半导体装置的制作方法

文档序号:15940104发布日期:2018-11-14 03:01阅读:125来源:国知局

本发明涉及半导体装置。

背景技术

以往,已知有在半导体装置中,切断对未动作的被控制电路供给的电源,削减被控制电路中的漏电电流的技术。在该技术中,在半导体装置中,在电源线与被控制电路之间设置电源开关电路,在使被控制电路动作的情况下经由电源开关电路向被控制电路供给电源电压,在不使被控制电路动作的情况下通过电源开关电路切断电源电压的供给。

具体而言,例如,已知有具有切换针对可切断电源区域的电源的供给和切断的开关单元的半导体装置等(例如,专利文献1等)。

专利文献1:日本特开2013-110419号公报

专利文献2:日本特开2016-001652号公报

专利文献3:日本特开2011-159810号公报

专利文献4:日本特开2011-243794号公报

专利文献5:日本特开2012-234593号公报

然而,以往,未研究出与不同种类的被控制电路对应的具体的电源开关电路的结构。



技术实现要素:

公开的技术是鉴于上述情况为了解决该问题而完成的,目的在于提供一种与不同种类的被控制电路对应的电源开关电路。

公开的技术是一种半导体装置,其特征在于,第一电路,形成于半导体基板;第二电路,形成于上述半导体基板;第一电源线;第二电源线,与上述第一电路连接;第一接地线;第三电源线;第四电源线,与上述第二电路连接;第二接地线;第一开关电路,该第一开关电路具有源极/漏极的一端与上述第一电源线连接且另一端与上述第二电源线连接的第一开关晶体管、和与上述第二电源线电连接的上述半导体基板的阱抽头;以及第二开关电路,该第二开关电路具有源极/漏极的一端与上述第三电源线连接且另一端与上述第四电源线连接的第二开关晶体管,不具有与上述第四电源线电连接的上述半导体基板的阱抽头。

能够提供与不同种类的被控制电路对应的电源开关电路。

附图说明

图1是对功率门控进行说明的图。

图2是对第一实施方式的电源开关电路进行说明的图。

图3是表示第一实施方式的半导体装置的一个例子的图。

图4是表示第一实施方式的电源开关电路的示意图。

图5是对第一实施方式的第一电源开关电路的电源与阱抽头区域的连接进行说明的图。

图6是表示第一实施方式的第一电源开关电路的布局的图。

图7是表示第一实施方式的第一电源开关电路的剖视图的图。

图8是对第一实施方式的第一电源开关电路与被控制电路的连接进行说明的图。

图9是对第一实施方式的第二电源开关电路进行说明的图。

图10是表示第一实施方式的第二电源开关电路的布局的第一图。

图11是表示第一实施方式的第二电源开关电路的剖视图的图。

图12是表示第一实施方式的第二电源开关电路的布局的第二图。

图13是对第一实施方式的半导体装置的电源线进行说明的图。

图14是表示第二实施方式的电源开关电路的示意图。

图15是对第二实施方式的第一电源开关电路的电源与阱抽头区域的连接进行说明的图。

图16是对第二实施方式的第二电源开关电路进行说明的图。

图17是表示第三实施方式的第一电源开关电路的布局的图。

图18是对finfet的概要进行说明的示意图。

图19是对纳米线晶体管的概要进行说明的示意图。

具体实施方式

(第一实施方式)

以下,参照附图,在第一实施方式的说明之前,对功率门控进行说明。

图1是对功率门控进行说明的图。在功率门控中,在半导体装置1内的电源线vdd与被控制电路2之间,插入mos(metal-oxide-semiconductor:金属-氧化物-半导体)开关3。被控制电路2被控制来自电源线vdd的电源电压的供给。mos开关3是控制朝向被控制电路2的电源电压的供给/切断的电源开关电路的一个例子。

在半导体装置1中,在被控制电路2的动作停止时,mos开关3被pmu(powermanagementunit:电源管理单元)4截止,切断朝向被控制电路2的电源电压的供给。另外,在半导体装置1中,在被控制电路2动作时,mos开关3被pmu4导通。若mos开关3被导通,则用于向被控制电路2供给电源电压的电源线的virtualvdd(以下,电源线vvdd)与电源线vdd连接,向被控制电路2供给电源电压。

功率门控是像这样控制朝向被控制电路2的电源电压的供给/切断,从而抑制被控制电路2中的漏电电流的产生的低消耗电力技术。

然而,在一般的半导体装置中,作为被控制电路,安装有各种种类的电路。具体而言,例如,在作为被控制电路的电路中,包含标准单元等逻辑电路、sram(staticrandomaccessmemory:静态随机存取存储器)等ram电路、模拟宏电路等。所谓的模拟宏电路,例如,是将来自外部装置的模拟信号转换为数字信号的模拟数字转换电路(adc)、将数字信号转换为模拟信号的数字模拟转换电路(dac)等。

