻璃片材;以及将发光材料设置在所述第一玻璃片材与所述第二玻璃片材之间并且与所述第一玻璃片材和所述第二玻璃片材直接接触,其中所述发光材料包括包含多个荧光团的介质。

具体实施方式

1.背景

lc的光学特性应满足两个主要要求。首先,lc表面应能够引导光并且应耐磨损。磨损可引入散射中心,所述散射中心使得光能够从全内反射逸出,因此降低效率。第二,荧光团应具有低的自吸收度。发光的自吸收度允许光从全内反射逸出,因此减少了其在边缘处的聚集或通量。

本公开的组合物、系统、方法和装置的优选实施方案通过将合适的荧光团材料嵌入在两个玻璃片材(这种玻璃也被称为层压玻璃或安全玻璃)之间来解决前述问题。此外,合适的荧光团技术在具有大的固有的斯托克斯位移的量子点(qd)中被识别,所述量子点例如像由cuinsexs2-x/zns(核/壳)构成的那些。当与光学地耦接的光伏装置组合时,lc可在由日光或其他合适的源照射下发电。在一些实施方案中,lc可以是部分透明的并且可用作建筑物或车辆的窗户(或处于其中)。由于在前述构建体中的层压玻璃可被工程化为对散射是鲁棒性的,或可固有地抗散射,因此另外的益处可在建筑物或汽车乘员的安全中实现。在某些实施方案和应用中,lc可以是完全吸收度的,并且可因此提供大面积光伏件(例如像在太阳能发电场中使用的那些)的更低成本的替代形式。

lc可以是半透明的,并且可中性地过滤可见光,以便避免将不自然的颜色施加给透射光。与利用覆盖整个窗户的光伏堆叠的常规的太阳能采集窗户概念相比,lc通常沿窗户的一个或多个边缘仅需要非常窄的pv条带。常规的太阳能采集窗户概念因此本质上比lc更加昂贵和复杂,因为它们需要用复杂的、多层pv涂覆整个窗户。

lc可在日光采集以外的应用中具有优点,例如像但不限于在其中期望产生新的光谱和/或更高光子通量的照明、设计、安全、领域及其他应用。可应用于日光采集的相同的荧光团和/或装置几何形状可以可应用于这些其他用途。在其他情况下,新的荧光团和/或新的装置几何形状可期望用于非太阳能应用。

光致发光(pl)是在吸收光之后发射光(电磁辐射、光子)。这是发光(光发射)的一种形式并且由光致激发(由光子激发)发起。在光致激发之后,各种电荷驰豫过程可发生,在所述电荷驰豫过程中具有更低能量的其他光子在一定的时间标度上再辐射。在吸收的光子与发射的光子之间的能量差(也被称为斯托克斯位移)可在材料上从几乎零至1ev或更多广泛地变化。

当前的lc装置通常利用嵌入有共同荧光团(诸如染料或qd)的单块聚合物面板(不含玻璃)。在一些情况下,先前的lc迭代在它们的设计中已经利用了玻璃片材。

例如,u.s.2012/0024345(reisfeld等人)公开了使用玻璃或塑料作为基板用于包含染料的膜。具体地,参考文献的段落[0018]提供:“本发明提供一种表现出高效率和耐用的荧光特性的发光太阳能聚光器(lsc),其包括至少一个板,所述至少一个板具有两个主表面和太阳能单元附接到其的多个边缘,所述板包括基板,所述基板选自由玻璃和塑料组成的组并且设置有沉积在板的至少一个主表面上的基于复合无机-有机溶胶-凝胶的膜,其中所述膜掺杂有至少一种发光染料,并且所述聚光器包括至少三种具有基本上不同吸收范围的发光染料并且其中所述膜具有至少10μm的厚度。”参考文献指出量子点可在聚光器(参见段落[0063]-[0064])中使用。值得注意的是,并且与‘345应用的公开内容相反,在本文所描述的组合物、系统、方法和装置的优选实施方案中,玻璃并不用作基板。相反,至少两个玻璃片材与包含荧光团的夹层层压在一起,并且相邻片材中的两者光学地耦接并且用于波导。

