一种有机发光显示面板及显示装置的制作方法

文档序号:15166920发布日期:2018-08-14 17:35阅读:140来源:国知局
本发明涉及显示领域,特别是涉及一种有机发光显示面板以及显示装置。
背景技术
:随着显示技术的不断发展,显示面板制造技术也趋于成熟。现有的显示面板主要包括有机发光二极管(organiclightemittingdiode,oled)显示面板、液晶显示面板(liquidcrystaldisplay,lcd)。而由于oled显示面板具有自发光、耗电低、反应速度快、广视角等优点被广泛应用于显示领域。现有技术中,有机发光显示面板的像素结构为阳极、有机发光材料、阴极的层叠结构。不同像素中的有机发光材料所发出的光的颜色不同,从而使得不同像素发出不同颜色的光,不同颜色的像素组合构成画面。但是由于不同颜色的光的性能存在差异,从而导致不同颜色的像素所发出的光的亮度在大视角下的变化程度不同,最终导致有机发光显示面板在大视角下出现亮度、色彩变异,色偏严重。技术实现要素:有鉴于此,本发明提供一种有机发光显示面板以及显示装置。本发明提供的有机发光显示面板包括:衬底;位于衬底上的阵列层;位于阵列层远离衬底一侧的显示层;显示层包括:阳极层;位于阳极层远离阵列层一侧的像素定义层,像素定义层包括多个暴露阳极的开口;有机发光材料,填充在开口内并与阳极层接触;阴极层,位于有机发光层远离阵列层的一侧;其中,开口包括多个第一开口和第二开口;第一开口中填充的有机发光材料用于发出第一颜色的光,第二开口中填充的有机发光材料用于发出第二颜色的光,第一颜色的光的波长大于第二颜色的光的波长;在垂直于有机发光显示面板的方向上,第一开口的侧壁的高度大于第二开口的侧壁的高度。本发明提供的显示装置包括上述的有机发光显示面板。与现有技术相比,本发明所提供的有机发光显示面板可以有效改善大视角下显示画面色偏得问题。附图说明图1是现有技术所提供的一种有机发光显示面板的视角-亮度曲线;图2是现有技术所提供的一种有机发光显示面板的结构示意图;图3是本发明提供的一种有像素定义层与无像素定义层情况下红色像素的视角-亮度曲线对比图;图4是本发明提供的一种有像素定义层与无像素定义层情况下蓝色像素的视角-亮度曲线对比图;图5是本发明提供的一种像素定义层厚度不同情况下红色像素的视角-亮度曲线对比图;图6是本发明提供的一种像素定义层厚度不同情况下蓝色像素的视角-亮度曲线对比图;图7是本发明实施例提供的一种有机发光显示面板的结构示意图;图8是图7中像素定义层的俯视示意图;图9是本发明实施例提供的另一种有机发光显示面板的结构示意图;图10是图7中有机发光显示面板的像素定义层开口的放大示意图;图11是本发明实施例提供的又一种有机发光显示面板的像素定义层结构示意图;图12是本发明实施例提供的又一种有机发光显示面板俯视图;图13是沿图10中a-a方向的截面示意图;图14是本发明实施例提供的又一种沿图10中a-a方向上像素定义层的截面示意图;图15是本发明实施例提供的又一种沿图10中a-a方向上像素定义层的截面示意图;图16是本发明实施例提供的又一种有机发光显示面板俯视图;图17是本发明实施例提供的又一种沿图14中b-b方向的截面示意图;图18是本发明实施例提供的又一种沿图14中c-c方向的截面示意图;图19是本发明实施例提供的又一种有机发光显示面板的像素定义层结构示意图;图20是本发明提供的一种像素定义层开口侧壁倾斜程度不同情况下红色像素的视角-亮度曲线对比图;图21是本发明提供的一种像素定义层开口侧壁倾斜程度不同情况下蓝色像素的视角-亮度曲线对比图;图22是本发明实施例提供的又一种有机发光显示面板的像素定义层结构示意图;图23是本发明实施例提供的又一种有机发光显示面板俯视图;图24是本发明实施例提供的一种显示装置的结构示意图。具体实施方式为使本发明的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本发明做进一步说明。需要说明的是,在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施方式的限制。在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。需要注意的是,本发明实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本发明实施例的限定。此外在上下文中,还需要理解的是,当提到一个元件被形成在另一个元件“上”或“下”时,其不仅能够直接形成在另一个元件“上”或者“下”,也可以通过中间元件间接形成在另一元件“上”或者“下”。为使本发明的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本发明做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本发明中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本发明保护范围内。本发明的附图仅用于示意相对位置关系,某些部位的层厚采用了夸示的绘图方式以便于理解,附图中的层厚并不代表实际层厚的比例关系。且在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。本申请中各实施例的附图沿用了相同的附图的标记。此外,各实施例彼此相同之处不再赘述。如图1所示,图1是现有技术所提供的一种有机发光显示面板的视角-亮度曲线。其中,纵坐标为亮度百分比(即不同颜色的像素所发出的光),横坐标为视角(以正视角为基准)。标记为r、g、b的曲线分别为红光、绿光、蓝光所对应的视角-亮度曲线。由实验数据可知,红色光随着视角增大亮度衰减较快,而蓝色光随着视角增大亮度衰减较慢。红色与蓝色的视角-亮度曲线在小视角与大视角之间的变化趋势差别较大,从而使得在大视角下蓝光所占比例更多,而红光所占比例更少,使得正视角下的白色画面在大视角下出现偏蓝的现象。