然而,有不光对晶体管的源极、漏极,还对基板给予电位,来控制晶体管的阈值电压的情况。在以下的说明中,将用于对基板给予电位的区域称为阱抽头区域。

在这里,有标准单元不具有阱抽头区域的情况。在该情况下,需要在配置标准单元的区域,与标准单元分立地配置阱抽头区域。另外,在标准单元为被控制电路的情况下,在电源开关电路内配置阱抽头区域。

对此,例如有模拟宏电路、存储器电路等在其电路内设置有阱抽头区域的情况。有在具有这样的阱抽头区域的电路为被控制电路的情况下不使用电源开关电路内的阱抽头区域的情况。

在以下说明的实施方式中,着眼于上述的点,在半导体装置中,使用与未设置用于向基板给予电位的区域的被控制电路和设置有用于向基板给予电位的区域的被控制电路分别对应的电源开关电路。

更具体而言,在半导体装置中,对未设置用于向基板给予电位的区域的被控制电路,通过具有阱抽头区域的电源开关电路,来控制电源电压的供给/切断。另外,对设置有用于向基板给予电位的区域的被控制电路,通过不具有阱抽头区域的电源开关电路,来控制电源电压的供给/切断。

在本实施方式中,如以上那样,通过使用与不同种类的被控制电路对应的电源开关电路,从而能够在半导体装置中,削减与未使用的阱抽头区域相当的量的面积,且能够有助于半导体装置的小型化。

以下,参照图2,对本实施方式的电源开关电路进行说明。图2是对第一实施方式的电源开关电路进行说明的图。图2(a)是表示设置有阱抽头区域的电源开关电路的概要的图,图2(b)是表示未设置有阱抽头区域的电源开关电路的概要的图。

图2(a)所示的电源开关电路200具有电源开关部21和与电源开关部21的两端相邻的阱抽头区域22-1、22-2。与此相对,图2(b)所示的电源开关电路210是电源开关部31本身,不具有阱抽头区域22-1、22-2。此外,在本实施方式中,电源开关部21和电源开关部31的结构相同。

因此,在图2的x-y轴上,电源开关电路210的x轴方向的宽度x2比电源开关电路200的x轴方向的宽度x1窄。此外,电源开关电路200与电源开关电路210的y轴方向的宽度y1和宽度y2相等。

这样,在本实施方式中,在半导体装置中,根据被控制电路的种类分开使用电源开关电路200和电源开关电路210,从而与对全部的被控制电路使用电源开关电路200的情况相比,能够减小安装面积。

在以下的说明中,有将电源开关电路200称为第一电源开关电路,将电源开关电路210称为第二电源开关电路的情况。电源开关电路200和电源开关电路210的详细内容后述。

接下来,对本实施方式的半导体装置进行说明。图3是表示第一实施方式的半导体装置的一个例子的图。图3(a)示出半导体装置30中的配置被控制电路的区域41的俯视图。图3(b)示出区域43的外侧的放大图。图3(c)示出区域42的外侧的放大图。

本实施方式的半导体装置30中的区域41具有主要配置标准单元(逻辑电路)40等的区域42和未配置标准单元(逻辑电路)40等的区域43。另外,区域41具有电路50,上述电路50具有用于向ram、模拟电路等的基板给予电位的区域。

在以下的说明中,将主要配置标准单元(逻辑电路)40等的区域42称为第一区域42,将未配置标准单元(逻辑电路)40等的区域43称为第二区域43。第二区域43主要配置电源开关电路210等。另外,在第一区域42中,电源开关电路200例如配置成交错状。

另外,区域41具有与标准单元40等连接的电源布线206、207。电源布线206、207沿x方向延伸。另外,如图3所示,电源布线206、207也可以在区域41(第一区域42)的两端中断。另外,对于后述的布线306、307也可以在区域41(第二区域43)的末端中断。此外,在图3中,图示出了电源布线206、207的一部分,也可以有多个电源布线206、207。

另外,在本实施方式中,如图3(b)、(c)所示,也可以在区域41的外侧(第一区域42和第二区域43的外侧),存在虚拟的布线图案95。在图3(b)中,也可以在第一区域42的外侧存在虚拟的布线图案95。另外,在图3(c)中,在第二区域43的外侧存在虚拟的布线图案95。