在一些情况下,先前的lc迭代已经利用了多个玻璃片材来分离多个包含荧光团的膜。例如,参见wo2014/136115(reisfeld),其公开了由三个玻璃板组成的发光太阳能收集器。在‘115应用的装置中,绿色膜设置在两个相邻玻璃板之间,并且红色膜设置在两个相邻玻璃板之间。绿色层是包括二氧化硅-聚氨酯膜的溶胶-凝胶层,所述二氧化硅-聚氨酯膜包含掺杂有银纳米粒子的高度发光的铕络合物(具有菲咯啉或聚吡啶)。红色膜包含二氧化硅-聚氨酯基质中的掺杂有铜纳米粒子的nd3+和yb3+络合物。类似于多结装置,这种装置被设计成分裂日光光谱以用于增强输出电压。对于如所预期的起作用的这种设计,每个部件必须被光学地隔离以防止波导光子混合。这样,‘115应用的权利要求一指明了“所述堆叠中的每个片材与另一个片材由气隙分开”的限制。相比之下,本文公开的组合物、系统、方法和装置的优选实施方案并不需要任何气隙,并且实际上无气隙。

存在如下若干缺点:lc(诸如上文所述的那些)的商业化被阻止。首先,制备具有所需光学特性的大面积聚合物面板是困难的且昂贵的。lc的表面必须足够平坦来在相对大距离上充分地波导光。在制造期间或由于lc的一般使用而形成的任何缺陷将导致光散射,这允许发光从装置逸出而不是被聚集。第二,缺乏合适的荧光团,因为染料和典型的qd两者具有主要的局限性。染料趋向于具有窄的吸收带宽、差的光稳定性和显著的自吸收。qd趋向于包含有毒元素并且也遭受自吸收。关于由于缺陷引起的散射,自吸收通过允许波导的光子通过吸收和再发射荧光团以及非单位量子产量而从装置重新引导出去来限制lc性能。

具有商业上可接受的性能的lc的生产通常需要(a)高度平滑且鲁棒的外表面,和(b)具有低自吸收度的亮荧光团。此外,低成本材料和方法以及低毒性材料在大多数应用、太阳能或其他者中是lc技术的关键推动因素。

胶态半导体纳米晶体(也被称为量子点(qd))是直径通常小于20nm的近乎等于零的小片的半导体材料。由于它们小的尺寸,这些材料具有包括如下的若干有利的特性:在宽范围的颜色上的尺寸可调谐的光致发光(pl)发射、强的宽带吸收和非常高的pl效率。由于用来合成这些材料的溶液处理技术,改变qd的尺寸也相对简单。调谐qd尺寸以及因此调谐吸收/发射光谱的能力允许跨全色谱获取柔性荧光而无需修改材料组合物。

当qd尺寸增大时,它们的吸收开始并且光致发光(pl)光谱偏移至更红的波长。相反地,当qd尺寸减小时,它们的吸收开始并且光致发光(pl)光谱朝向更蓝的波长偏移。胶态qd的尺寸可调谐性对lc是有利的,由于不同颜色的qd对于不同应用或不同设置可能是有吸引力的。然而,大多数qd遭受在其吸收与发射光谱之间大的重叠,从而致使其pl进行显著的自吸收。

目前,表现最佳的i-iii-viqd由cuinsexs2-x(cises)构成,所述cuinsexs2-x(cises)由于其更低的制造成本、更低的毒性和(在一些情况下)更好的性能而在蓬勃发展的qd工业中具有破坏性的潜能。关于诸如毒性和成本的关健度量,cuins2(其中在上述公式中x=0)胜过典型的qd材料cdse。关于其他性能度量,cuins2qd也是有利的。例如,cisqd比cdseqd具有更强的吸收。cisqd也具有大的固有的斯托克斯位移(约450mev;参见图4),其限制材料的自吸收。