如图2所示,图2为现有技术所提供的一种有机发光显示面板的结构示意图。显示面板10包括阵列基板11,设置在阵列基板11上的发光功能层12。发光功能层12包括设置在阵列基板11上的阳极13,设置在阳极13上的像素定义层14。像素定义层14具有一定的厚度,并形成暴露阳极13的开口。发光功能层12还包括填充在像素定义层14的开口中的有机发光材料15,以及覆盖有机发光材料15的阴极16,阳极13、有机发光材料15、阴极16共同构成发光二极管。显示面板10的一个像素包括一个有机发光二极管。发明人经过研究发现了在大视角下画面出现色偏的一个原因。在大视角下,不同波长的光(即不同颜色的像素所发出的光)受到像素定义层14的影响程度不同。具体的,以波长较长的红色光和波长较短的蓝色光为例。如图3到图4所示,图3为红色像素的视角-亮度曲线,图4为蓝色像素的视角-亮度曲线。其中,纵坐标为亮度百分比(即斜视角下亮度与正视角下亮度的百分比),横坐标为视角(以正视角为基准)。编号001和004的曲线为设置像素定义层时所测的数据,即发光材料填充在像素定义层中,然后对发光材料进行视角-亮度测试;编号为002和003的曲线为不设置像素定义层时所测的数据,即被选取测试的发光材料未被像素定义层限定,或者说光学测量区域与显示面板中发光器件(发光材料)的边缘较远,发光器件包括像素定义层可以认为是一维结构,可以忽略发光器件边缘的影响。从图中编号002和编号003的曲线可以看出发光材料未被像素定义层限定时,红光和蓝光的亮度随视角变化趋势一致,但发光材料被限定在像素定义层的开口中进行测试时,随着视角的增大,红光亮度衰减程度大于蓝光的亮度衰减程度。如编号001和编号004的曲线所示,编号001的曲线(即红光)在视角增大到70度时,亮度衰减到接近横坐标30%的位置,编号004的曲线(即蓝光)在视角增大到70度时,亮度衰减到接近横坐标50%的位置。由此可以看出,在大视角下,像素定义层对不同波长的光的亮度衰减的影响程度不同,从而造成两种颜色的光的亮度随视角变化的衰减程度不同,具体体现为波长长的光亮度衰减程度大于波长短的光亮度衰减程度,最终导致大视角下显示面板所显示的画面在大视角下出现色偏。进一步,如图2所示,发明人研究发现,随着像素定义层14的高度s增加,在大视角下,像素的亮度衰竭程度减小。具体的,以波长较长的红色光和波长较短的蓝色光为例。如图6、图6、表1-1、表1-2所示,图4为红色像素的视角-亮度曲线,像素定义层的高度分别取1.0μm和1.5μm。图5为蓝色像素的视角-亮度曲线,像素定义层的高度分别取1.0μm和1.5μm。为方便理解,图中分别附上表1、表2来体现图5、图6中亮度曲线具有代表性的节点的具体数值。其中,表1为红色像素的视角-亮度曲线上的节点具体数据,表2为蓝色像素的视角-亮度曲线上的节点具体数据。表1:红色像素的视角-亮度曲线上的节点具体数据视角\pdl高度1.0um1.5um0°100%100%10°101%103%20°102%107%30°93%106%40°69%85%50°48%61%60°34%44%70°27%34%表2:蓝色像素的视角-亮度曲线上的节点具体数据视角\pdl高度1.0um1.5um0°100%100%10°92%95%20°86%90%30°71%75%40°59%63%50°48%53%60°44%47%70°41%44%由试验数据可以发现,相较于像素定义层的高度取1.0μm的视角-亮度曲线,像素定义层的高度取1.5μm的视角-亮度曲线随着视角增大,曲线下降更缓慢,也就是说增加像素定义层的厚度有效减小了大视角下亮度衰减程度。例如,在70度的大视角下,像素定义层厚度为1.0μm时,红色像素的亮度仅为正视角下亮度的27%,而像素定义层厚度增加为1.5μm时,红色像素的亮度为正视角下亮度的34%。有鉴于此,本发明提供一种有机发光显示面板以及显示装置。如图7所示,图7是本发明实施例提供的一种有机发光显示面板的结构示意图。有机发光显示面板100包括衬底110,衬底100可以由诸如玻璃、聚酰亚胺(pi)、聚碳酸酯(pc)、聚醚砜(pes)、聚对苯二甲酸乙二醇酯(pet)、聚萘二甲酸乙二醇酯(pen)、多芳基化合物(par)或玻璃纤维增强塑料(frp)等聚合物材料形成。可以是透明的、半透明的或不透明的。本发明实施例中的衬底还可以为柔性衬底,由厚度较薄的聚合物形成,例如聚酰亚胺。衬底还可以包括缓冲层,缓冲层可以包括多层无机、有机层层叠结构,以阻挡氧和湿气,防止湿气或杂质通过衬底扩散,并且在衬底的上表面上提供平坦的表面,具体结构本发明不再赘述。阵列层120,位于衬底110上。阵列层120包括多个薄膜晶体管(thinfilmtransistor,tft)以及由薄膜晶体管够构成像素电路,用于控制发光功能层中的发光结构,即有机发光二极管发光。本发明实施例以顶栅型的薄膜晶体管为例进行的结构说明。阵列层120包括用于形成薄膜晶体管的有源层,有源层包括通过掺杂n型杂质离子或p型杂质离子而形成的源极区域和漏极区域,在源极区域和漏极区域之间区沟道区域;位于有源层上的栅极绝缘层;位于栅极绝缘层上的薄膜晶体管的栅极。位于栅极上的层间绝缘层,层间绝缘层可以由氧化硅或氮化硅等的绝缘无机层形成,可选择地,层间绝缘层可以由绝缘有机层形成。薄膜晶体管的源电极和漏电极位于层间绝缘层上。源电极和漏电极分别通过接触孔电连接(或结合)到源极区域和漏极区域,接触孔是通过选择性地去除栅绝缘层和层间绝缘层而形成的。阵列层120还包括钝化层121,位于薄膜晶体管上。具体的,钝化层121位于源电极和漏电极上。钝化层121可以由氧化硅或氮化硅等的无机层形成或者由有机层形成。阵列层120还包括位于阵列层120上的平坦化层130。平坦化层130可以包括压克力、聚酰亚胺(pi)或苯并环丁烯(bcb)等的有机层,平坦化层130具有平坦化作用。显示层140,位于阵列层120远离衬底110的一侧,具体的,位于平坦化层130上。