非易失性存储器单元及其形成方法与流程

文档序号:17813826发布日期:2019-06-05 21:21阅读:275来源:国知局
非易失性存储器单元及其形成方法与流程

本发明实施例是涉及非易失性存储器单元及其形成方法。



背景技术:

用于非易失性地存储信息的存储器装置在许多应用中广泛使用。非易失性半导体存储器的几个实例包括只读存储器(readonlymemory,rom)、可编程只读存储器(programmablereadonlymemory,prom)、可擦除可编程只读存储器(erasableprogrammablereadonlymemory,eprom)、电可擦除可编程只读存储器(electricallyerasableprogrammablereadonlymemory,eeprom)及快闪存储器。

快闪存储器是可被电擦除及重新编程的非易失性计算机存储媒体。快闪是被大块地擦除及编程的电可擦除可编程只读存储器的一种类型。快闪存储器的成本远低于字节可编程(byte-programmable)eeprom。快闪存储器经常用于计算机、电话、个人数字助理、全球定位系统(globalpositioningsystem,gps)接收器、照相机、以及各种其他电子装置中。

快闪存储器单元类似于标准金属氧化物半导体场效晶体管(metaloxidesemiconductorfieldeffecttransistor,mosfet),只不过晶体管具有两个栅极:顶部控制栅极、在所述顶部控制栅极下面的浮动栅极,所述浮动栅极在所有侧上通过氧化物层被绝缘。浮动栅极位于控制栅极与沟道之间,且通过氧化物层被电隔离。被置于浮动栅极上的任何电子均被陷获其中。当浮动栅极保存电荷时,所述电荷会降低来自控制栅极的电场,从而改变单元的阈值电压(thresholdvoltage,vt)。在读出期间,对控制栅极施加介于可能阈值电压之间的中间电压,且基于浮动栅极中的电荷,视单元的实际vt而定,金属氧化物半导体场效晶体管沟道变为导通的或保持绝缘。感测穿过金属氧化物半导体场效晶体管沟道的电流,从而再现所存储数据。

处于原始设定状态(defaultstate)的单级快闪单元(single-levelflashcell)在逻辑上等效于二进制(binary)“1”值,这是因为在对控制栅极施加适当电压的条件下将有电流流过沟道,使得位线电压被拉低。通常,通过对快闪存储器单元中的浮动栅极晶体管施加电压以使电子被陷获在晶体管的浮动栅极中来将快闪存储器单元编程或设定为二进制“0”值。热载流子注入(hotcarrierinjection,hci)是数种非易失性存储器技术(例如可擦除可编程只读存储器单元及快闪单元)的操作基础。快闪存储器利用热载流子注入的原理,通过跨越栅极氧化物谨慎地注入载流子以将浮动栅极充电。此种充电将阈值电压变更成表示二进制“0”值。通常,通过对浮动栅极晶体管施加电压以移除被陷获在浮动栅极晶体管的浮动栅极中的任何电荷来擦除快闪存储器单元。

热载流子注入会诱发其中固定电荷或载流子被陷获在栅极氧化物中的浮动栅极氧化物陷获(floatinggateoxidetrapping)。此被称为热载流子注入损坏(hcidamage),其是使写入-擦除循环的数目受限的因素之一。浮动栅极氧化物陷获可在擦除期间引起阈值电压增大并在写入期间引起阈值电压减小,这均影响存储器单元具有明显不同的“1”电荷状态与“0”电荷状态的能力。因此,热载流子注入损坏造成单元电流降级并使得非易失性存储器逻辑裕度窗(non-volatilememorylogicmarginwindow)随时间关闭。其中“1”与“0”不再能被区分开的写入-擦除循环的数目定义了非易失性存储器的耐久性(endurance)。鉴于热载流子注入的不利影响,不存在令人满意的用于增强非易失性存储器单元的耐久性的方法。



技术实现要素:

根据本发明的一些实施例,一种非易失性存储器单元包括:衬底;第一氧化物层,位于所述衬底之上;浮动栅极,位于所述第一氧化物层之上;第二氧化物层,位于所述浮动栅极之上;以及控制栅极,至少局部地位于所述第二氧化物层之上。所述第一氧化物层及所述第二氧化物层中的至少一者包含氟。