i-iii-vi类别的半导体的纳米晶体量子点(诸如cuins2)对于光电装置中的应用具有增长的兴趣,所述光电装置诸如太阳能光伏件(例如,参见pvs,stolle,c.j.;harvey,t.b.;korgel,b.a.curr.opin.chem.eng.2013,2,160)和光发射二极管(例如,参见tan,z.;zhang,y.;

xie,c.;su,h.;liu,j.;zhang,c.;dellas,n.;mohney,s.e.;wang,y.;wang,j.;xu,j.advancedmaterials2011,23,3553)。这些量子点表现出强的光学吸收和稳定的有效光致发光,其可被调谐以免通过组合物和量子尺寸效应而对红外线(例如,参见zhong,h.;bai,z.;zou,b.j.phys.chem.lett.2012,3,3167)可见。事实上,由具体地工程化的i-iii-vi量子点制备的lc近来被示出提供优异的稳定性并且记录转换效率(参见meinardi,f.;mcdaniel,h.;carulli,f.;colombo,a.;velizhanin,k.a.;makarov,n.s.;simonutti,r.;klimov,v.i.;brovelli,s.,highlyefficientlarge-areacolourlessluminescentsolarconcentratorsusingheavy-metal-freequantumdots,naturenano.,10,878,2015)。

2.概述

需要层压玻璃lc来解决现有lc的主要局限性,尤其波导质量。玻璃可提供由于其比空气更高的折射率而在波导光下有效的平坦且耐磨表面。此外,用来产生在轿车挡风玻璃中使用的层压玻璃(例如,安全玻璃)的所述制造工艺可用来产生层压玻璃lc。另外的优点是玻璃通常比聚合物对红外线具有更少的吸收。这是由于不存在具有分子振动模式的碳-氢键,所述分子振动模式可在900nm-1000nm的范围内被激发。因此,玻璃可以是用于在长距离上传输红外pl的更好的介质,从而使它成为更优异的lc波导。

需要全谱(对近ir、400nm-1400nm可见)光致发光低毒性荧光团来嵌入在层压玻璃片材之间的介质内。在层压玻璃中使用的典型的介质是聚乙烯醇缩丁醛和乙烯-醋酸乙烯,但也可使用其他介质(诸如硅氧烷和共轭聚合物)。

在本文中公开新型层压玻璃lc,其在优选实施方案中包含具有可调谐pl光谱的非致癌qd,所述可调谐pl光谱在可见光(400nm-650nm)至近ir(650-1400nm)中具有峰值。有利地,这些lc也具有大的斯托克斯位移,这限制了其自己的光致发光的自吸收并且使光致发光在1mm至10m的大距离内被导引。在一些实施方案中,层压玻璃lc可耦接到光伏装置以用于发电。在一些实施方案中,层压玻璃lc可以是部分地透明的以例如有利于其在窗户中使用。

由于电对于温室运营商或户内植物种植者而言是最大费用之一,因而有机会在农业中使用lsc。这种lc方法应用于题为“luminescentelectricity-generatingwindowforplantgrowth”的u.s.2014/0352762(carter等人),其于2012年提交并且指出“在本领域中存在对发光太阳能收集器的需要,所述发光太阳能聚集器可在对植物生长没有损害的情况下产生电力”。给温室发电的另一种方法可见于题为“photovoltaicgreenhousestructure”的u.s.2010/0236164(chuang等人),其于2009年提交并且指出“未被薄膜太阳能电池模块吸收的光自由地通过薄膜太阳能电池模块并且进入温室内部空间”。类似地,本文公开的层压玻璃lc的概念也可应用于温室建筑物结构中。

3.定义和缩写

以下术语和缩写的解释被提供来更好地描述本公开并且在本文中描述的组合物、系统、方法和装置的实践中指引本领域的技术人员。

发光聚光器(lc):用于将电磁辐射的光谱和光子通量转换成具有更高光子通量的新的、更窄的光谱的装置。lc根据在大面积上通过吸收收集辐射,通过pl将辐射转换成新光谱,并且然后通过全内反射将所生成的辐射引导到相对小的输出目标中的原则来操作。lc通常用于将日光转换成电,但也可在照明、设计和其他光学元件中使用。