显示层140包括沿远离衬底110的方向依次设置的阳极层141、有机发光材料142以及阴极层143。显示层140还包括位于阳极层141远离阵列层120一侧的像素定义层150。像素定义层150可以由诸如聚酰亚胺(pi)、聚酰胺、苯并环丁烯(bcb)、压克力树脂或酚醛树脂等的有机材料形成,或由诸如sinx的无机材料形成。具体的,阳极层包括多个与像素单元一一对应的阳极图案,阳极层中的阳极图案通过平坦化层上的过孔与薄膜晶体管的源电极或漏电极连接。如图7所示,像素定义层150包括多个暴露阳极层141的开口151,并且像素定义层150覆盖阳极层141图案的边缘。有机发光材料142至少部分填充在开口151内,并与阳极层141接触。开口151内的有机发光材料142形成一个最小的发光单元,每个发光单元根据不同的有机发光材料能够发出不同颜色的光线,每个发光单元和像素电路沟通构成像素,多个像素共同进行画面的显示。可选的,有机发光材料可使用喷墨印刷或喷嘴印刷或蒸镀等方法形成于像素定义层的开口内。阴极层可以通过蒸镀的方式形成于有机发光层上。可选的,阴极层整面覆盖有机发光层、像素定义层。多个开口151包括多个第一开口1511和第二开口1512;第一开口1511中填充的有机发光材料142用于发出第一颜色的光,第二开口1512中填充的有机发光材料142用于发出第二颜色的光,其中,第一颜色的光的波长大于第二颜色的光的波长。在垂直于有机发光显示面板100的方向上,也就是在显示面板的厚度方向上,至少部分第一开口1511的侧壁154的高度大于第二开口1512的侧壁154的高度。也就是说,至少部分围成第一开口1511的像素定义层150的厚度大于围成第二开口1512的像素定义层150的厚度。需要说明的是,像素定义层150包括两个相对设置的侧面,分别是靠近衬底一侧的第一底面和远离衬底一侧的第一顶面。开口151贯穿像素定义层150,开口151包括位于第一底面的底面开口和位于第一顶面的顶面开口,侧壁154连接在底面开口和顶面开口之间。在垂直于有机发光显示面板的方向上,侧壁的高度相当于顶面开口到底面开口的距离。或者说,侧壁的高度相当于顶面开口到第一底面的距离。因为,虽然像素定义层还覆盖了部分阳极层,即第一底面由于覆盖阳极层边缘会在该处出现爬坡,因此第一底面并没有完全位于一个平面上,但是由于地面开口均位于阳极层上,且各个阳极层图案的厚度相同,在比较不同开口的侧壁高度时,阳极层的厚度可以相互抵消,因此侧壁的高度的比较也可以转变为顶面开口到第一底面的距离的比较。可选的,至少一个开口的侧壁包括至少两个不同的高度值,开口侧壁的高度为平均高度,平均高度为至少两个不同的高度值的平均值。可选的,第一开口的侧壁包括第一高度和第二高度,第二开口的侧壁包括第三高度和第四高度。第一开口侧壁的高度为平均高度,即第一高度和第二高度的平均值;第二开口的侧壁的高度为平均高度,即第一高度和第二高度的平均值。其中,第一开口的平均高度大于第二开口的平均高度。具体的,如图7所示,第一开口1511的两个不同方位上的侧壁154分别包括第一高度k1和第二高度k2,第二开口1512的两个不同方位上的侧壁154分别包括第三高度k3和第四高度k4,其中,k1≠k2,k3≠k4。第一开口1511的侧壁154的高度为k1,k1=(k1+k2)/2;第二开口1512的侧壁154的高度为k2,k2=(k3+k4)/2;其中,k1>k2。可选的,这里所说的一个开口的侧壁的平均高度也可以为垂直于有机发光显示面板的方向上,该开口的顶面开口上的任意有限个不同位置处的高度的平均值,或者各个不同位置的高度的平均值。具体的,如图8所示,图8为图7中像素定义层的俯视示意图。像素定义层150包括开口151,开口151包括位于第一顶面的顶面开口153和位于第一底面(图中被第一顶面遮挡,不可视)上的底面开口152,以及连接在顶面开口153和底面开口152之间的侧壁154,其中顶面开口153大于底面开口152,且顶面开口153在显示面板所在平面的正投影围绕底面开口152。图8中以顶面开口153在显示面板所在平面的正投影为圆角矩形为例,则顶面开口153的各个不同位置即为图8中所标示的顶面开口153所在的圆角矩形的轮廓线上的各个位置。关于本实施例中提到的“顶面开口上的任意有限个不同位置”,结合图8所示,可以理解为,一个开口151在各个方位上的侧壁154具有n种不同高度,n为正整数,一个开口151的不同方位上的这n种不同高度的侧壁分别对应顶面开口153上第一位置“m-1”到第n位置“m-n”。在垂直于有机发光显示面板的方向上,第一位置“m-1”至第n位置“m-n”,这n个顶面开口153上的位置到第一底面的距离分别用l1、l2……ln表示。图8中仅仅示意第一位置“m-1”、第二位置“m-2”和第n位置“m-n”。则该开口151的侧壁154的高度为在垂直于有机发光显示面板的方向上,顶面开口153在第一位置“m-1”到第n位置“m-n”上分别到第一底面的距离的平均值,即为(l1+l2+…..+ln)/n。这里需要说明对侧壁高度取平均值的原因。在一些可选实施例中,一个开口对应一个发光单元,根据像素颜色、亮度组合才能实现多彩画面的原理,发光单元(即开口)会按一定规律排布,且至少一个开口与相邻的另一个开口中填充的有机发光材料要发出不同颜色的光。例如,第一开口会与第二开口相邻排布。但是由于围成第一开口的像素定义层的厚度值较大,围成第二开口的像素定义层的厚度值则希望较小,因此在第一开口与第二开口之间区域的像素定义层的厚度值会介于第一开口远离第二开口一侧的像素定义层的厚度与第二开口远离第一开口一侧的像素定义层的厚度之间;也就是说,至少存在一个第一开口或第二开口,对于该开口的顶面开口到第一底面的距离在顶面开口的不同位置对应的距离的数值不同。例如,第一开口靠近第二开口一侧的侧壁高度小于第一开口远离第二开口一侧的侧壁的高度,从而可以避免像素定义层厚度骤变。