附图说明

结合附图阅读以下详细说明,会最佳地理解本发明的各方面。应注意,各种特征未必按比例绘制。事实上,为使论述清晰起见,可任意增大或减小各种特征的尺寸及几何形状。在说明书通篇及所有图式中,相同的参考编号表示相同的特征。

图1示出根据本发明一些实施例的快闪存储器单元的示例性结构,其中发生浮动栅极氧化物陷获。

图2示出根据本发明一些实施例的快闪存储器单元随着写入/擦除循环的增加而发生的示例性阈值电压改变。

图3示出根据本发明一些实施例的快闪存储器单元中的示例性氟植入。

图4示出根据本发明一些实施例的标准快闪存储器单元与掺氟快闪存储器单元之间的耐久性能比较。

图5示出根据本发明一些实施例的堆叠式栅极快闪存储器单元的示例性结构。

图6示出根据本发明一些实施例的分离式栅极快闪存储器单元的示例性结构。

图7示出根据本发明一些实施例用于在快闪存储器单元中进行氟植入的示例性方法。

图8示出根据本发明一些实施例用于在快闪存储器单元中进行氟植入的另一示例性方法。

图9示出根据本发明一些实施例用于在快闪存储器单元中进行氟植入的又一示例性方法。

图10是示出根据本发明一些实施例用于在快闪存储器单元中进行氟植入的示例性方法的流程图。

图11是示出根据本发明一些实施例用于在快闪存储器单元中进行氟植入的另一示例性方法的流程图。

具体实施方式

以下公开内容阐述用于实作标的物的不同特征的各种示例性实施例。以下阐述组件及构造的具体实例以简化本发明。当然,这些仅为实例且不旨在进行限制。例如,以下说明中将第一特征形成在第二特征之上或第二特征上可包括其中第一特征与第二特征被形成为直接接触的实施例,且也可包括其中第一特征与第二特征之间可形成有额外特征、从而使得所述第一特征与所述第二特征可能不直接接触的实施例。另外,本发明可能在各种实例中重复使用参考编号及/或字母。这种重复使用是出于简洁及清晰的目的,而不是自身表示所论述的各种实施例及/或配置之间的关系。

此外,为易于说明,本文中可能使用例如“在...下方(beneath)”、“在...下面(below)”、“下部的(lower)”、“上方(above)”、“上部的(upper)”等空间相对性用语来阐述图中所示出的一个元件或特征与另一(些)元件或特征的关系。所述空间相对性用语旨在除图中所绘示的取向外还囊括装置在使用或操作中的不同取向。设备可具有其他取向(旋转90度或其他取向),且本文中所用的空间相对性描述语可同样相应地进行解释。除非另有明确说明,否则例如“附装(attached)”、“贴附(affixed)”、“连接(connected)”及“内连(interconnected)”等用语指代其中各结构直接地或通过中间结构间接地紧固或附装到彼此的关系并且指代可移动或刚性附装或关系。

除非另有定义,否则本文中所使用的所有用语(包括技术用语及科学用语)均具有与本发明所属领域中的普通技术人员通常所理解的含义相同的含义。应进一步理解,例如常用词典中所定义的用语等用语应被解释为具有与其在相关技术及本发明的上下文中的含义相一致的含义,且不应被解释成具有理想化或过度形式化意义,除非本文中明确如此定义。

现在将详细参照本发明的各实施例,所述实施例的实例在附图中示出。只要有可能,便在图式及说明中使用相同的参考编号来指代相同或相似的部件。在本发明中,用语“存储器单元”与“单元”可互换使用。

热载流子注入(hci)是数种非易失性存储器技术(例如可擦除可编程只读存储器单元及快闪单元)的操作基础。快闪存储器利用热载流子注入的原理,通过跨越栅极氧化物谨慎地注入载流子以将浮动栅极充电。热载流子注入会诱发其中固定电荷或载流子被陷获在栅极氧化物中的浮动栅极氧化物陷获,且可使阈值电压增大、使单元电流降级,并因存储器具有明显不同的“1”电荷状态与“0”电荷状态的能力降级而使存储器具有不良耐久性。

