一种片状金属锂粉及其制备方法与流程

文档序号:15973969发布日期:2018-11-16 23:41阅读:1083来源:国知局

本发明涉及一种片状金属锂粉及其制备方法。

背景技术

金属锂粉被广泛用于制备烷基锂、催化剂、添加剂及锂电池等领域。金属锂因具有高的反应活性、较大的粘性、较低的熔点(180.5℃)和较低的密度(0.534g/cm3)而难以通过机械粉碎等常用的粉碎方法粉碎成粉末,所以目前均采用熔融分散法来制备金属锂粉。金属锂熔融分散法是一种将金属锂在分散剂中加热至熔化并高速搅拌使锂液滴分散,然后冷却、离心或过滤、洗涤及干燥制成锂粉的方法。该方法制备出的锂粉为球形,在制备过程中需要使用高沸点的烃油和用于洗涤的低沸点烃油、近200℃的较高操作温度、惰性保护气氛,存在制备成本高、制备效率低、对设备要求苛刻、无法制备出非球形锂粉等问题。

超声波粉碎是利用超声波在液体中的分散效应,使液体产生空化现象,从而使液体中的固体颗粒或细胞组织破碎。cn107297507a公开了一种在高于100℃的离子液体中超声粉碎金属锂制备金属锂的方法。该方法所用离子液体粘度高沸点高,而且操作温度高达100℃以上,此时超声波的气穴空化作用弱,超声波能量转换成机械破碎能量的效率低,很难达到预期的金属锂粉碎效果和效率。



技术实现要素:

本发明的目的是提供一种片状金属锂粉及其制备方法,是一种工艺简单的非球形锂粉的制备方法,本发明解决现有锂粉制备方法中存在成本高、效率低及对设备要求苛刻、无法制备异形锂粉等技术难题。

为了实现以上目的,本发明采取如下的技术方案:

一种片状金属锂粉,厚度为1~300μm,径厚比为2~40。所述径厚比为片状金属锂粉的厚度与宽度的比值。

一种所述片状金属锂粉的制备方法,其制备过程如下:

a)将金属锂置于惰性有机溶剂中,密闭后抽真空;

b)在低于锂熔点的温度进行超声处理;

c)将处理液过滤,干燥,即得片状的金属锂粉。

所述金属锂为厚度或直径小于1mm的锂箔、锂带、锂丝。该金属锂可通过直接购买获得,也可以通过锂锭、锂片、锂粒的碾压、研磨和球磨等操作获得。

所述金属锂在有机溶剂中的质量百分比为0.01~30%。

所述惰性有机溶剂包括但不局限于烃类溶剂、碳酸酯类溶剂,而且可以是一种溶剂或者多种溶剂组成的混合溶剂。示例性溶剂为环己烷、石油醚、碳酸二甲酯、1,3-二氧戊环、n-甲基吡咯烷酮、乙酸乙酯。为了改善锂粉的分散性或者稳定性等性能,可在超声处理前或者超声处理后的有机溶剂中加入适量的分散剂、表面改性剂或者保护剂的一种或者几种,如油酸、液体石蜡、甲基硅油等。

所述有机溶剂的粘度≤100mpa·s。有机溶剂粘度过高,超声波能量在溶剂中能量衰减快,对金属锂的粉碎效果降低,甚至没有粉碎效果。

所述超声处理的超声功率为50~5000w,优选为100~3000w。

所述超声处理时间为1~120min。

所述超声处理温度一般应低于锂的熔点(180.5℃),以获得非球形的金属锂粉。优选10~100℃的处理温度,更优选20~90℃的处理温度。

所述真空操作的真空度≤0.01mpa。真空操作有利于去除有机溶剂中的溶解氧和微量水,同时有利于超声波引发蒸汽气穴的空化效应,极大提高超声波粉碎效率。

本发明提供的是应用真空超声波在液体中破碎低熔点金属锂制备微米级片状锂粉的新方法。真空操作可去掉溶剂中与金属锂容易发生反应的水和溶解氧,减少金属锂的副反应;真空超声处理可在金属锂表面瞬间形成比空气气泡空穴具有更高冲击波破碎能力的大量蒸汽气泡空穴,可在短时间内使金属锂表面形成大量裂纹而破碎,极大提高金属锂粉的制备效率和缩减金属锂粉的副反应时间。该方法具有产品纯度高、操作简单、处理温度低、成本低、效率高、设备要求低等优点。本发明制备的片状锂粉,可应用于锂电池或锂离子电池,可通过“补锂”解决锂离子电池的首次库仑效率低的问题。

附图说明

图1为本发明实施例1所制备金属锂粉的扫描电镜(sem)照片;