因为像素定义层厚度骤变,不利于后续形成的膜层的设置,也不利于膜层结构的稳定,例如会使设置在像素定义层上膜层形成很陡的爬坡结构,尤其对于柔性显示设备,在发生弯折时会在陡坡处产生过于集中的应力。而且由于第一开口与第二开口距离较近,如果第一开口朝向第二开口一侧的侧壁较高会影响第二开口中的发出的光的传输效果。所以,在一些可选实施例中,至少一个开口的侧壁包括至少两个不同高度值,开口的平均高度为所述不同高度值的平均值。可以理解的,本申请所说的像素定义层的高度为垂直于显示面板的方向上的高度。此外,在一些可选实施例中,像素定义层的高度也可以解释为像素定义层的厚度;在一些可选实施例中,像素定义层的高度也可以解释为像素定义层上表面(或者称第一顶面、远离衬底一侧的表面)与下表面(或者称第一底面、靠近衬底一侧的表面)之间的距离;其中,像素定义层的厚度为垂直于显示面板的方向上的厚度,上表面与下表面之间的距离为垂直于显示面板的方向上的距离。在此统一说明,后续实施例中不再赘述。可以理解的,本申请其他可选实施例中所有涉及的高度、厚度、距离,可以根据需要取平均值,取平均值的方式可以采用本实施例提供的上述多种方式中的一种或多种的结合。在此统一说明,后续实施例中不再赘述。可选的,第一颜色的光为红光,第二颜色的光为蓝光。蓝光与红光之间的波长差异较大。通过补偿两个光谱差别最大的两个颜色在大视角下的差异,可以显著改善显示面板的色偏问题。可选的,第一开口1511的侧壁154的高度比第二开口1512的侧壁154的高度大50nm以上。或者第一开口1511的侧壁154的高度比第二开口1512的侧壁154的高度大50nm。将两个不同颜色的像素对应的开口侧壁高度相差数值不小于50nm,可以在保证改善大视角下色偏问题的同时,减小工艺制作难度,两个开口高度差异较小,制作时难以控制图案化程度,可能会由于工艺误差导致第一开口与第二开口侧壁高度相近,从而使两个不同开口的侧壁高度差异无法达到最优的防色偏效果。通过本实施例提供的有机发光显示面板可以有效改善大视角下显示画面色偏的问题。通过将所发出的光的波长长的发光材料填充在侧壁高的像素定义层的开口中,将所发出的光的波长短的发光材料填充在侧壁低的像素定义层的开口中,在不影响各个结构及器件正常使用或工作的同时,通过像素定义层的侧壁高度的不同,补偿像素定义层在大视角下对不同波长的光的亮度衰减程度造成的影响差异。而且,由于光线在像素定义层内部传播,受到像素定义层和像素定义层之下的各膜层(如阳极、金属层等)的界面的散射、折射和反射等,将被分散成各个方向的光线,会有更多的光朝向斜视角或大视角射出,因此大视角下像素的亮度增大,从而使得大视角的亮度与正视角亮度之比增加,也就是说,正视角下像素的亮度与大视角下像素亮度差异减小。通过本实施例,将所发出的光的波长长的发光材料填充在侧壁高的像素定义层的开口中,将所发出的光的波长短的发光材料填充在侧壁低的像素定义层的开口中,使波长较长的光可以有更多的机会进入像素定义层中,充分的被散射、折射和反射,从而增大在大视角下这类波长较长的光的占比,避免在大视角下由于波长较长的光衰竭程度较大而造成画面色彩偏移,从而进一步改善大视角下显示面板的色偏问题。同理,对于波长较短的光,为了减小与波长较长的光在大视角下亮度差异,实现进一步改善大视角下显示面板的色偏问题的效果,波长较短的光所在像素的膜层结构可以采取与波长较长的光所在像素的膜层结构变化相反的趋势来变化设计,这里不再赘述。需要说明的是图7仅仅示出一个第一开口和一个第二开口以及两个薄膜晶体管结构,但本发明并不限定第一开口和第二开口以及薄膜晶体管的个数。例如,在本发明的其他可选实施例中,第一开口和第二开口的个数可以根据显示面板的分辨率需求设置为任意数量。如图9和图10所示,图9是本发明实施例提供的另一种有机发光显示面板的结构示意图,图10是图9中有机发光显示面板的像素定义层开口的放大示意图。其中,本实施例与上述实施例相同之处不再赘述。本实施例中,开口151还包括多个第三开口1513。第三开口1513中填充的有机发光材料142用于发出第三颜色的光;第三颜色的光的波长大于第二颜色的光的波长、小于第一颜色的光的波长。可选的,第三颜色的光为绿光。进一步,所述第三开口的侧壁的平均高度大于所述第二开口的侧壁的平均高度、小于所述第一开口的侧壁的平均高度。这样,通过增加第三开口,将第三开口的高度值设置在介于第一开口和第二开口侧壁的高度值之间,使第三开口起到过渡的作用,避免第一开口与第二开口膜层结构差异较大影响其他显示效果或其他膜层的设置,可以进一步改善大视角下显示画面色偏得问题,使显示面板中所有的像素均可以通过像素定义层来补偿大视角亮度的变化差异。可选的,参考图10所示,像素定义层150包括两个侧面,两个侧面相对设置,这两个侧面分别是靠近衬底一侧的第一底面1501和远离衬底一侧的第一顶面1502。像素定义层150还包括贯穿像素定义层150的开口151,开口151包括位于第一底面1501的底面开口152和位于第一顶面1502的顶面开口153,以及连接在底面开口152和顶面开口153之间的侧壁154。可选的,例如图9、图10中,在垂直于有机发光显示面板的方向上,至少部分第一开口1511的顶面开口153到该开口中的有机发光材料的顶面的距离为h1,第二开口1512的顶面开口153到该开口中的有机发光材料的顶面的距离为h2。其中,h1≥h2。进一步,h1>h2。可选的,第三开口1513的顶面开口151与其中填充的有机发光材料142的落差为h3,其中,h1>h3>h2。当然,这里所说的平均落差可以与上述对平均高度的理解方式相同。例如,可选的,继续结合图9和图10所示,在垂直于有机发光显示面板的方向上,第一开口1511的顶面开口153与第一开口1511中填充的有机发光材料142的平均落差为h1,第二开口1512的顶面开口153与其中填充的有机发光材料的平均落差为h2,其中,h1≥h2。可以理解的,这里所说的顶面开口与有机发光材料的平均落差为顶面开口各个位置与有机发光材料的落差的平均值。