本发明旨在通过氟掺杂来改善非易失性存储器单元(例如,快闪存储器单元)的耐久性。本发明提供包括掺氟栅极氧化物层的非易失性存储器单元的各种实施例。在一个实施例中,掺氟栅极氧化物层位于存储器单元的浮动栅极与衬底之间。在另一实施例中,掺氟栅极氧化物层位于存储器单元的浮动栅极与控制栅极之间。在又一实施例中,存储器单元具有两个掺氟栅极氧化物层,一个位于浮动栅极与衬底之间且另一个位于浮动栅极与控制栅极之间。

在栅极氧化物层中进行氟掺杂可通过使硅-氟(silicon-fluorine,si-f)键活化来减少被陷获在栅极氧化物层中的固定电荷。可通过炉内退火(furnaceannealing)及快速热退火(rapidthermalanneal,rta)来使si-f键形成强键结强度。强键结强度可抵制热载流子注入损坏并减少浮动栅极氧化物陷获,从而改善存储器单元的耐久性。

本发明进一步提供一种用于形成包括掺氟栅极氧化物层的非易失性存储器单元的方法。根据各种实施例,所述方法可包括将氟离子掺杂到浮动栅极与衬底之间的第一氧化物层中或掺杂到浮动栅极与控制栅极之间的第二氧化物层中或掺杂到这两个氧化物层中。氟离子可来自半导体行业中任何市面有售的气体,例如包括以下在内的氟化物:氟化硼(bfx)、氟化氮(nfx)或氟化硅(sifx)。

本发明适用于对其中利用热载流子注入来进行写入及擦除的所有种类的非易失性存储器单元(包括快闪存储器单元、多次可编程(multipletimeprogrammable,mtp)存储器单元等)进行耐久性增强。快闪存储器单元可为堆叠式栅极快闪单元(stackedgateflashcell)或分离式栅极快闪单元(splitgateflashcell)。如以下详细所述,通过进行氟掺杂,存储器单元的电流降级及耐久性均可得以改善。

图1示出根据本发明一些实施例的快闪存储器单元110的示例性结构,其中发生浮动栅极氧化物陷获。如图1中所示,快闪存储器单元110包括连接到位线的漏极101、源极102(源极线)、衬底103、浮动栅极氧化物层104、浮动栅极105、栅极间氧化物层106及控制栅极107。

在一个实施例中,衬底103是包含硅的半导体衬底,且浮动栅极氧化物层104包含二氧化硅。浮动栅极105及控制栅极107两者均可包含多晶硅。因此,栅极间氧化物层106可被称为多晶硅间氧化物层(inter-polyoxidelayer)。在对快闪存储器单元110的编程操作期间,对控制栅极107施加升高的电压,以使电子从源极102流动到漏极101。当源极-漏极电流足够高时,一些高能量电子从衬底103穿过浮动栅极氧化物层104跳跃到浮动栅极105上。等效地,浮动栅极105中的一些高能量载流子(即,热载流子)跨越浮动栅极氧化物层104移动到衬底103。此诱发其中一个或多个固定电荷或载流子120被陷获在浮动栅极氧化物层104中的浮动栅极氧化物陷获,且可使阈值电压增大、使单元电流降级,并因快闪存储器单元110具有明显不同的“1”电荷状态与“0”电荷状态的能力降级而使快闪存储器单元110具有不良耐久性。

图2是示出根据本发明一些实施例的快闪存储器单元随着写入/擦除循环的增加而发生的示例性阈值电压改变的曲线图200。如图2中所示,因浮动栅极氧化物陷获,擦除期间的阈值电压随着写入/擦除循环增加而增大;且编程期间的阈值电压随着写入/擦除循环增加而减小。这将使得快闪存储器单元的逻辑裕度窗随时间关闭。