光致发光(pl):在吸收光之后发射光(电磁辐射、光子)。这是发光(光发射)的一种形式并且由光致激发(由光子激发)发起。

光子通量:每单位时间内穿过单位面积的光子的数量,通常以每平方米每秒计数来测量。

聚合物:由许多重复的子单元构成的较大分子或大分子。聚合物的范围从熟悉的合成塑料(诸如聚苯乙烯或聚(甲基丙烯酸甲酯)(pmma))到对生物结构和功能是基本的天然生物聚合物(诸如dna和蛋白质)。聚合物(天然的和合成的)通过使许多小分子(被称为单体)聚合来产生。示例性聚合物包括聚(甲基丙烯酸甲酯)(pmma)、聚苯乙烯、硅氧烷、环氧树脂、离子塑料、丙烯酸酯、乙烯树脂或甚至指/趾甲油。

自吸收:来自多个荧光团的被所述多个荧光团吸收的所发射的光的百分比。

毒性:其是指可由于磷或重金属(诸如镉、铅或汞)的存在而伤害活的有机体的材料。

量子点(qd):由于量子限制而表现出尺寸相关的电子和光学特性的纳米级颗粒。本文公开的量子点优选具有小于约50纳米的至少一个大小。所公开的量子点可以是胶态量子点,即,当分散在液体介质中时可保留在悬浮液中的量子点。

可在本文描述的组合物、系统、方法和装置中利用的量子点中的一些由二元半导体材料制备,所述二元半导体材料具有式mx,其中m是金属并且x通常选自硫、硒、碲、氮、磷、砷、锑或其混合物。可在本文描述的组合物、系统、方法和装置中利用的示例性二元量子点包括cds、cdse、cdte、pbs、pbse、pbte、zns、znse、znte、inp、inas、cms和irnss。可在本文描述的组合物、系统、方法和装置中利用的其他量子点是三元的、四元的和/或合金化量子点,包括但不限于znsse、znsete、znste、cdsse、cdsete、hgsse、hgsete、hgste、zncds、zncdse、zncdte、znhgs、znhgse、znhgte、cdhgs、cdhgse、cdhgte、zncdsse、znhgsse、zncdsete、znhgsete、cdhgsse、cdhgsete、cuins2、cuinse2、cuingase2、cuinzns2、cuznsnse2、cuin(se,s)2、cuinzn(se,s)2和agin(se,s)2量子点,尽管优选使用非毒性量子点。所公开的量子点的实施方案可以是单一材料,或可包括内核和外壳(例如,由任何合适的方法(诸如阳离子交换)形成的薄外壳/层)。量子点还可包括结合到量子点表面的多个配体。

量子产量(qy):发射的光子的数量与荧光团吸收的光子数量的比。

荧光团:吸收第一光谱并且发射第二光谱的材料。表现出发光或荧光的材料。

斯托克斯位移:吸收肩的位置或局部吸收最大值与发射光谱的最大值之间的能量差。

发射光谱:电磁光谱的在其上荧光团表现出pl(响应于由光源激发)的那些部分,所述pl的振幅是峰值pl发射的至少1%。

4.实施例

以下实施例是非限制性的,并且不仅仅意图进一步说明本文所公开的组合物、系统、方法和装置。

实施例1:最佳模式

本文所公开的组合物、系统、方法和装置的优选实施方案包括具有低自吸收度(参见图4)的荧光团,其嵌入在设置在两个玻璃片材之间的介质中(参见图3),并且将设备耦接到光伏装置以用于发电(参见图2)。图3描绘本发明的最佳模式,其中包含多个荧光团301的固体介质设置在至少两个玻璃片材302和303之间。当电磁辐射(具有相关联的光谱和光子通量)投射304到lc上时,由新光谱表征的发射辐射通过发光现象产生305并且在平行于所述玻璃片材的方向上被导引。在一些实施方案中,包含荧光团的介质吸收入射可见光的至少1%、至少5%,、至少10%、至少20%、至少50%或至少70%(304的子集)。在一些实施方案中,荧光团具有至少20%、至少40%、至少60%、至少80%、至少90%或接近100%的量子产量。在优选的实施方案中,嵌入在介质中的荧光团具有至少60%的量子产量。在到达lc的边缘时,导引的发光305带着光子通量306离开lc,所述光子通量306大于入射的光子通量304。在一些实施方案中,离开的光子306耦接到太阳能电池中以用于发电。在其他实施方案中,离开的光子306用于除发电之外的另一个目的。在一些实施方案中,玻璃片材302和303是平坦的,而在其他实施方案中,它们是弯曲的。在优选的实施方案中,玻璃的光学透明度非常高,因为玻璃片材302和303包含小于1%的铁、小于0.1%的铁或小于0.01%的铁。

