一种表面无枝晶的高安全性金属锂负极及其制备方法和应用与流程

文档序号:16396425发布日期:2018-12-25 19:51阅读:287来源:国知局
一种表面无枝晶的高安全性金属锂负极及其制备方法和应用与流程

本发明涉及电池电极材料制备技术领域,具体涉及一种表面无枝晶的高安全性金属锂负极及其制备方法和应用。

背景技术

近年来,商业化锂离子电池被广泛应用于能源储存设备且对人们的日常生活产生重要的影响。然而,对于使用传统的石墨材料作为负极的传统锂离子电池来说,要满足日益增长的能量储存需求是非常困难的,这需要具有更高能量密度的电池系统来满足需求。金属锂具有超高的理论比容量(3,860mahg-1)及最低的电化学还原电势(相对标准氢电极-3.04v),是很有前途的二次电池负极材料。基于其优良的性能,以金属锂为基础的锂电池体系如锂空、锂硫电池具有超高的比能量。

然而,尽管金属锂电池早在1972年就被exxon公司制备出来,其实际应用却受到了严重的阻碍。这主要归因于以下几个方面的原因:(1)金属锂在反复的沉积/溶解过程中会产生无限大的相对体积变化,这会导致严重的固态电解质膜(sei)破裂。由于金属锂超高的反应活性,暴露出的新鲜金属锂会立即与电解液发生反应,sei膜反复的破裂/修复会导致活性物质及电解质的不断消耗,从而造成较低的循环库伦效率及短的循环寿命;(2)更严重地,金属锂会发生不可控的锂枝晶生长,这极易引发短路、过热、起火或爆炸等安全问题,严重危及用户安全。

为寻求控制锂枝晶生长的方法,国内外学者对金属锂的沉积行为进行了广泛的研究。提出的解决方案可归纳如下:(1)使用电解液添加剂来优化电解液体系,从而稳定sei膜;(2)使用高模量的固态电解质替代液态电解液;(3)构建非原位人工保护膜有利于均匀化金属锂表面的li+分布从而抑制锂枝晶的产生。

近年来,用于限制金属锂的三维多孔载体受到了广泛的关注,载体会影响金属锂的初始形核行为从而对最终的形貌产生决定性作用。很多导电的三维多孔结构被尝试用来作为限制金属锂,三维多孔载体的使用不仅可以为金属锂提供空间,从而缓冲循环过程中的电极体积变化,而且能够大大降低有效电流密度,从而限制锂枝晶的产生。然而对于目前所研究的大部分三维结构,由于其导电特性,金属锂有直接沉积在多孔结构上表面的趋势,如图1a所示。更糟糕的是,金属锂沉积不均匀的情况会进一步恶化,从而导致锂枝晶在面对隔膜的一侧高度发展而内部孔结构得不到充分利用,这最终会引发电池短路而失效,且存在失火、爆炸等安全隐患,严重危及用户安全。

虽然对于金属锂枝晶的控制研究已经取得了很大的进展,但由于金属锂枝晶的生长具有内在的热力学及动力学倾向性,因此锂枝晶在长期的循环过程中是无法完全避免的。



技术实现要素:

针对现有技术中存在的上述问题,由于金属锂枝晶的生长具有内在的热力学及动力学倾向性,锂枝晶在长期的循环过程中是无法完全避免的。因此不同于传统方法中费尽心机地抑制锂枝晶的生长,为保证锂金属电池的安全性,本发明另辟蹊径,通过对金属锂生长方向的控制来设计并发展表面无枝晶的高安全性金属锂负极,从而从根本上解决了锂枝晶引起的电池短路以及因此所引发的安全问题,本发明制备得到的金属锂负极在循环过程中表面光滑无枝晶,具有很高的循环库伦效率及循环稳定性,极具工业化应用前景和实际应用之价值。

本发明的目的之一在于提供一种金属锂负极。

本发明的目的之二在于提供上述金属锂负极的制备方法。

本发明的目的之三在于提供上述金属锂负极在制备锂电池中的应用。

本发明的目的之四在于提供一种金属锂电池。

为实现上述目的,本发明涉及以下技术方案:

本发明的第一个方面,提供一种金属锂负极,所述金属锂负极由亲锂性空间各向异性分布着的三维多孔基体及分布于其孔隙中的金属锂组成;其中,所述三维多孔基体上分布有亲锂层,所述亲锂层具有空间各向异性分布;