图3示出根据本发明一些实施例的快闪存储器单元300中的示例性氟植入。如图3中所示,快闪存储器单元300包括p型衬底303、位于p型衬底303之上的栅极氧化物层304及位于栅极氧化物层304之上的多晶硅浮动栅极305。可将氟离子310植入到栅极氧化物层304中,以与栅极氧化物层304中被陷获的si表面电荷形成悬空键(danglingbond)。在一个实施例中,氟离子310可在多晶硅浮动栅极305形成之后立即被植入。通过炉内退火或快速热退火,可将si-f键活化,以中和栅极氧化物层304中被陷获的电荷。这将通过避免或延迟快闪存储器单元300的逻辑裕度窗的关闭来改善快闪存储器单元300的耐久性。

图4是示出根据本发明一些实施例的标准快闪存储器单元与掺氟快闪存储器单元之间的耐久性能比较的曲线图400。如图4中所示,与无氟植入的标准快闪存储器单元430相比,根据在给定应力(stress)时间下阈值电压位移(shift)更小,掺氟快闪存储器单元410、420具有更佳的耐久性。氟掺杂密度(2×1015cm-2)较高的掺氟快闪存储器单元410具有比氟掺杂密度(2×1013cm-2)较低的掺氟快闪存储器单元420甚至更佳的耐久性。

图5示出根据本发明一些实施例的堆叠式栅极快闪存储器单元500的示例性结构。如图5中所示,此实例中的堆叠式栅极快闪存储器单元500包括漏极501、源极502、衬底503、浮动栅极氧化物层504、浮动栅极505、栅极间氧化物层506及控制栅极507。浮动栅极氧化物层504形成在衬底503之上;且浮动栅极505形成在浮动栅极氧化物层504之上。控制栅极507形成在浮动栅极505上方,且浮动栅极505在所有侧上通过栅极间氧化物层506与控制栅极507绝缘。浮动栅极505及控制栅极507可包含多晶硅,使得栅极间氧化物层506可被称为多晶硅间氧化物层。

在此实例中,浮动栅极氧化物层504及栅极间氧化物层506中的至少一者包含氟离子,以减少栅极氧化物陷获。氟离子可来自半导体行业中任何市面有售的气体或者来自包括以下在内的任何氟化物:bfx、nfx或sifx。

在一个实施例中,堆叠式栅极快闪存储器单元500进一步包括位于浮动栅极505上的氧化物-氮化物-氧化物(oxide-nitride-oxide,ono)层(图中未示出)。所述氧化物-氮化物-氧化物层包括两个氧化物层及位于所述两个氧化物层之间的氮化物层。所述氧化物-氮化物-氧化物层可形成在栅极间氧化物层506上方或下面。在另一实施例中,堆叠式栅极快闪存储器单元500可进一步包括位于浮动栅极氧化物层504之上的选择栅极508。

图6示出根据本发明一些实施例的分离式栅极快闪存储器单元600的示例性结构。如图6中所示,此实例中的分离式栅极快闪存储器单元600包括两个漏极601、源极线602、衬底603、浮动栅极氧化物层604、两个浮动栅极605、栅极间氧化物层606及两个控制栅极607。浮动栅极氧化物层604形成在衬底603之上;且两个浮动栅极605形成在浮动栅极氧化物层604之上。源极线602是位于两个浮动栅极605之间的衬底中的共同源极扩散区。

两个控制栅极607可充当耦合栅极,且至少局部地形成在两个浮动栅极605之上。两个浮动栅极605在所有侧上通过栅极间氧化物层606与两个控制栅极607绝缘。两个浮动栅极605及两个控制栅极607可包含多晶硅,使得栅极间氧化物层606可被称为多晶硅间氧化物层。

两个漏极601是衬底603中的一对漏极扩散区。一对字线可连接到两个控制栅极607,且位于衬底603的介于漏极601之间的区上方。分离式栅极快闪存储器单元600还可包括位于两个浮动栅极605与栅极间氧化物层606之间的隔离层608。在一个实施例中,隔离层608包括两个氧化物层及位于所述两个氧化物层之间的氮化物层。