顶面开口的某一位置与有机发光材料的落差可以理解为:该顶面开口的某一位置所在的平面(该平面平行于所述有机发光显示面板)与该顶面开口中填充的有机发光材料的顶面所在平面之间的距离。。可选的,h1>h2。可选的,第三开口1513的顶面开口151与其中填充的有机发光材料142的平均落差为h3,其中,h1>h3>h2。这里所说的平均落差可以与上述对平均高度的理解方式相同。通过将不同颜色像素对应的顶面开口与其中填充的有机发光材料的顶面落差不同设计,可以使大视角下亮度衰减明显的光即使从发光材料的上表面射出后,穿出开口需要经的路程更多,也就可以有更多的机会进入像素定义层中,充分的被散射、折射和反射,从而在大视角下增大这类在大视角下亮度衰减明显的光的占比,从而进一步改善大视角下显示面板的色偏问题。进一步,结合图9、图10所示,本实施例提供的有机发光显示面板还包括薄膜封装层160,位于发光功能层140远离阵列层120的一侧,并完全覆盖显示层140,用于密封显示层140。具体的,薄膜封装层160位于阴极层143上,包括沿远离衬底110的方向依次设置的第一无机封装层161、第一有机封装层162以及第二无机封装层163。薄膜封装层160填平了第一顶面1502与有机发光材料142之间的落差。可选的,第一有机封装层162远离阵列层120的一侧的表面为平坦表面。这样,不同像素的第一开口到薄膜封装层的上表面,即薄膜封装层远离阵列层的一侧的表面的距离不同,而且不同像素的像素定义层的开口中填充的薄膜封装层的深度也不同。这里所说的深度可以理解为平均深度,与上述对平均高度的理解方式相同。有机发光器件的发光效果除了受到像素定义层的影响之外,还受到薄膜封装层的影响。对于柔性有机发光显示面板为了确保其可弯折或可卷曲的特性,不能采用玻璃封装,而需要采用薄膜封装。薄膜封装层位于显示层之上,封装膜层靠近显示层的一侧将随着像素定义层及像素定义层上的开口而起伏变化。现有技术中的封装结构由于在像素定义层的开口处起伏变化,像素定义层的开口结构是显示面板中的必要结构,因此薄膜封装层这种起伏变化是不可避免的;而且对于正常的显示面板,发光器件发出的光需要穿过薄膜封装层才能实现正常显示,在光经过薄膜封装层时,由于不同颜色的光波长不同光学特性不同,再加之薄膜封装层的起伏变化等原因,使像素发出的光要经过更复杂的膜层界面,使在大视角下本就存在亮度差异的两种颜色的像素在经过薄膜封装层后亮度差异被进一步放大,进一步增大了显示面板大视角下的色偏问题。本实施例通过将不同颜色的像素对应的像素定义层的顶面开口与有机发光材料的落差进行设计,从而使不同像素的像素定义层的开口中填充的薄膜封装层的深度也不同,使薄膜封装层在不同像素的像素定义层的开口处起伏程度不同,增大大视角下亮度衰减较明显的长波长的光受到像素定义层和薄膜封装层之间的界面的散射、折射和反射的机会,从而增大在大视角下这类波长较长的光的占比,进一步改善显示面板(尤其是柔性显示面板)在大视角下色偏的问题。将原本会降低显示效果的存在缺陷的结构转变为可以改善显示效果的具有优势的结构。如图11所示,图11是本发明实施例提供的又一种有机发光显示面板的像素定义层结构示意图。像素定义层150包括靠近衬底一侧的第一底面1501和远离衬底一侧的第一顶面1502以及贯穿像素定义层150的开口151。开口151包括位于第一底面1501的底面开口152和位于第一顶面1502的顶面开口153,以及连接在底面开口152和顶面开口153之间的侧壁154。可选的,第一顶面1502除了顶面开口153外均连续。这样可以避免像素定义层厚度骤变。因为像素定义层厚度骤变,不利于后续形成的膜层的设置,也不利于膜层结构的稳定,例如会使设置在像素定义层上膜层形成很陡的爬坡结构,尤其对于柔性显示设备,会在陡坡处产生过于集中的应力。此外,由于薄膜封装层位于像素定义层之上,将随着像素定义层的第一顶面的起伏变化而起伏变化,而有机发光器件的发光效果除了受到像素定义层的影响之外,还受到薄膜封装层起伏变化的影响。由于不同颜色的光波长不同光学特性不同,再加之薄膜封装层的起伏变化等原因,使像素发出的光要经过更复杂的膜层界面,使在大视角下本就存在亮度差异的两种颜色的像素在经过薄膜封装层后亮度差异被进一步放大,进一步增大了显示面板大视角下的色偏问题在大视角下。因此保证像素定义层(或者说第一顶面)的连续性,可以改善薄膜封装层的平坦性,有利于进一步改善显示面板的色偏问题。可选的,第一顶面1502与第一底面1501不平行,且至少一个由第二开口1512指向第一开口1511的方向上,第一顶面1502向远离第一底面1501的方向倾斜。这样可以在由第二开口指向第一开口的方向上,像素定义层的厚度渐变,可以使避免像素定义层厚度骤变,避免出现台阶。有利于后续形成的膜层的设置,避免膜层分离,有利于膜层结构的稳定。尤其对于柔性显示设备,在发生弯折时,可以避免设置在像素定义层上膜层在台阶处产生过于集中的应力。可选的,在垂直于有机发光显示面板100的方向上,第一顶面1502向远离第一底面1501的方向倾斜的距离小于薄膜封装层160的厚度。也就是说,垂直于有机发光显示面板100的方向上,第一开口1511的顶面开口1502与相邻的第二开口1512的顶面开口1502之间的落差小于薄膜封装层160的厚度。可选的,第一顶面1502向远离第一底面1501的方向倾斜的距离小于第一无机封装层160的厚度。这样可以使避免薄膜封装层由于填充像素定义层的开口而在薄膜封装层远离衬底基板的一侧形成起伏的顶面,避免由于不同颜色的光波长不同光学特性不同,再加之薄膜封装层的起伏变化等原因,使像素发出的光要经过更复杂的膜层界面,从而避免在大视角下本就存在亮度差异的两种颜色的像素在经过薄膜封装层后亮度差异被进一步放大。如图12、图13所示,图12是本发明实施例提供的又一种有机发光显示面板俯视图,图13是沿图12中a-a方向的截面示意图。开口151包括多个第一开口1511、第二开口1512以及多个第三开口1513。