进一步的,所述亲锂层分布于三维多孔基体结构纤维的下表面(即背离锂电池隔膜的一侧),亲锂层相对于非亲锂的基体材料具有大大降低的金属锂形核过电势,作为金属锂优先形核的活性位点,引导金属锂在多孔结构内部形核并沿着远离隔膜的方向生长,由于多孔结构朝向隔膜的一侧为非亲锂的基体材料,因此有效地避免了金属锂在电极上表面的沉积及生长,从根本上解决了锂枝晶引起的电池短路以及因此所引发的安全问题(如图1b所示)。

进一步的,所述三维多孔基体具有连通的导电网络;

进一步的,所述三维多孔基体可采用多孔材料或泡沫材料制成;更进一步的,所述多孔材料或泡沫材料包括多孔或泡沫金属材料、多孔或泡沫碳材料、多孔或泡沫导电有机材料;

进一步的,所述亲锂层采用亲锂性金属或亲锂性非金属材料制备而成;更进一步的,所述亲锂性金属材料包括但不限于金(au)、银(ag)、锌(zn),所述亲锂性非金属材料包括但不限于硅(si)、氧化锌(zno)、氧化铝(al2o3)、二氧化硅(sio2)。

本发明的第二个方面,提供上述金属锂负极的制备方法,所述方法包括:

s1.将亲锂性材料溅射于三维多孔基体上;

s2.将步骤s1所制备的材料与金属锂作对电极,采用电化学沉积法将金属锂沉积至步骤s1制备材料中得金属锂负极;或将熔融金属锂灌入步骤s1制备的材料中得金属锂负极。

进一步的,所述步骤s1中,

采用磁控溅射方法将亲锂性材料溅射于三维多孔基体的一侧,使得亲锂性材料形成的亲锂层分布在三维多孔基体材料纤维朝向靶材的一侧;

进一步的,所述步骤s2中,

采用电化学沉积法控制金属锂沉积为0.5~10mahcm-2,更进一步的,采用电化学沉积法控制金属锂沉积为1mahcm-2、2mahcm-2、4mahcm-2或10mahcm-2

本发明的第三个方面,提供上述金属锂负极在制备锂电池中的应用。

本发明的第四个方面,提供一种锂电池,所述锂电池包括上述金属锂负极。

本发明的有益效果:

(1)三维多孔基体上分布在背离隔膜一侧的亲锂层降低了形核过电势,作为金属锂优先形核的活性位点,能够有效地调控金属锂在多孔结构内部形核并沿着远离隔膜的方向生长,而面向隔膜一侧的非亲锂基体因具有较高的形核过电势而避免了金属锂的沉积,因而从根本上解决了锂枝晶引起的电池短路以及因此所引发的安全问题。

(2)将金属锂限制在多孔结构中,有效地缓冲了金属锂电极在循环过程中的体积变化,且减少了金属锂与电解液的接触,降低了活性物质及电解液的不可逆消耗,从而提高了循环库伦效率,锂枝晶得到了有效的抑制,该电极在循环过程中具有超高的循环稳定性,安全性高、寿命长。

综上,本发明制备得到的金属锂负极在循环过程中表面光滑无枝晶,具有很高的循环库伦效率、循环稳定性以及安全性,因此极具工业化应用前景和实际应用之价值。

附图说明

图1为金属锂在不同基底上的形核生长示意图,其中图1(a)为传统的三维多孔导电基体;图1(b)本发明亲锂层空间各向异性分布的三维多孔导电结构;

图2为实施例1所得cuf@au的sem图及元素edx图;其中图2(a)为实施例1所得的cuf@au背离隔膜一侧的sem图;图2(b)、图2(c)分别为与之对应的cu和au的edx图;图2(d)为实施例1所得的cuf@au面向隔膜一侧的sem图,图2(e)、图2(f)分别为与之对应的cu和au的edx图;

图3为实施例1所得的cuf@au-li负极的表面sem图,其中图3(a)为朝向隔膜一侧;图3(b)为背离隔膜一侧;

图4为实施例2所得的cuf@au-li负极的表面sem图,其中图4(a)为朝向隔膜一侧;图4(b)为背离隔膜一侧;

图5为实施例3所得的cuf@au-li负极的表面sem图,其中图5(a)为朝向隔膜一侧;图5(b)为背离隔膜一侧;

图6为实施例6所得的cuf-li负极朝向隔膜一侧的表面sem图;其中图6(a)控制金属锂沉积为1mahcm-2;图6(b)控制金属锂沉积为2mahcm-2;图6(c)控制金属锂沉积为4mahcm-2