在此实例中,浮动栅极氧化物层604及栅极间氧化物层606中的至少一者包含氟离子,以减少栅极氧化物陷获。氟离子可来自半导体行业中任何市面有售的气体或者来自包括以下在内的任何氟化物:bfx、nfx或sifx。

图7示出根据本发明一些实施例用于在制造快闪存储器单元710期间进行氟植入的示例性方法。如图7中所示,所制造的快闪存储器单元710包括有源区域713、有源区域713周围的隔离区域711、位于有源区域713之上的浮动栅极氧化物层714、沉积到隔离区域711及浮动栅极氧化物层714上的浮动栅极715、以及形成在浮动栅极715上的一个或多个离子掩模719。离子掩模719形成在浮动栅极715上,以为离子植入产生掩蔽图案。在浮动栅极715被沉积且离子掩模719被形成之后,将氟离子716掺杂或植入到浮动栅极氧化物层714中,以减少浮动栅极氧化物陷获并改善快闪存储器单元710的耐久性。通过在离子植入期间进行能量控制,氟离子716可以适当的速度被掺杂而植入到浮动栅极氧化物层714中。

图7还示出在氟离子716被掺杂之后,快闪存储器单元710的详细图720。有源区域713可包括漏极721、源极线722及衬底723。氟离子716被掺杂到衬底723与浮动栅极725之间的浮动栅极氧化物层724中。离子掩模729可有助于在隔离区域处阻挡离子并使离子植入聚焦在浮动栅极氧化物层724上。如图7中所示,此实例中的离子植入是在控制栅极或字线被形成之前执行。在字线被形成之后,一些被植入的氟离子716’将位于衬底723与字线之间。在一个实施例中,基于以下中的至少一者来执行退火工艺以使浮动栅极氧化物层724中的硅-氟键活化:炉内退火及快速热退火。氟离子716可来自半导体行业中任何市面有售的气体或者来自包括以下在内的任何氟化物:bfx、nfx或sifx。在一个实施例中,将纯氟离子而非氟化物植入到浮动栅极氧化物层724中。

图8示出根据本发明一些实施例用于在制造快闪存储器单元810期间进行氟植入的另一示例性方法。如图8中所示,所制造的快闪存储器单元810包括有源区域813、位于有源区域813之上的浮动栅极氧化物层814、沉积到浮动栅极氧化物层814上的浮动栅极815、形成在浮动栅极815上及周围的栅极间氧化物层816及沉积在栅极间氧化物层816上的控制栅极817、以及形成在控制栅极817上方的一个或多个离子掩模819。离子掩模819形成在控制栅极817上方,以为离子植入产生掩蔽图案。在控制栅极817被沉积且离子掩模819被形成之后,将氟离子818掺杂或植入到栅极间氧化物层816中,以减少浮动栅极氧化物陷获并改善快闪存储器单元810的耐久性。通过在离子植入期间进行能量控制,氟离子818可以适当的速度被掺杂而植入到栅极间氧化物层816中。

图8还示出在氟离子818被掺杂之后,快闪存储器单元810的详细图820。有源区域813可包括漏极821、源极线822及衬底823。氟离子818被掺杂到栅极间氧化物层826中。离子掩模829可有助于在隔离区域处阻挡离子并使离子植入聚焦在栅极间氧化物层826上。如图8中所示,此实例中的离子植入是在控制栅极及/或字线被形成之后执行。

栅极间氧化物层826在浮动栅极825周围与浮动栅极氧化物层824具有交叠区域。交叠区域位于衬底823与控制栅极827之间。在离子植入之后,在一些被植入的氟离子818被掺杂到浮动栅极825与控制栅极827之间的区域中的同时,其他被植入的氟离子818’被掺杂到衬底823与控制栅极827之间的交叠区域中或被掺杂到浮动栅极825的侧壁区域中。因此,向栅极间氧化物层826中进行氟掺杂也可减少浮动栅极氧化物陷获并改善快闪存储器单元810的耐久性。