在平行于显示面板100的平面上,开口151沿着第一方向x和第二方向y矩阵排布。其中,第一方向x与第二方向y相交。可选的,第一方向x垂直于第二方向y。可选的,开口151在显示面板100所在平面上的正投影为矩形或圆角矩形,矩形或圆角矩形的边与第一方向x或第二方向y平行。可选的,各个开口151在显示面板100所在平面上的正投影的形状大小均相同。进一步,在第一方向x上,第一开口1511相邻排布,第二开口1512相邻排布,第三开口1513相邻排布。在第二方向y上,第一开口1511、第二开口1512以及第三开口1513交替排布。可选的,有机发光显示面板100还包括支撑柱170,支撑柱170位于像素定义层与阴极层之间。支撑柱170在像素定义层上的正投影与第一开口1511相邻。通过增加支撑柱,提高了显示面板的抗挤压能力。此外,由于支撑柱相当于支撑柱与第一开口相邻,相当于增加了第一开口侧壁的高度,进一步改善有机发光显示面板的大视角下色偏的问题。可选的,支撑柱170在像素定义层150上的正投影位于两个相邻的第一开口1511之间。可选的,支撑柱170在像素定义层150上的正投影位于相邻的第一开口1511与第三开口1513之间。对于本实施例所提供的像素排布方式,支撑柱可以设置在两个相邻的第一开口之间,和/或相邻的第一开口与第三开口之间,而不需要与第二开口相邻。在提高了显示面板的抗挤压能力的同时,增加第一开口侧壁的高度而不会对第二开口造成影响,进一步改善有机发光显示面板的大视角下色偏的问题。可选的,在有机发光显示面板100的至少一个第一截面中:第一顶面1502与第一底面1501平行。其中,第一截面垂直于该有机发光显示面板100所在平面且与第二方向y平行。可以理解的,仅仅在本实施例中,图12、图13所示意的a-a方向的截面表示第一截面,且只代表第一截面的一个可选示例。进一步,在该第一截面中,在第一开口1511与第三开口1513之间,第一顶面1502到与第一底面1501之间的距离为d1;在第二开口1512与第三开口1513之间,第一顶面1502到与第一底面1501之间的距离为d2;其中,d1>d2。可选的,在第一开口1511与第二开口1512之间,第一顶面1502到与第一底面1501之间的距离介于d1与d2之间。在本实施例中,第一顶面与第一底面平行设计制作工艺简洁且有利于后续膜层的制作的,同时有利于减小膜层界面的复杂度,减小复杂的膜层界面进一步放大不同波长的光在大视角下的亮度差异。由于第三开口对应的像素所发出的光的波长介于第一、第二开口,第三开口对应的像素定义层的厚度介于第一、第二开口,通过与本实施例所提供的像素排布方式结合,第三开口介于第一开口与第二开口之间,第一开口与第三开口之间的像素定义层的高度大于第二开口与第三开口之间的像素定义层的高度,通过在第三开口处实现像素定义层的厚度变化,在满足第三开口对像素定义层厚度的要求,使第三开口像素定义层开口的侧壁的平均高度介于第一、第二开口的同时,保证第一顶面与第一底面平行,即虽然不同开口周围像素定义层厚度不同,但通过第三开口的过渡依旧保证了第一顶面与第一底面平行。如图12、图14所示,图12是本发明实施例提供的又一种有机发光显示面板俯视图,图14是本发明实施例提供的又一种沿图12中a-a方向上像素定义层的截面示意图。其中,本实施例与上一实施例相同之处不在赘述。不同的,有机发光显示面板包括至少一个第二截面,其中,第二截面垂直于有机发光显示面板且平行于第二方向。可以理解的,仅仅在本实施例中,图12、图14所示意的a-a方向的截面表示第二截面,且只代表第二截面的一个可选示例。在至少一个第二截面中:至少部分第一顶面1502与第一底面1501不平行,且至少一个由第二开口1512指向第一开口1511的方向上,第一顶面1502向远离第一底面1501的方向倾斜。这样可以在由第二开口指向第一开口的方向上,像素定义层的厚度渐变,可以使避免像素定义层厚度骤变,避免出现台阶。有利于后续形成的膜层的设置,避免膜层分离,有利于膜层结构的稳定。尤其对于柔性显示设备,在发生弯折时,设置在像素定义层上膜层在台阶处会产生过于集中的应力。进一步,在第一开口1511与第三开口1513之间,第一顶面1502到与第一底面1501之间的距离为d1;在第二开口1512与第三开口1513之间,第一顶面1502到与第一底面1501之间的距离为d2;其中,d1>d2。如图12、图15所示,图15是本发明实施例提供的又一种沿图12中a-a方向上像素定义层的截面示意图。其中,本实施例与上一实施例相同之处不在赘述。不同的,第一顶面1502与第一底面1501不平行,在在第一开口1511与第二开口1512之间,由第二开口1512指向第一开口1511的方向上,第一顶面1502向远离第一底面1501的方向倾斜。在第二开口1512与第三开口1513之间,由第二开口1512指向第三开口1513的方向上,第一顶面1502向远离第一底面1501的方向倾斜。在第一开口1511与第三开口1513之间,由第三开口1513指向第一开口1511的方向上,第一顶面1502向远离第一底面1501的方向倾斜。如图16所示,图16是本发明实施例提供的又一种有机发光显示面板俯视图。开口151包括多个第一开口1511、第二开口1512以及多个第三开口1513。第一开口1511中填充的有机发光材料142用于发出第一颜色的光,第二开口1512中填充的有机发光材料142用于发出第二颜色的光,第三开口1513中填充的有机发光材料142用于发出第三颜色的光。其中,第一颜色的光的波长大于第二颜色的光的波长,第三颜色的光的波长大于第二颜色的光的波长、小于第一颜色的光的波长。可选的,第一颜色的光为红光,第二颜色的光为蓝光,第三颜色的光为绿光。开口151沿着行方向和列方向矩阵排布,其中,行方向与列方向垂直。开口划分为多个第一列单元181和多个第二列单元182。第一列单元181包括沿列方向交替排列的第一开口1511和第三开口1513,第二列单元182包括沿列方向交替排列的第二开口1512和第三开口1513。