夹层与玻璃片材之间的第一界面和第二界面对选自可见光谱区域、红外线光谱区域和/或紫外线光谱区域的光的波长可以是反射性的或非反射性的。在一些实施方案中,固体介质横跨第一非反射性界面和第二非反射性界面接触第一玻璃片材和第二玻璃片材。在优选的实施方案中,在玻璃的面向光源的表面上存在涂层,并且所述涂层减少所述光源的反射。在优选的实施方案中,在两个外玻璃表面上存在涂层,所述涂层选择性地反射从荧光团发射的光,以便保持光在内部反射。在一些实施方案中,低发射率涂层涂敷到一个或多个玻璃表面以提高lc的热传递特性。在所有实施方案中,固体介质和第一玻璃片材和第二玻璃片材光学地耦接以形成用于上述光谱区域中的任一个的波导。在优选实施方案中,介质的折射率处于所述玻璃片材的折射率的30%内。

图4描绘用于示例性cuinsexs2-x/zns量子点的典型的吸收光谱401和光致发光光谱402。出于环境、健康和安全考虑,这些qd有意地不包含任何铅、镉或汞。这一光谱表明,这些最佳的多个荧光团在光谱中的吸收度与发光403的峰值分开,所述发光403的峰值指示低自吸收度和大于50mev、大于100mev、大于200mev或大于300mev的大斯托克斯位移。在一些实施方案中,荧光团具有低自吸收,使得它们的光致发光由嵌入在所述介质中的所述荧光团在至少1mm、至少1cm、至少1m或至少10m的距离上跨整合光谱吸收小于50%。

图5描绘可通过由量子点组成的多个荧光团实现的宽范围的发射光谱,所述量子点由cuins2、cuinse2、zns、znse或其合金构成。发射峰值可介于400nm与1300nm之间。在一些实施方案中,qd具有核/壳结构,诸如具有cuins2核和zns壳的cuins2/znsqd。在一些实施方案中,qd具有合金化半导体组合物,诸如具有cuinse2和cuins2的组合的cuinsexs2-x。.

在优选的实施方案中,图3中描绘的夹层介质301是标准的层压玻璃夹层主体材料,诸如pvb或离子塑料。主体材料可由挤压工艺制备并且包含嵌入在其中的cuinsexs2-x/znsqd。优选地,在固体介质与第一玻璃片材和第二玻璃片材之间不存在间隙。还优选地,固体介质横跨第一非反射性界面和第二非反射性界面接触第一玻璃片材和第二玻璃片材。第一界面和第二界面对选自可见光谱区域、红外线光谱区域和/或紫外线光谱区域的光的波长可以是反射性的或非反射性的。固体介质和第一玻璃片材和第二玻璃片材优选地光学地耦接以形成用于上述光谱区域中的任一个的波导。

实施例2:热压夹层

图6示出根据本文教导内容的另一种制品。在这种制品中,将cuins2/znsqd混合到乙烯-醋酸乙烯(eva)片材601中,并且将所得的片材在两片玻璃片材602与603之间进行热压。最终的eva-qd复合物的量子产量在用440nm光照射时被测得为77%,如由积分球所测量。eva是用于其他商业夹层(诸如pvb或离子塑料)的良好的代用品,因为它具有类似的化学特性和物理特性。这种玻璃层压制品可耦接到光伏装置(参见图2)以用于发电。