在一个实施例中,浮动栅极825及控制栅极827两者均包含多晶硅。在一个实施例中,基于以下中的至少一者来执行退火工艺以使栅极间氧化物层826中的硅-氟键活化:炉内退火及快速热退火。氟离子818可来自半导体行业中任何市面有售的气体或者来自包括以下在内的任何氟化物:bfx、nfx或sifx。在一个实施例中,将纯氟离子而非氟化物植入到栅极间氧化物层826中。

图9示出根据本发明一些实施例用于在制造快闪存储器单元910期间进行氟植入的又一示例性方法。如图9中所示,两次将氟离子植入到所制造的快闪存储器单元910中,一次是如图7中在浮动栅极被沉积之后且另一次是如图8中在控制栅极被沉积之后。图9示出在氟离子716、818被掺杂之后,快闪存储器单元910的详细图920。类似于图8所示快闪存储器单元810,快闪存储器单元910的有源区域可包括漏极821、源极线822及衬底823。在形成控制栅极827(字线)之前,根据由离子掩模729产生的掩蔽图案将氟离子716掺杂到浮动栅极氧化物层824中。在形成控制栅极827(字线)之后,根据由离子掩模829产生的掩蔽图案将氟离子818掺杂到栅极间氧化物层826中。

通过在离子植入期间进行能量控制,氟离子716、818的两个群组中的每一者分别以适当的速度被掺杂而植入到浮动栅极氧化物层824及栅极间氧化物层826中。栅极间氧化物层826在浮动栅极825周围与浮动栅极氧化物层824具有交叠区域。所述交叠区域位于衬底823与控制栅极827之间。在一些被植入的氟离子818被掺杂到浮动栅极825与控制栅极827之间的区域中的同时,其他被植入的氟离子818’被掺杂到衬底823与控制栅极827之间的交叠区域中或被掺杂到浮动栅极825的侧壁区域中。因此,向浮动栅极氧化物层824及栅极间氧化物层826中进行氟掺杂可减少浮动栅极氧化物陷获并改善快闪存储器单元910的耐久性。

在一个实施例中,基于以下中的至少一者来执行退火工艺以使浮动栅极氧化物层824及栅极间氧化物层826中的硅-氟键活化:炉内退火及快速热退火。氟离子716、818可来自半导体行业中任何市面有售的气体或者来自包括以下在内的任何氟化物:bfx、nfx或sifx。在一个实施例中,将纯氟离子而非氟化物植入到浮动栅极氧化物层824及栅极间氧化物层826中。

在一个实施例中,通过在快闪存储器单元中进行氟掺杂,在1k循环测试中,快闪单元电流降级从6.1μa降级被改善约22%而达到4.8μa降级。因此,针对快闪存储器单元所预测的耐久性从20k个循环增加到50k个循环。在一些实施例中,在离子植入期间,可以氘(d)离子来替换氟离子,以在栅极氧化物层中形成si-d键,进而减少热载流子损坏并增强快闪存储器单元的耐久性。

图10是示出根据本发明一些实施例用于在快闪存储器单元中进行氟植入的示例性方法1000的流程图。在操作1002处,形成半导体衬底。在操作1004处,在衬底之上形成第一氧化物层。在操作1006处,在第一氧化物层之上形成浮动栅极。在操作1008处,将氟离子掺杂到第一氧化物层中。在操作1010处,在浮动栅极之上形成第二氧化物层。在操作1012处,至少局部地在第二氧化物层之上形成控制栅极。

图11是示出根据本发明一些实施例用于在快闪存储器单元中进行氟植入的另一示例性方法1100的流程图。在操作1102处,形成半导体衬底。在操作1104处,在衬底之上形成第一氧化物层。在操作1106处,在第一氧化物层之上形成浮动栅极。在操作1108处,在浮动栅极之上形成第二氧化物层。在操作1110处,至少局部地在第二氧化物层之上形成控制栅极。在操作1112处,将氟离子掺杂到第二氧化物层中。应理解,可根据本发明的不同实施例来改变图10及图11中的每一者所示步骤的次序。

在一实施例中,公开一种非易失性存储器单元。所述非易失性存储器单元包括:衬底;第一氧化物层,位于所述衬底之上;浮动栅极,位于所述第一氧化物层之上;第二氧化物层,位于所述浮动栅极之上;以及控制栅极,至少局部地位于所述第二氧化物层之上。所述第一氧化物层及所述第二氧化物层中的至少一者包含氟。