图2为本发明实施例1所制备金属锂粉的x射线衍射(xrd)图谱;

图3为本发明实施例1所制备金属锂粉的脱锂容量曲线;

图4为对比例1所制备金属锂粉的x射线衍射(xrd)图谱;

图5为对比例1所制备金属锂粉的脱锂容量曲线。

具体实施方式

下面通过附图1至附图5结合具体的实施例对本发明作进一步详细地描述,但不限定于本发明的保护范围。

实施例1:

将5g的电池级锂箔(厚度为0.05mm),置于装有45g环己烷的200ml塑料瓶中,抽真空至0.06mpa,密封,在100w的超声仪器中处理15min,处理温度60℃,然后过滤和真空干燥,即得金属锂粉。图1为所制备金属锂粉的sem照片。从图中可以看出,锂粉为片状结构,厚度为10~50μm,宽度为100~300μm,径厚比约为6~30。图2为所制备金属锂粉的xrd谱图,显示其物相为li,无其它杂质相存在。

将上述金属锂粉碾压在cu箔上作为研究电极,以金属锂片作对电极,1mol/llipf6的ec/dmc(体积比为1∶1)的溶液作电解液,cellgard2400微孔隔膜作隔膜,制成2032型扣式电池。采用武汉蓝电电池测试系统(landct2001a)测试电池的充放电性能。

图3为本发明实施例1所制备金属锂粉的脱锂容量曲线。金属锂粉的脱锂容量可达3307mah/g,是其理论脱锂容量(3860mah/g)的85.7%。此结果表明,片状金属锂粉可用做锂电池或锂离子电池的阳极材料。

实施例2:

将0.5g的电池级锂箔(厚度为0.05mm),置于装有9.5g碳酸二甲酯的50ml塑料瓶中,抽真空至0.06mpa,密封,在100w的超声仪器中处理5min,处理温度60℃,然后过滤和真空干燥除去溶剂,即得金属锂粉。所得锂粉为片状结构,厚度为5~50μm,宽度为50~200μm,径厚比约为4~40。结果表明,惰性溶剂的种类对锂粉的尺寸和制粉效率有影响。

实施例3:

将10g电池级锂带(厚度为0.5mm)置于200g1,3-二氧戊环中,抽真空至0.06mpa,密封,用600w的超声仪器超声处理3min,过滤和真空干燥除去溶剂,即得片状金属锂粉。所得锂粉为片状结构,厚度为3~50μm,宽度为30~150μm,径厚比约为3~50。结果表明,超声粉碎机的功率对锂粉的制粉效率有显著影响。

实施例4:

将0.5g的锂粒(粒径为2mm)碾压成厚约0.2mm的薄片,置于装有9.5g碳酸二甲酯的50ml塑料瓶中,抽真空0.06mpa后密封,在100w的超声仪器中处理15min,处理温度60℃,然后过滤和真空干燥除去溶剂,即得片状金属锂粉。如果该尺寸锂粒不经过机械碾压减薄,直接同条件粉碎,即使处理时间延长到120min,也难有锂粉产生。结果表明,金属锂粉碎前的尺寸对锂粉的制粉效率亦有显著的影响。

对比例1:

将5g的电池级锂箔(厚度为0.05mm),置于装有45g环己烷的200ml塑料瓶中,充氩气保护密封,在100w的超声仪器中处理15min,处理温度60℃,然后过滤和真空干燥,即得金属锂粉。所得金属锂粉与真空超声粉碎的效果接近,然而,从xrd谱图(图4)可以明显看出,显示其物相除了有li之外,还有lioh杂质相存在。lioh的产生可能是活泼的金属锂粉与有机溶剂中微量水和溶解氧等物质反应导致的。

依照实施例1方案将对比1所制备金属锂粉制成2032型扣式电池,并同条件下测其脱锂容量曲线。该金属锂粉的脱锂容量可达2829mah/g,是其理论脱锂容量(3860mah/g)的73.3%。可以看出,lioh杂质相的产生明显降低了金属锂的脱锂容量。

对比例2:

将0.5g的电池级锂箔(厚度为0.05mm),置于装有9.5g粘度1000mpa.s的二甲基硅油的50ml塑料瓶中,抽真空至0.06mpa,密封,在100w的超声仪器中处理120min,处理温度60℃,锂箔基本无变化。结果表明,有机溶剂的粘度对金属锂的粉碎效果具有显著的影响。

以上对本发明具体实施方式的描述并不限制本发明,本领域技术人员可以根据本发明做出一些改变,只要不脱离本发明的精神,均应属于本发明所附权利要求的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1