在这里,所谓的虚拟的布线图案95,例如,意味着未与电路的晶体管、布线等连接的布线。通过配置虚拟的布线图案95,能够提高形成布线时的制造工序的均匀性。

另外,在本实施方式中,沿x方向延伸的电源布线206、207也可以如图3(b)、图3(c)所示,在虚拟的布线图案95的跟前中断。

另外,在本实施方式中,对于后述的配置于第二区域43的电源布线306以及307也可以在虚拟的布线图案95的跟前中断。进一步,虚拟的布线图案95也可以配置为包围区域41。

另外,在与区域41相邻地配置有其它的电路区域的情况下,也可以不配置虚拟的布线图案。在该情况下,电源布线206、207、电源布线306、307也可以在相邻的其它的电路区域的跟前中断。

此外,在图3的例子中,示出了安装于第一区域42的标准单元40的一部分,在实际的第一区域42,也可以安装多个标准单元40。

第二区域43是电路50与电路50之间的区域、从电路50到区域41的端部的区域等。在第二区域43,电源开关电路210以与电路50相邻的方式,在y方向上排列配置。

这样,在本实施方式的半导体装置30中,设置有配置与标准单元40对应的电源开关电路200的第一区域42和配置与电路50对应的电源开关电路210的第二区域43。在本实施方式的半导体装置30中,由此,与对标准单元40和电路50的全部使用电源开关电路200的情况相比,能够减小第二区域43,并能够使半导体装置30小型化。

另外,有在电路50中具有与第一区域42相邻侧的末端和与第二区域43相邻侧的末端的情况。在与第一区域42相邻侧的末端配置有与第一区域内的标准单元40连接的端子51。端子51是供电路50接收标准单元40输出的信号、或供电路50输出标准单元40接收的信号。因此,从抑制信号的衰减等观点考虑,优选端子51配置于与第一区域42相邻侧的一端。另一方面,从电路配置的效率的观点来考虑,优选在电路50的未配置端子51的一侧,配置第二区域43。

此外,图3所示的端子51是一个例子,电路50所具有的端子51为1个或者2个,或也可以是4个以上。

接下来,对本实施方式的电源开关电路200以及电源开关电路210进行说明。图4是表示第一实施方式的电源开关电路的示意图。

本实施方式的电源开关电路200和电源开关电路210是1输入1输出的电源开关电路。本实施方式的电源开关电路200和电源开关电路210的电路结构相同。因此,在图4中,以电源开关电路200作为一个例子进行说明。

本实施方式的电源开关电路200具有晶体管25、缓冲器26、tin端子、tout端子、tvdd端子、tvvdd端子、tvss端子。

晶体管25是开关晶体管。缓冲器26具有逆变器27和逆变器28,驱动晶体管25。

tin端子与缓冲器26的输入连接,被输入对朝向被控制电路的电源电压的供给/切断进行控制的控制信号。tout端子与缓冲器26的输出连接,输出从tin端子输入的控制信号。tvdd端子与晶体管25的一端连接,并与电源连接。tvvdd端子与晶体管25的另一端连接,并与被控制电路连接。

晶体管25是pmos晶体管,基于从构成缓冲器26的逆变器27输出的信号而被控制导通/截止。逆变器27与tvss端子和tvdd端子连接。tvss端子是与地线连接的地线连接端子。

在本实施方式中,在晶体管25导通的情况下,tvdd端子与tvvdd端子连接,向tvvdd端子供给tvdd端子所连接的电源的电位。而且,电源的电位从tvvdd端子被供给至被控制电路。

在晶体管25截止的情况下,切断针对tvvdd端子的电位的供给。

接下来,参照图5至图7,对本实施方式的电源开关电路200进行说明。图5是对第一实施方式的第一电源开关电路的电源和阱抽头区域的连接进行说明的图。

本实施方式的电源开关电路200具有形成于p型基板201的n型阱202、203、204。另外,本实施方式的电源开关电路200具有表示电源线vdd的电源布线205、表示电源线vvdd的电源布线206以及表示电源线vss的电源布线207。

电源布线205形成在p型基板201上,与n型阱202电连接。在俯视时,电源布线206在p型基板201上横跨n型阱202、203、204地形成。电源布线206与n型阱203、204电连接。

n型阱203的至少一部分包含于阱抽头区域22-1,n型阱204的至少一部分包含于阱抽头区域22-2。

晶体管25在n型阱202中形成为连接在电源布线205与电源布线206之间。另外,晶体管25的栅电极与缓冲器26的第一级逆变器27的输出连接。逆变器27和逆变器28连接在电源布线205和电源布线207之间。