在所述非易失性存储器单元中,所述浮动栅极及所述控制栅极中的至少一者包含多晶硅。

在所述非易失性存储器单元中,进一步包括位于所述浮动栅极上的氧化物-氮化物-氧化物层,其中所述氧化物-氮化物-氧化物层包括两个氧化物层及位于所述两个氧化物层之间的氮化物层。

在所述非易失性存储器单元中,所述氧化物-氮化物-氧化物层位于所述第二氧化物层上方。

在所述非易失性存储器单元中,所述氧化物-氮化物-氧化物层位于所述第二氧化物层下面。

在所述非易失性存储器单元中,进一步包括:额外浮动栅极,位于所述第一氧化物层之上;以及共同源极扩散区,位于所述浮动栅极与所述额外浮动栅极之间的所述衬底中。

在所述非易失性存储器单元中,所述第一氧化物层及所述第二氧化物层中的至少一者包含以下氟化物中的至少一者:氟化硼、氟化氮以及氟化硅。

在另一实施例中,公开一种用于形成非易失性存储器单元的方法。所述方法包括:形成衬底;在所述衬底之上形成第一氧化物层;在所述第一氧化物层之上形成浮动栅极;将氟离子掺杂到所述第一氧化物层中;在所述浮动栅极之上形成第二氧化物层;以及至少局部地在所述第二氧化物层之上形成控制栅极。

在所述方法中,所述氟离子是通过离子植入而穿过所述浮动栅极被掺杂到所述第一氧化物层中。

在所述方法中,掺杂所述氟离子进一步包括:在所述浮动栅极上方形成第一离子掩模,以为所述离子植入产生掩蔽图案。

在所述方法中,在形成所述控制栅极之后,进一步包括将额外氟离子掺杂到所述第二氧化物层中。

在所述方法中,所述额外氟离子是通过离子植入而穿过所述控制栅极被掺杂到所述第二氧化物层中。

在所述方法中,掺杂所述额外氟离子进一步包括:在所述控制栅极上方形成第二离子掩模,以为所述离子植入产生掩蔽图案。

在所述方法中,所述浮动栅极及所述控制栅极中的至少一者包含多晶硅。

在所述方法中,进一步包括在所述浮动栅极上形成氧化物-氮化物-氧化物层,其中所述氧化物-氮化物-氧化物层包括两个氧化物层及位于所述两个氧化物层之间的氮化物层。

在所述方法中,进一步包括:在所述第一氧化物层之上形成额外浮动栅极;以及在所述浮动栅极与所述额外浮动栅极之间的所述衬底中形成共同源极扩散区。

在所述方法中,掺杂所述氟离子包括掺杂以下氟化物中的至少一者:氟化硼、氟化氮以及氟化硅。

在所述方法中,进一步包括基于以下中的至少一者执行退火工艺以使所述第一氧化物层中的硅-氟键活化:炉内退火及快速热退火。

在又一实施例中,公开一种用于形成非易失性存储器单元的方法。所述方法包括:形成衬底;在所述衬底之上形成第一氧化物层;在所述第一氧化物层之上形成浮动栅极;在所述浮动栅极之上形成第二氧化物层;至少局部地在所述第二氧化物层之上形成控制栅极;以及将氟离子掺杂到所述第二氧化物层中。

在所述非易失性存储器单元中,所述氟离子是通过离子植入而穿过所述控制栅极被掺杂到所述第二氧化物层中。

以上内容概述了若干实施例的特征以使所属领域中的普通技术人员可更好地理解本发明的各方面。所属领域中的技术人员应了解,他们可易于使用本发明作为基础来设计或修改其他工艺及结构以施行本文所介绍实施例的相同目的及/或实现本文所介绍实施例的相同优点。所属领域中的技术人员还应认识到,此种等效构造并不背离本发明的精神及范围,且在不背离本发明的精神及范围的条件下,他们可对本文作出各种改变、替代及变更。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1