第一列单元181和第二列单元182沿行方向交替排列;且沿行方向,第一开口1511与第三开口1513交替排列,第二开口1512与第三开口1513交替排列。进一步,本实施例提供的有机发光显示面板包括两类截面,分别为第三截面和第四截面。其中,第三截面和第四截面均垂直于有机发光显示面板,且均平行于列方向。如图17所示,图17是本发明实施例提供的又一种沿图16中b-b方向的截面示意图。其中,b-b方向的截面为本实施例中第三截面的一种可选示例。结合图16、图17所示,第三截面穿过第一列单元181。在第三截面中:第一顶面与第一底面平行,且第一顶面与第一底面之间的距离均为d3。如图18所示,图18是本发明实施例提供的又一种沿图16中c-c方向的截面示意图。其中,c-c方向的截面为本实施例中第四截面的一种可选示例。结合图16、图18所示,第三截面穿过第二列单元182。在第四截面中:第一顶面与第一底面平行,且第一顶面与第一底面之间的距离为d4。其中,d3>d4。可选的,第一列单元181对应的沿着行方向延伸的条形区域中像素定义层高度均为d3;同理,第二列单元182对应的条形区域中像素定义层高度均为d4。也就是说,在一固定的行方向上,或在列方向上像素定义层可以保持统一高度,这样更利于第一顶面与第一底面的平行设置。通过结合本实施例提供的像素排布方式,无论是在行方向上,还是在列方向上,第一开口均不与第二开口相邻;第一开口、第二开口均是与第三开口在行方向或列方向上交替设置。这样对于任意一个第一开口,该第一开口各个方位上的侧壁高度,或者说形成第一开口区域的像素定义层的高度均保持一致,且均大于形成第二开口区域的像素定义层的高度。第二开口同样也可以实现各个方位上的侧壁高度一致。而且由于第三开口中填充的发光材料所发的光的波长长度介于第一开口与第二开口之间,因此,通过本实施例结合的像素排布方式,一个第三开口一部分与第一开口相邻,一部分与第二开口相邻,正好可以使第三开口的侧壁的平均高度介于其他两类开口侧壁的平均高度。通过本实施例,保证第一开口对应的像素定义层高度大于第二开口对应的像素定义层高度的同时还可以避免第一开口与第二开口的像素影响,避免第一开口与第二开口相互的限制。还可以使位于开口中各个方位的侧壁的改善视角色偏的程度一致,提高大视角下防色偏性能的均一性,从而改善各个方向上的视角色偏。可选的,第三开口1513在衬底上的正投影的面积小于第一开口1511在衬底上的正投影的面积;第三开口1513在衬底上的正投影的面积小于第二开口1512在衬底上的正投影的面积。进一步,有机发光显示面板还包括支撑柱170,位于像素定义层与阴极层之间。其中,支撑柱170在像素定义层上的正投影位于相邻的第一开口1511与第三开口1513之间。具体的,支撑柱170可以位于在列方向上相邻的第一开口1511与第三开口1513之间,也可以位于在行方向上相邻的第一开口1511与第三开口1513之间。本实施例通过增加支撑柱,提高了显示面板的抗挤压能力。此外,支撑柱相当于增加了第一开口侧壁的高度,进一步改善有机发光显示面板的大视角下色偏的问题。对于本实施例所提供的像素排布方式,支撑柱不需要与第二开口相邻。在提高了显示面板的抗挤压能力的同时,增加了第一开口侧壁的高度而不会对第二开口造成影响。此外,由于第三开口在衬底上的正投影的面积小于第一开口以及第二开口在衬底上的正投影的面积。因此,第一开口于第三开口之间的距离增大,支撑柱可以有充足的设置空间在第一开口与第三开口之间。进一步改善有机发光显示面板的大视角下色偏的问题。如图19所示,图19是本发明实施例提供的又一种有机发光显示面板的像素定义层结构示意图。在本实施例中,第一开口1511的侧壁154与第一底面1501的夹角为θ1,第二开口1512的侧壁154与第一底面1501的夹角为θ2。其中,90°≥θ1,且90°>θ2。也就是说,第一开口1511的顶面开口153不小于其底面开口152,第二开口1512的顶面开口153大于其底面开口152。例如图19中所示的,第一开口1511、第二开口1513的截面为倒梯形。进一步,θ1>θ2。也就是说,第二开口1512的侧壁154的倾斜程度大于第一开口1511的侧壁154的倾斜程度,或者说第一开口侧壁的坡度角大于第二开口侧壁的坡度角。因为发明人进一步还发现,像素定义层开口侧壁的倾斜程度与像素所发的光亮度衰减有关。具体的,以波长较长的红色光和波长较短的蓝色光为例。如图20到图21所示,图20为红色像素的视角-亮度曲线,像素定义层开口侧壁的坡度角分别取30°和45°。图21为蓝色像素的视角-亮度曲线,像素定义层开口侧壁的坡度角分别取30°和45°。为方便理解,图中分别附上表3、表4来体现图20、图21中亮度曲线具有代表性的节点的具体数值。其中,表3为红色像素的视角-亮度曲线上的节点具体数据,表4为蓝色像素的视角-亮度曲线上的节点具体数据。表3:红色像素的视角-亮度曲线上的节点具体数据视角\pdl侧壁坡度角30°45°0°100%100%10°98%103%20°101%107%30°92%106%40°67%85%50°46%61%60°33%44%70°26%34%表4:蓝色像素的视角-亮度曲线上的节点具体数据视角\pdl侧壁坡度角30°45°0°100%100%10°95%95%20°88%90%30°73%75%40°62%63%50°49%53%60°43%47%70°41%44%从图20和图21中可知,随着像素定义层开口侧壁的倾斜程度增大,即随着像素定义层开口的坡度角减小,例如坡度角由45°减小至30°,视角-亮度曲线的走势变陡;即在大视角下,随着像素定义层开口坡度角的减小,光线亮度衰减程度增大。有鉴于此,本实施例通过使第一开口侧壁的坡度角大于第二开口侧壁的坡度角,使在大视角下亮度衰减程度大的长波长的光得到一定的补偿,即通过像素定义层开口侧壁的坡度角差异,补偿长波长的光与短波长的光在大视角下的亮度衰减差异,从而改善大视角下显示面板的色偏问题。