具体实施方式

应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。

需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。另外,人们应当注意,本发明所用方位术语“上”、“下”、“内”、“外”等,除非另有指明,否则仅是为了便于描述,并不限于任何一个位置或者空间方位。

如前所述,虽然对于金属锂枝晶的控制研究已经取得了很大的进展,但由于金属锂枝晶的生长具有内在的热力学及动力学倾向性,因此锂枝晶在长期的循环过程中是无法完全避免的。

有鉴于此,本发明的一种具体实施方式中,提供一种金属锂负极,所述金属锂负极由三维多孔基体及分布于其孔隙中的金属锂组成;其中,所述三维多孔基体上分布具有空间各向异性分布着的亲锂层;

本发明的又一种具体实施方式中,所述亲锂层分布于三维多孔基体多孔结构纤维的下表面(即背离锂电池隔膜的一侧),亲锂层相对于非亲锂的基体材料具有大大降低的金属锂形核过电势,作为金属锂优先形核的活性位点,引导金属锂在多孔结构内部形核并沿着远离隔膜的方向生长,由于多孔结构朝向隔膜的一侧为非亲锂的基体材料,因此有效地避免了金属锂在电极上表面的沉积及生长,从根本上解决了锂枝晶引起的电池短路以及因此所引发的安全问题。

本发明的又一种具体实施方式中,所述三维多孔基体具有连通的导电网络;

本发明的又一种具体实施方式中,所述三维多孔基体可采用多孔材料或泡沫材料制成;更进一步的,所述多孔材料或泡沫材料包括多孔或泡沫金属材料、多孔或泡沫碳材料、多孔或泡沫导电有机材料;

本发明的又一种具体实施方式中,所述泡沫金属材料包括泡沫铜;所述多孔碳材料包括碳布;

本发明的又一种具体实施方式中,所述亲锂层采用亲锂性金属材料或亲锂性非金属材料制备而成;优选的,所述亲锂性金属材料包括但不限于金(au)、银(ag)、锌(zn),所述亲锂性非金属材料包括但不限于硅(si)、氧化锌(zno)、氧化铝(al2o3)、二氧化硅(sio2)。

本发明的又一种具体实施方式中,提供上述金属锂负极的制备方法,所述方法包括:

s1.将亲锂性材料溅射于三维多孔基体上;

s2.将步骤s1所制备的材料与金属锂作对电极,采用电化学沉积法将金属锂沉积至步骤s1制备材料中得金属锂负极;或将熔融金属锂灌入步骤s1制备的材料中得金属锂负极。

本发明的又一种具体实施方式中,所述步骤s1中,

采用磁控溅射方法将亲锂性材料溅射于三维多孔基体的一侧,使得亲锂性材料形成的亲锂层分布在三维多孔基体材料纤维朝向靶材的一侧;

本发明的又一种具体实施方式中,所述步骤s2中,

采用电化学沉积法控制金属锂沉积为0.5~10mahcm-2

本发明的又一种具体实施方式中,所述步骤s2中,

采用电化学沉积法控制金属锂沉积为1mahcm-2、2mahcm-2、4mahcm-2或10mahcm-2

本发明的又一种具体实施方式中,提供上述金属锂负极在制备锂电池中的应用。

本发明的又一种具体实施方式中,提供一种锂电池,所述锂电池包括上述金属锂负极。

以下通过实施例对本发明做进一步解释说明,但不构成对本发明的限制。应理解这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件进行。

实施例1

(1)亲锂层空间各向异性分布的三维多孔泡沫铜的制备

商业化泡沫铜经过使用辊压机进行50%应变的辊压,后依次在稀盐酸、去离子水及无水乙醇中超声清洗,随后真空干燥(命名为cuf)。使用磁控溅射方法将亲锂性au层溅射到cuf的一侧,au层分布在泡沫铜纤维朝向靶材的一侧,因此获得了亲锂层空间各向异性分布的三维多孔泡沫铜(命名为cuf@au)。

(2)表面无枝晶的高安全性金属锂负极的制备

将上述空间各向异性分布着au层的三维多孔铜结构裁成一定的形状,与金属锂作对电极组装纽扣电池,用电化学沉积的方法将1mahcm-2的金属锂沉积到此载体中得到金属锂复合负极。