另外,在n型阱202上,形成有用于连接电源布线205和n型阱202的触头(contact)217。在n型阱203、204上,分别形成有用于连接作为电源线vvdd的电源布线206和n型阱203、204的触头213、214。

在本实施方式中,被控制电路经由n型阱203、204,将电源线vvdd的电位供给至被控制电路的基板。

此外,标准单元包含配置在沿一定方向延伸的电源布线206与电源布线207之间的晶体管等而形成。因此,在被控制电路为标准单元的情况下,被控制电路沿电源布线206、207延伸的方向排列多个而配置。在本实施方式的电源开关电路200中,由于在电源布线206、207延伸的方向(电源开关电路200的两端)上形成有阱抽头区域22-1、22-2,所以能够对标准单元高效地供给电位。

另外,标准单元40不光形成在相邻的电源布线206与电源布线207之间,也可以与未相邻的电源布线206和电源布线207连接而形成。

在以下的说明中,将电源布线206、207延伸的方向称为x轴方向(第一方向),将与x轴方向正交的方向称为y轴方向(第二方向)。

此外,在本实施方式中,为在电源开关部21的两侧,形成阱抽头区域22-1、22-2的结构,但并不限定于此。在电源开关电路200中,在仅在电源开关部21的单侧配置需要电位的供给的被控制电路的情况下,也可以形成阱抽头区域22-1、22-2中的任意一方。

接下来,参照图6和图7,对本实施方式的电源开关电路200进行说明。

图6是表示第一实施方式的第一电源开关电路的布局的图。图7是表示第一实施方式的第一电源开关电路的剖视图的图。此外,图7是图6中的x-x′剖视图。

本实施方式的电源开关电路200具有p型基板201、n型阱202~204、sti(shallowtrenchisolation:浅沟道隔离)281~283、电源布线205~207、栅电极208、p型杂质区域221~226、n型杂质区域231~234、触头212~218。

在本实施方式的电源开关电路200中,在p型基板201形成n型阱202~204。在n型阱202形成p型杂质区域221、222和n型杂质区域231。在n型阱203形成n型杂质区域233,在n型阱204形成n型杂质区域234。

另外,在本实施方式中,在p型基板201形成n型杂质区域232、p型杂质区域223~226。

p型杂质区域221的杂质浓度比p型基板201高,且形成晶体管25的源极/漏极区域。另外,晶体管25具有栅电极208、栅极绝缘膜252以及侧壁253、254。在本实施方式中,栅电极208与逆变器27的输出电连接。此外,在本实施方式中,多个晶体管25也可以并联连接。

p型杂质区域222和n型杂质区域232形成构成缓冲器26所具有的逆变器的晶体管的源极/漏极区域。p型杂质区域222的杂质浓度比p型基板201高。构成缓冲器26所具有的逆变器的晶体管具有栅电极271、栅极绝缘膜272以及侧壁273、274。

另外,在本实施方式的电源开关电路200中,在p型基板201上,在形成有n型阱202~204的区域以外的区域形成sti281~283。另外,在电源开关电路200中,在p型基板201的上方形成第一层间绝缘膜261。

此外,在图7的例子中,本实施方式的电源布线205~207等布线埋入形成在第一层间绝缘膜261的上方的第2层间绝缘膜中而形成。第2层间绝缘膜也可以是sioc膜(碳掺杂氧化硅)、多孔膜等具有所谓的低介电常数材料的绝缘膜。

在本实施方式中,n型阱202和n型阱203配置为两者之间的x轴方向的距离为l1。另外,n型阱202和n型阱204配置为两者之间的x轴方向的距离为l2。

此外,在本实施方式中,距离l1、l2为能够抑制因向n型阱202供给的电源线vdd的电位和向n型阱203以及n型阱204供给的电源线vvdd的电位的差异而产生的影响的程度的长度。

p型杂质区域221经由形成于第一层间绝缘膜261的触头212与电源布线205连接,经由形成于第一层间绝缘膜261的触头216与电源布线206连接。

p型杂质区域222经由形成于第一层间绝缘膜261的触头218与电源布线205连接。

p型杂质区域221和p型杂质区域222被sti282分离,p型杂质区域221和n型杂质区域231被sti283分离。

n型杂质区域231经由形成于第一层间绝缘膜261的触头217与电源布线205连接。

n型杂质区域233经由形成于第一层间绝缘膜261的触头213与电源布线206连接,使与配置在阱抽头区域22-1的旁边的被控制电路的n型阱连接的n型阱203和电源布线206电连接,从而向被控制电路供给电源布线206的电位。