在一些实施方案中,首先将量子点溶解在辛烷和己烷的混合物中并且将其铸塑到玻璃上或玻璃片材之间的层压介质上。优选地,在完成涂层之后,将介质放置在玻璃片材之间。向层压件施加热量和压力以将介质粘附到玻璃片材。可替代地,粘附促进膜可施加到层压介质与玻璃之间的每个界面。玻璃和层压介质通过热量或uv光组装或固化,这取决于粘附促进剂的类型。优选地,在固体介质与第一玻璃片材和第二玻璃片材之间不存在间隙。

在这一实施例的一些实施方案中,本文所公开的组合物、系统、方法和装置包括具有低自吸收度的荧光团,所述荧光团沿界面涂覆在玻璃片材与一个或多个夹层介质之间。图7描绘qd可沉积在lc内的位置,包括玻璃与夹层介质701之间的界面和夹置在外玻璃片材之间的两个夹层介质702片材之间的界面。优选地,在量子点涂层与固体介质之间或在量子点涂层与玻璃之间不存在间隙。

实施例3:固化plma夹层

在本发明的另一个测试中,将在850nm的峰值波长下发射的qd嵌入在聚(甲基丙烯酸月桂酯)(plma)聚乙二醇片材中并且将所述片材粘附在两个垂直的玻璃片之间。包含量子点的聚合物片材通过铸塑工艺(参见图8)制备。首先将量子点和uv引发剂(诸如(2,4,6-三甲基苯甲酰基)二苯基膦氧化物)溶解在单体溶液中,所述单体溶液包含9份甲基丙烯酸月桂酯至1份乙二醇二甲基丙烯酸酯。包含单体、量子点和引发剂的溶液801通过注射器或其他液体分配器802注射到由垫圈805分开的两个玻璃片材803与804之间的空隙中。聚合物通过暴露在uv下或通过加热来固化。优选地,在固体介质与第一玻璃片材和第二玻璃片材之间不存在间隙。在一些实施方案中,用作模具的玻璃片材803和804也形成lc。在其他实施方案中,将包含qd的所得的聚合物片材从模具移除并且固定在两个新的玻璃片之间以形成lc。将太阳能电池放置成接近层压发光太阳能聚光器的一侧的边缘以用于测试。使用无铁玻璃片材,装置的功率输出在暴露在日光下被计算成大于5w/m2

在优选实施方案的另一个实现方式中,在两个水平玻璃片材之间的介质是铸塑聚合物,诸如聚(甲基丙烯酸月桂酯-聚-乙二醇二甲基丙烯酸酯)(参见图9)。首先将量子点和uv引发剂(诸如(2,4,6-三甲基苯甲酰基)二苯基膦氧化物)溶解在单体溶液中,所述单体溶液包含9份甲基丙烯酸月桂酯至1份乙二醇二甲基丙烯酸酯。丙烯酸以小于最终溶液的1w%的量添加以提高与玻璃的粘附。包含单体、量子点和引发剂的溶液901通过注射器或其他液体分配器902注射到由垫圈分开的两个玻璃片材903与904之间的空隙中。聚合物然后通过暴露在uv、日光或热量下来固化。优选地,在固体介质与第一玻璃片材和第二玻璃片材之间不存在间隙。在一些实施方案中,垫圈被除去并且溶液901通过玻璃片材之间的毛细力被保持在适当位置中。在这种情况下,当垫圈被避免时,玻璃间隔距离可由外部垫片905设定。

实施例4:硝化纤维聚合物夹层

作为本文所公开的装置的一个实施方案的测试,cuins2/znsqd被混合到硝化纤维基聚合物中并且施加在两个玻璃显微镜载片之间。优选地,在固体介质与第一玻璃片材和第二玻璃片材之间不存在间隙。在固化纳米复合材料时并且在用日光照射下,玻璃载片的边缘发出亮黄色,其是使用的qd的发射颜色。这种玻璃层压设备可耦接到光伏件(图2)以用于发电。