而且,像素定义层开口的侧壁坡度越陡,相当于开口越狭窄,光线越容易进入像素定义层内。从而使大视角下衰减明显的长波长的光受到像素定义层和像素定义层之下的各膜层(如阳极、金属层等)的界面的充分的散射、折射和反射等,使得大视角下这类长波长光的亮度有所提高,从而实现进一步改善大视角下显示面板的色偏问题的效果。此外,对于发光材料与像素定义层开口侧壁的接触界面,光线从发光材料入射到像素定义层中,属于从光密介质入射到光疏介质。像素定义层坡度角较小时,如果光线的入射角较大,将发生全反射,光线不能进入像素定义层内。像素定义层开口的侧壁坡度角增加,全反射消失,即更多的光进入像素定义层内。由于光线在像素定义层内部传播,受到像素定义层和像素定义层之下的各膜层(如阳极、金属层等)的界面的散射、折射和反射等,将被分散成各个方向的光线,会有更多的光朝向斜视角或大视角射出,因此大视角下这类像素的亮度有所提高,从而实现进一步改善大视角下显示面板的色偏问题的效果。进一步,如图19所示,第一顶面1502与第一底面1201平行。位于第一开口1511与第二开口1512之间的像素定义层150的厚度小于第一开口1511远离第二开口1512一侧的像素定义层150的厚度;位于第一开口1511与第二开口1512之间的像素定义层150的厚度大于第二开口1512远离第一开口1511一侧的像素定义层150的厚度。也就是说,第一开口1511靠近第二开口1512一侧的侧壁154的高度相较于的其远离第二开口1512一侧的侧壁154改善色偏的效果较弱。而通过本实施例将第一开口1511靠近第二开口1512的一侧的侧壁154的倾斜程度增大。这样,在侧壁高度需要满足其他需求不能改变的前提下,通过调节开口局部的侧壁的倾斜程度进一步改善显示面板大视角下防色偏的能力。具体的,第一开口1511靠近第二开口1512的一侧的侧壁154的倾斜程度大于第一开口1511远离第二开口1512的一侧的侧壁154的倾斜程度,这样既不会对第二开口造成影响,有可以进一步提高第一开口防止大视角下色偏的能力。通过调节开口局部的侧壁的倾斜程度,这样进一步提高第一开口防止大视角下色偏的能力的同时,还可以使第一开口各个方向的侧壁的改善大视角下色偏的能力保持一致。提高大视角下防色偏性能的均一性,从而改善各个方向上的视角色偏,避免不同方向的观看角度下色偏被改善的程度不同。当然,这里仅以第一开口的侧壁设计为例说明;在本发明的其他可选实施例中,第二开口、第三开口均可以依照上述提供的原理及方法进行设计,再次不在赘述。如图22所示,图22是本发明实施例提供的又一种有机发光显示面板的像素定义层结构示意图。其中,本实施例与上述各实施例相同之处不在赘述。可选的,第一开口1511的底面开口152的大小与第二开口1512的底面开口152的大小一致。这样,可以保证第一开口中的有机发光材料与阳极接触的面积与第二开口中的有机发光材料与阳极接触的面积保持一致,保证两个开口中有机发光材料的与阳极的接触性能一致,保证发光能力的一致。可选的,第一开口1511的侧壁154与第一底面1501的夹角为θ1,第二开口1512的侧壁154与第一底面1501的夹角为θ2。其中,90°≥θ1>θ2。也就是说,第二开口1512的侧壁154的倾斜程度大于第一开口1511的侧壁154的倾斜程度。可选的,第二开口1512的侧壁154在各个截面所呈现的倾斜程度相同,第一开口1511的侧壁154在各个截面所呈现的倾斜程度相同。这样,可以使位于开口中各个方位的侧壁的改善视角色偏的程度一致,提高大视角下防色偏性能的均一性,从而改善各个方向上的视角色偏。通过本实施例提供的设计,可以通过第一开口侧壁的倾斜程度小于第二开口侧壁的倾斜程度来补偿侧壁高度不同带来的开口率方面的差异。具体的,如果90°>θ1,且90°>θ2,随着侧壁高度的增加,顶面开口的尺寸也增大。由于第一开口的底面开口的大小与第二开口的底面开口的大小一致,如果第一开口的侧壁的高度大于第二开口的侧壁的高度则第一开口的顶面开口会大于第二开口的顶面开口,对像素开口率的一致性造成影响。而本实施例提供的方法可以保证第一开口于第二开口的顶面开口保持一致。在通过调节开口侧壁的倾斜程度进一步改善显示面板大视角下色偏问题的同时,还可以通过本实施例提供的调节侧壁倾斜程度的方式保证不同颜色像素的开口率不变。图23是本发明实施例提供的又一种有机发光显示面板俯视图。其中,本实施例与上述各实施例相同之处不在赘述。不同的,本实施例中第一开口在衬底上的正投影图案的边为非直线形状。也就是说,第一开口的侧壁为凹凸表面。第二开口在衬底上的正投影图案的边为直线状,也就是说,第二开口的侧壁为平滑状。可选的,第一开口在衬底上的正投影图案的边为折线或波浪线。这样,可以增加第一开口中有机发光材料所发射的光线受到像素定义层折射、反射、散射的程度,增大第一开口中侧壁的面积,使波长较长的光可以有更多的机会进入像素定义层中,充分的被散射、折射和反射,从而增大在大视角下这类波长较长的光的占比。同时可以增大第一开口中侧壁与薄膜封装层的接触界面。增加膜层紧密度,防止由于第一开口侧壁过高且坡度过陡造成膜层分离。本发明还提供了一种显示装置,包括本发明提供的有机发光显示面板。如图24所示,图24是本发明实施例提供的一种显示装置的结构示意图。显示装置1000包括本发明上述任一实施例提供的有机发光显示面板100。图24实施例仅以手机为例,对显示装置1000进行说明,可以理解的是,本发明实施例提供的显示装置,可以是电脑、电视、车载显示装置等其他具有显示功能的显示装置,本发明对此不作具体限制。本发明实施例提供的显示装置,具有本发明实施例提供的显示面板的有益效果,具体可以参考上述各实施例对于显示面板的具体说明,本实施例在此不再赘述。以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属
技术领域
的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1