n型杂质区域234经由形成于第一层间绝缘膜261的触头214与电源布线206连接,使与配置在阱抽头区域22-2的旁边的被控制电路的n型阱连接的n型阱204和电源布线206电连接,从而向被控制电路供给电源布线206的电位。

p型杂质区域223和p型杂质区域224分别经由形成于第一层间绝缘膜261的触头215与电源布线207连接。p型杂质区域223和p型杂质区域224使配置在阱抽头区域22-1的旁边的被控制电路的p型阱或者p型基板与电源布线207连接,从而向被控制电路供给电源布线207的电位。

p型杂质区域225和p型杂质区域226分别经由形成于第一层间绝缘膜261的触头215与电源布线207连接。p型杂质区域225和p型杂质区域226使配置在阱抽头区域22-2的旁边的被控制电路的p型阱或者p型基板与电源布线207连接,从而向被控制电路供给电源布线207的电位。

像这样,在本实施方式的电源开关电路200中,阱抽头区域22-1、22-2的n型杂质区域233、234与电源线vvdd连接,电源开关部21的p型杂质区域221与电源线vdd连接。

另外,在本实施方式中,电源开关部21的n型阱202与阱抽头区域22-1的n型阱203、阱抽头区域22-2的n型阱204配置为两者之间分别成为距离l1、l2。

在本实施方式中,触头212~218例如具有钨膜和氮化钛的胶膜。另外,电源布线205~207例如具有铜和钽或者氮化钽的阻挡金属膜。第一层间绝缘膜261例如具有氧化硅膜。sti281~283例如具有氧化硅膜。

另外,在本实施方式中,栅电极208、271例如也可以将多晶硅作为材料、或将氮化钛等金属作为材料。栅极绝缘膜252、272也可以将氧化硅膜或铪、锆、镧、钇、铝、钛或者钽的一种以上的任意的氧化物作为材料。

此外,图6所示的布局示有平面型的晶体管的布局,但布局的方法并不限定于此。电源开关电路200例如也可以配置鳍式晶体管(finfet)、纳米线晶体管等。在该情况下,沿y轴方向延伸的栅电极也可以配置为在俯视时横跨沿x轴方向延伸的finfet结构的鳍片、纳米线晶体管的纳米线。对于finfet结构的晶体管、纳米线晶体管的详细内容后述。

接下来,参照图8,对电源开关电路200和被控制电路的连接进行说明。图8是对第一实施方式的第一电源开关电路和被控制电路的连接进行说明的图。

图8示有在本实施方式的电源开关电路200的阱抽头区域22-2的右侧安装有被控制电路91和被控制电路92的例子。被控制电路91、92是标准单元的一个例子。

被控制电路91是具有输入端子t1和输出端子t2的逆变器,被控制电路92是具有输入端子t3和输出端子t4的nand电路。

在图8的例子中,在被控制电路91和被控制电路92中,n型阱93连接阱抽头区域22-2的n型阱204,从而向n型阱93供给电位。

此外,逆变器、nand电路是标准单元的一个例子,标准单元并不限定于此。

接下来,参照图9,对作为本实施方式的第二电源开关电路的电源开关电路210进行说明。

图9是对第一实施方式的第二电源开关电路进行说明的图。本实施方式的电源开关电路210在不具有阱抽头区域22-1、22-2的点与电源开关电路200不同。

电源开关电路210具有形成于p型基板201的n型阱302。另外,本实施方式的电源开关电路210具有表示电源线vdd的电源布线305、表示电源线vvdd的电源布线306以及表示电源线vss的电源布线307。

电源布线305形成在p型基板201上且与n型阱302电连接。在俯视时,电源布线306在p型基板201上横跨n型阱302而形成。

晶体管35在n型阱302中,连接在电源布线305与电源布线306之间而形成。另外,晶体管35的栅电极与缓冲器36的第一级逆变器37的输出连接。此外,本实施方式的晶体管35也可以是与晶体管25相同的结构。另外,缓冲器36也可以是与缓冲器26相同的结构。在这里,所谓的相同的结构,例如,包含基于相同的设计布局而形成的电路、晶体管,且包含由于制造上的差别而在构成晶体管25以及35、缓冲器26以及36的各结构的大小、形状上产生了差异的结构。

接下来,参照图10和图11,对本实施方式的电源开关电路210进行说明。

图10是表示第一实施方式的第二电源开关电路的布局的图。图11是表示第一实施方式的第二电源开关电路的剖视图的图。此外,图11是图10中的x-x′剖视图。

本实施方式的电源开关电路210具有电源开关部31和形成于电源开关部31的两侧的端盖区域32-1、32-2。端盖区域32-1、32-2是形成有虚拟的晶体管结构的区域。