如图3所示,朝向隔膜一侧电极表面光滑无枝晶,电极背面均匀分布着半球形及柱状金属锂。

实施例2

(1)亲锂层空间各向异性分布的三维多孔泡沫铜的制备

商业化泡沫铜经过使用辊压机进行50%应变的辊压,后依次在稀盐酸、去离子水及无水乙醇中超声清洗,随后真空干燥(命名为cuf)。使用磁控溅射方法将亲锂性au层溅射到cuf的一侧,au层分布在泡沫铜纤维朝向靶材的一侧,因此获得了亲锂层空间各向异性分布的三维多孔泡沫铜(命名为cuf@au)。

(2)表面无枝晶的高安全性金属锂负极的制备

将上述空间各向异性分布着au层的三维多孔铜结构裁成一定的形状,与金属锂作对电极组装纽扣电池,用电化学沉积的方法将2mahcm-2的金属锂沉积到此载体中得到金属锂复合负极。

如图4所示,朝向隔膜一侧电极表面光滑无枝晶,电极背面均匀分布着融合在一起的柱状金属锂,形成一个相对平整的无枝晶表面。

实施例3

(1)亲锂层空间各向异性分布的三维多孔泡沫铜的制备

商业化泡沫铜经过使用辊压机进行50%应变的辊压,后依次在稀盐酸、去离子水及无水乙醇中超声清洗,随后真空干燥(命名为cuf)。使用磁控溅射方法将亲锂性au层溅射到cuf的一侧,au层分布在泡沫铜纤维朝向靶材的一侧,因此获得了亲锂层空间各向异性分布的三维多孔泡沫铜(命名为cuf@au)。

(2)表面无枝晶的高安全性金属锂负极的制备

将上述空间各向异性分布着au层的三维多孔铜结构裁成一定的形状,与金属锂作对电极,在电解池中用电化学沉积的方法将4mahcm-2的金属锂沉积到此载体中得到金属锂复合负极。

如图5所示,朝向隔膜一侧电极表面光滑无枝晶,电极背面均匀分布着融合在一起的金属锂继续朝着孔洞的方向生长。

实施例4

(1)亲锂层空间各向异性分布的三维多孔碳布的制备

将碳布(cf)、去离子水及无水乙醇中超声清洗,随后真空干燥。使用磁控溅射方法将亲锂性au层溅射到碳布的一侧,au层分布在碳纤维朝向靶材的一侧,因此获得了亲锂层空间各向异性分布的三维多孔碳纤维(cf@au)。

(2)将上述空间各向异性分布着au层的三维多孔碳纤维裁成一定的形状,与金属锂作对电极组装纽扣电池,用电化学沉积的方法将2mahcm-2的金属锂沉积到此载体中得到金属锂复合负极。

实施例5

(1)亲锂层空间各向异性分布的三维多孔碳布的制备

将碳布、去离子水及无水乙醇中超声清洗,随后真空干燥。使用磁控溅射方法将亲锂性ag层溅射到碳布的一侧,ag层分布在碳纤维朝向靶材的一侧,因此获得了亲锂层空间各向异性分布的三维多孔碳纤维。

(2)将上述空间各向异性分布着ag层的三维多孔碳纤维裁成一定的形状,与金属锂作对电极组装纽扣电池,用电化学沉积的方法将10mahcm-2的金属锂沉积到此载体中得到金属锂复合负极。

实验例1

采用实施例1中的电化学沉积方法分别将1mahcm-2,2mahcm-2,4mahcm-2金属锂沉积到到将无亲锂层的泡沫铜中。具体的,

(1)商业化泡沫铜经过使用辊压机进行50%应变的辊压,后依次在稀盐酸、去离子水及无水乙醇中超声清洗,随后真空干燥(命名为cuf)。

(2)将上述cuf裁成一定的形状,与金属锂作对电极组装纽扣电池,用电化学沉积的方法将金属锂沉积到此载体中得到金属锂复合负极。

如图6所示,无亲锂层的三维泡沫铜在沉积金属锂之后,朝向隔膜一侧电极表面,金属锂不均匀地形核,且随着沉积金属锂量的增加,锂核心演变为高度发展的锂枝晶,这种电极极有可能在循环过程中刺穿隔膜,导致电池短路,从而引发起火爆炸等安全事故。

应注意的是,以上实例仅用于说明本发明的技术方案而非对其进行限制。尽管参照所给出的实例对本发明进行了详细说明,但是本领域的普通技术人员可根据需要对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1