实施例5:与车辆和结构组合

具有发光着色剂的玻璃窗户将实现与建筑物一体化的日光采集并且通过将经着色的窗户转动到功率源中来使城市建筑彻底改革。利用这种技术,建筑物可最终实现净零能量消耗,自动化温室将是离网的,并且电动车辆将在坐着停车的同时给自己充电。如上文所述,在优选实施方案中,本文所公开的发光聚光器配备有第一玻璃片材和第二玻璃片材,所述第一玻璃片材和所述第二玻璃片材具有设置在其间的包含多个荧光团的固体介质。本文所公开的此类装置可用作建筑物或车辆上的无源电能源。

图10描绘整合到绝缘玻璃单元(igu)1002中的层压玻璃lc1001,通常被称为具有三个玻璃片材的双层窗户。在一些实施方案中,igu是包括第四玻璃片材的三层窗户。在一些实施方案中,lc整合的igu1002与窗户框架1003组合。lc1001不需要是待与窗户框架1003组合的igu的一部分,并且这通常被称为单层窗户。太阳能电池1004整合到窗户框架1003或igu1002或两者的组合中,并且光学地耦接到lc1001以用于发电(参见图2)。

图11是与一个或多个层压玻璃lc窗户组合的汽车的示意图。lc可被用作挡风玻璃1101、开式车顶1102、后窗户1103、前侧窗户1104、后侧窗户1105或其组合或整合到其中。最佳地,lc技术将与电动车辆组合,但汽油里程可被改进用于非电动或混合动力车辆。在一些实施方案中,lc用来在车辆保留停车时给电子器件(诸如风扇)供电。在一些实施方案中,车辆不是轿车而是船、卡车、军用车辆、重型装备、飞机、直升机、宇宙飞船、卫星或其他车辆。

图12是与一个或多个层压玻璃lc窗户1202组合的建筑物结构1201的示意图。lc窗户1202可应用在建筑物1201的一个或多个侧面上,或建筑物1202的一个或多个楼层上。在一些实施方案中,lc窗户是平坦的或矩形的。在其他实施方案中,lc窗户是弯曲的或具有任意形状。在一些实施方案中,建筑物结构包含商用空间、住宅空间、商业购物空间或其组合。在一些实施方案中,建筑物可以是温室、机场、摩天大厦、月球栖息地、非地球栖息地、海底栖息地或其他建筑物。

5.另外的备注

在不背离本公开的范围的情况下,各种修改、替换、组合和参数范围可被作出或用于本文所公开的组合物、装置和方法。

除非上下文另外明确指出,否则如在本文中使用,“包括(comprising)”意指“包括(including)”,并且单数形式“一个(种)(a)”或“一个(种)(an)”或“所述(the)”包括多个指示物。除非上下文另外明确指出,否则术语“或”是指所述替代性元件的单一元件或两个或更多个元件的组合。

除非另外解释,否则本文使用的所有技术术语和科学术语具有与本公开相关的领域中的普通技术人员通常理解的相同的含义。合适的方法和组合物在本文中被描述用于实践或测试本文所公开的组合物、系统、方法和装置。然而,应当理解,与本文所描述的那些类似或等同的其他方法和材料可被用于实践或测试这些组合物、系统、方法和装置。因此,本文所公开的组合物、系统、方法和装置仅是示例性的,并且不意图为限制性的。从以下详细描述和随附权利要求中,本公开的其他特征对于本领域技术人员而言将变得显而易见。

除非另外指出并且关于表示部件数量、百分比、温度、时间等的所有数字,本公开的范围包括如由术语“大约”所修饰的这类数字的实例。类似地,除非另外指出并且关于非数字特性(诸如胶态的、连续的、晶体等),本公开的范围包括如由术语“基本上”所修饰的这类非数字特性的全部实例,所述术语意思是“达到较大的范围或程度”。此外,除非另外隐含地或明确地指示,阐述的数字参数特性和/或非数字特性是近似值,这可取决于所寻求的期望特性、在标准测试条件或方法下检测的极限、处理方法的限制和/或参数或特性的本质。当直接地和明确地区分实施方案与所论述的现有技术时,除非引用“大约”一词,否则实施方案数字不是近似值。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1