在本实施方式中,通过设置端盖区域32-1、32-2,能够保持晶体管的制造工序的均匀性,并能够使晶体管的特性稳定。

本实施方式的电源开关电路210具有n型阱302、电源布线305~307、栅电极308、p型杂质区域321~324、n型杂质区域331~336、触头312、316~318。

在本实施方式的电源开关电路210中,在p型基板201形成n型阱302。在n型阱302形成p型杂质区域321~324和n型杂质区域331。另外,在本实施方式中,在p型基板201形成n型杂质区域332~336。

p型杂质区域321的杂质浓度比p型基板201高,形成晶体管35的源极/漏极区域。另外,晶体管35具有栅电极308、栅极绝缘膜352以及侧壁353、354。在本实施方式中,栅电极308与逆变器37的输出电连接。此外,在本实施方式中,多个晶体管35也可以并联连接。

p型杂质区域322和n型杂质区域332形成构成缓冲器36所具有的逆变器的晶体管的源极/漏极区域。p型杂质区域322的杂质浓度比p型基板201高。另外,构成缓冲器36所具有的逆变器的晶体管具有栅电极371、栅极绝缘膜372以及侧壁373、374。

端盖区域32-1具有未与电源布线305、306、307连接的p型杂质区域323和n型杂质区域333、334。另外,端盖区域32-2具有未与电源布线305、306、307连接的p型杂质区域324和n型杂质区域335、336。

端盖区域32-1、32-2形成为在电源开关部31的两侧与电源开关部31相邻(邻接)。

另外,在本实施方式的电源开关电路210中,在p型基板201上,在形成有n型阱302的区域以外的区域形成sti381~383。并且,在电源开关电路210中,在p型基板201的上方形成第一层间绝缘膜261。

p型杂质区域321经由形成于第一层间绝缘膜261的触头312与电源布线305连接,经由形成于第一层间绝缘膜261的触头316与电源布线306连接。

p型杂质区域322经由形成于第一层间绝缘膜261的触头318与电源布线305连接。

p型杂质区域321和p型杂质区域322被sti382分离,p型杂质区域321和n型杂质区域331被sti383分离。

n型杂质区域331经由形成于第一层间绝缘膜261的触头317与电源布线305连接,并使n型阱302与电源布线305连接。

像这样,由于本实施方式的电源开关电路210不具有阱抽头区域,所以x方向的宽度比电源开关电路200小。因此,通过在第二区域43配置电源开关电路210,与在第二区域43配置了电源开关电路200的情况相比,能够缩小电路整体的面积。

另外,在本实施方式中,在端盖区域32-1以及32-2的虚拟的晶体管结构中,无需供给电源线vvdd的电位。因此,与电源开关电路200不同,电源开关电路210不具有需要与n型阱302电分离的供给电源线vvdd的电位的n型阱。因此,由于端盖区域32-1和32-2能够配置在电源开关部31的附近,所以电源开关电路210与电源开关电路200相比能够较小地形成。

此外,在本实施方式中,p型杂质区域323和p型杂质区域324均配置在n型阱302内,但例如,p型杂质区域323和p型杂质区域324也可以形成在n型阱302的外部,即p型基板201。

此外,本实施方式的电源开关电路210具有端盖区域32-1、32-2,但也可以不设置端盖区域32-1、32-2。在以下的图12中,对未设置端盖区域32-1、32-2的电源开关电路210a进行说明。

图12是表示第一实施方式的第二电源开关电路的布局的第二图。

图12所示的电源开关电路210a仅在未设置端盖区域32-1、32-2这点与电源开关电路210不同。

在图12所示的电源开关电路210a中,能够比电源开关电路210进一步减少与未设置端盖区域32-1、32-2对应的量而进一步小型化。

此外,在本实施方式中,触头312、316~318例如具有钨膜和氮化钛的胶膜。另外,电源布线305~307例如具有铜和钽或者氮化钽的阻挡金属膜。sti381~383例如具有氧化硅膜。

另外,在本实施方式中,栅电极308、371例如也可以以多晶硅为材料、或以氮化钛等金属为材料。栅极绝缘膜352、372也可以以氧化硅膜或铪、锆、镧、钇、铝、钛或者钽的一种以上的任意一种的氧化物为材料。

接下来,参照图13,对本实施方式的半导体装置30的电源线进行说明。图13是对第一实施方式的半导体装置的电源线进行说明的图。图13是对图3所示的半导体装置30的第二区域43的附近放大后的图。

半导体装置30具有电源线131、132、133。电源线131用于向电源开关电路200和电源开关电路210的电源线vdd供给电位。电源线132用于向电源开关电路200以及电源开关电路210的电源线vss供给电位。电源线133用于向电源开关电路200和电源开关电路210的电源线vvdd供给电位。

在图13所示的半导体装置30中,在第一区域42配置有标准单元40,电源线131、132、133为了与多个电源开关电路200和电源开关电路210连接,而沿y轴方向延伸。

此外,多个电源线131也可以相互电连接,多个电源线132也可以相互电连接,多个电源线133也可以相互电连接。具体而言,与多个电源线131连接的布线、与多个电源线132连接的布线、与多个电源线133连接的布线也可以分别形成于与形成有电源线131、132、133的布线层不同的布线层(未图示)。

此外,在图13中,电源线131、132、133配置为在俯视时与电源开关电路200或者电源开关电路210重叠,但并不限定于此。在本实施方式中,也可以只有电源线131在俯视时与电源开关电路200或者电源开关电路210重叠,而电源线132、133配置于第一区域42或者第二区域43的任意的位置。

另外,在图13中,具有电源线131、132、133,但并不限定于此。在图13所示的半导体装置30中,为了使针对电源线vss的连接点与针对电源线vvdd的连接点共用化,设置有电源线132、133,但在不需要共用化的情况下,也可以仅设置电源线131。

如以上那样,根据本实施方式,能够提供与不同种类的被控制电路对应的电源开关电路。

具体而言,根据本实施方式,能够提供与未设置用于向基板供给电位的区域的被控制电路和设置了用于向基板供给电位的区域的被控制电路分别对应的电源开关电路200和电源开关电路210。此时,由于电源开关电路210未设置阱抽头区域22-1、22-2,所以能够使电源开关电路210比电源开关电路200小型化。因此,根据本实施方式,能够有助于半导体装置30的小型化。

此外,也可以向本实施方式的电路50和标准单元40供给基于相同的电源线vdd的电源线vvdd的电位。具体而言,也可以将电源布线205和电源布线305电连接,将电源布线206和电源布线306电连接,将电源布线207和电源布线307电连接。

另外,也可以向电路50和标准单元40供给基于不同的电源线vdd的电源线vvdd的电位。

(第二实施方式)

以下,参照附图对第二实施方式进行说明。在第二实施方式中,在电源开关部为具有2级缓冲器以及晶体管的2输入2输出的点与第一实施方式不同。因此,在以下的第二实施方式的说明中,仅对与第一实施方式的不同点进行说明,对于具有与第一实施方式相同的功能结构的部分,标注与在第一实施方式的说明中使用的附图标记相同的附图标记,并省略其说明。

图14是表示第二实施方式的电源开关电路的示意图。在图14中,以电源开关电路200a作为一个例子进行说明。

本实施方式的电源开关电路200a具有晶体管25、45、缓冲器26、46、tin1端子、tout1端子、tin2端子、tout2端子、tvdd端子、tvvdd端子、tvss端子。

tin1端子与缓冲器26的输入连接,被输入控制朝被控制电路的电源电压的供给/切断的控制信号。tout1端子与缓冲器26的输出连接。

另外,本实施方式的晶体管45是开关晶体管。缓冲器46具有逆变器47和逆变器48,对晶体管45进行驱动。

tin2端子与缓冲器46的输入连接,被输入控制朝被控制电路的电源电压的供给/切断的控制信号。tout2端子与缓冲器46的输出连接,输出从tin2端子输入的控制信号。tvdd端子与晶体管45的一端连接,并与电源连接。tvvdd端子与晶体管45的另一端连接,并与被控制电路连接。

晶体管45是pmos晶体管,基于从构成缓冲器46的逆变器47输出的信号来控制导通/截止。逆变器47通过tvss端子和tvdd端子,连接在电源线vss与电源线vdd之间。tvss端子是与地线连接的地线连接端子。

在本实施方式中,在晶体管25或者45导通的情况下,tvdd端子与tvvdd端子连接,向tvvdd端子供给tvdd端子所连接的电源的电位。而且,电源的电位被从tvvdd端子供给至被控制电路。另外,在晶体管25以及45双方导通的情况下,与仅一方导通的情况相比能够以较大的电流将电源的电位供给至被控制电路。

接下来,参照图15,对本实施方式的电源开关电路200a的电源和阱抽头区域22-1、22-2的连接进行说明。图15是对第二实施方式的第一电源开关电路的电源和阱抽头区域的连接进行说明的图。

在本实施方式的电源开关电路200a中,电源开关部21a具有阱抽头区域22-1、22-2。

在电源开关部21a中,晶体管45连接在表示电源线vdd的电源布线205与表示电源线vvdd的电源布线206之间,晶体管45的栅电极与缓冲器46的第一级逆变器47连接。缓冲器46连接在电源布线205与电源布线207之间连接。

接下来,参照图16,对本实施方式的电源开关电路210b进行说明。

图16是对第二实施方式的第二电源开关电路进行说明的图。

在本实施方式的电源开关电路210b中,在p型基板201形成n型阱302。另外,本实施方式的电源开关电路210b具有表示电源线vdd的电源布线305、表示电源线vvdd的电源布线306以及表示电源线vss的电源布线307。

晶体管55在n型阱302中,形成在电源布线305与电源布线306之间。另外,晶体管55的栅电极与缓冲器56的第一级逆变器57的输出连接。此外,本实施方式的晶体管55也可以是与晶体管35相同的结构。

逆变器57和逆变器58连接在电源布线305与电源布线307之间。

如以上那样,在本实施方式中,在电源开关电路200a和电源开关电路210b中,将电源开关部21a、31a设为2输入2输出。此外,电源开关部的结构并不限定于第一和第二实施方式所示的结构。电源开关部只要具有作为切换电源电压的供给/切断的开关的晶体管,可以是任意的结构。

(第三实施方式)

以下参照附图对第三实施方式进行说明。在第三实施方式中,在增加了形成晶体管25的源极/漏极区域的p型杂质区域221与电源布线205、206的连接点的点与第一实施方式。因此,在以下的第三实施方式的说明中,仅对与第一实施方式的不同点进行说明,对于具有与第一实施方式相同的功能结构的部分,标注与在第一实施方式的说明中使用的附图标记相同的附图标记,并省略其说明。

图17是表示第三实施方式的第一电源开关电路的布局的图。在本实施方式的电源开关电路200b中,在形成于电源开关部21b的n型阱202的p型杂质区域221的区域171,使电源布线205和电源布线206形成分枝。

另外,在本实施方式中,在电源开关部21b的p型杂质区域221的区域172,形成有与电源线vdd连接的电源布线205b。

在区域171中,形成有从电源布线205分枝(分支)出的电源布线205a和从电源布线206分枝出的电源布线206a。

电源布线205a通过触头173与p型杂质区域221连接。电源布线206a通过触头174与p型杂质区域221连接。电源布线205b通过触头175与p型杂质区域221连接。

换句话说,本实施方式的p型杂质区域221与电源布线205、205a、205b连接,与第一和第二实施方式相比较可知,与电源线vdd的连接点增加了。因此,在本实施方式中,能够减少电源布线的电阻。

此外,在图17中,对电源开关电路200b进行了说明,但在电源开关电路210中也同样地可以使电源布线305和电源布线306分支,增加与晶体管35的p型杂质区域321的连接点。

接下来,参照图18和图19,对finfet和纳米线晶体管进行说明。

图18是对finfet的概要进行说明的示意图。在图18所示的finfet181中,与二维结构的mos晶体管不同,源极401和漏极402具有被称为鳍片403的隆起的立体结构。而且,在finfet181中,栅极404配置为围绕鳍片403。

在finfet181中,由于通过具有该鳍片403的结构,沟道区域形成在鳍片403的3个面,所以能够改善沟道的控制性。

图19是对纳米线晶体管的概要进行说明的示意图。图19所示的晶体管191形成从形成在si基板501上的sti502突出的源极区域503和漏极区域504。

另外,在晶体管191中,源极区域503和漏极区域504通过纳米线506连接,栅极绝缘膜507形成为包含纳米线506,栅电极505形成为覆盖栅极绝缘膜507。若晶体管191导通,则电流流过纳米线506。

在第一至第三晶体管25、35、45、55中,也可以使用在图18、图19中示出的finfet、纳米线晶体管。

以上,基于各实施方式进行了本发明的说明,但本发明并不限定于上述实施方式所示的要件。关于这些点,能够在不损害本发明的主旨的范围内进行变更,并能够根据其应用方式适当地确定。

附图标记说明

21、21a、31、31a…电源开关部;22-1、22-2…阱抽头区域;25、35、45、55…晶体管;26、36、46、56…缓冲器;30…半导体装置;32-1、32-2…端盖区域;40…标准单元;42…第一区域;43…第二区域;50…ram;200、200a、200b、210、210a、210b…电源开关电路;202~204、302~304…n型阱;205~207、305~307…电源布线;208、308…栅电极;221~226、321~324…p型杂质区域;231~234、331~336…n型杂质区域;281~283、381~383…sti。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1