背面钝化层为氧化铝和氢化氮化铝的PERC电池及其制备方法与流程

文档序号:16396054发布日期:2018-12-25 19:49阅读:2455来源:国知局
背面钝化层为氧化铝和氢化氮化铝的PERC电池及其制备方法与流程

本发明属于太阳能电池技术领域,特别是涉及一种背面钝化层为氧化铝和氢化氮化铝的perc电池及其制备方法。

背景技术

为了提高晶体硅太阳能电池的转换效率,电池前后表面的高质量钝化是关键因素之一。目前,采用原子层沉积(ald)技术生长的p型晶体硅perc(发射极及背表面钝化电池)电池背面钝化材料-al2o3,是一种近乎完美的钝化介质层。当拥有负电荷特性的al2o3介质层应用于p型硅背面作为钝化层,不会形成反转层造成漏电,而且会增加p型硅中的多子浓度,降低少子浓度,从而大幅降低表面复合速率。采用常规的ald技术生长al2o3薄膜,最大的局限性在于沉积速率很小(通常小于2nm/min),很难满足太阳能电池的大规模量产需求,另外,al2o3本身也存在不稳定性以及良品率较低等问题,这些都需要生长设备的更新和生长工艺的持续改进。

采用反应磁控溅射法生长氧化铝是一种替代ald生长技术的可行方案,具有沉积速率大、成本低、不需要使用有毒的气源等特点,非常适合大规模工业化量产。但是,采用溅射法沉积的氧化铝对p型晶体硅的钝化效果比ald生长的要差,从而会降低电池效率,其主要原因是在电池金属化过程中的高温烧结后表现出的钝化性能不稳定。由于氮化铝的带隙宽度为6.2ev、折射率在1.8~2.2之间可调、优异的热稳定性能等特点,也是替代氧化铝或氮化硅作为硅表面钝化介电层的候选材料。采用反应溅射技术制备的氢化氮化铝对p型晶体硅拥有非常优异的钝化效果(其表面复合速率低至8cm/s),主要归功于它的优异化学钝化性能(即通过饱和悬挂键降低界面电子态),氢化氮化铝中的氢在随后的高温过程中被大量释放出来,占据了悬挂键的空位,使其失去活性。然而,氢化氮化铝的场钝化效果(具有固定电荷的介质膜在表面附近产生电场,以排斥同极性的荷电载流子)比氧化铝相对差一些。

为了克服上面提到的单独采用反应溅射法制备的氧化铝或氢化氮化铝钝化p型晶体硅所带来的不利因素,本发明结合反应磁控溅射法制备的氧化铝和氢化氮化铝薄膜在高温烧结后对p型晶体硅表面的钝化性能,提出了采用反应磁控溅射法制备的氧化铝/氢化氮化铝叠层钝化层取代常规p型晶体硅perc电池的三氧化二铝(ald沉积)/氮化硅背面钝化层,由此得到背面钝化层为氧化铝和氢化氮化铝的perc电池。



技术实现要素:

为此,本发明采用的技术方案是这样的:背面钝化层为氧化铝和氢化氮化铝的perc电池,其特征在于:具有如下的结构:银/氮化硅/n型晶体硅/p型晶体硅/氧化铝/氢化氮化硅/铝。

本发明的另一技术方案是这样的:背面钝化层为氧化铝和氢化氮化铝的perc电池的制备方法,包括如下步骤:

1)清洗与制绒:取电阻率为0.5~1.5ω.cm,厚度为180μm,尺寸为4×4cm2的单晶硅片,首先将硅片先后浸入丙酮、无水乙醇溶液中并采用超声清洗10min,去除表面油渍和污物;然后在浓度为30%的氢氧化钠溶液中在80℃温度下水浴处理20min,去除表面损伤层;最后,放入体积比为3:3:1的硝酸/氢氟酸/冰醋酸溶液中在室温下腐蚀120s,对表面进行化学抛光,获得平整表面,然后用去离子水反复冲洗3次以上,并用氮气吹干;

2)三氯氧磷扩散:将扩散炉预先升温至扩散温度850~900℃,通入500~1000sccm的氮气,驱除炉管内的残留气体;把步骤1)所得的硅片放进石英舟,推入恒温区,在氮气保护下预热5min;然后通入携源氮气流量为80~120sccm,氧气流量为50~90sccm,5~10min后关闭携源氮气和氧气阀门;关闭扩散炉的加热电源,让石英舟自然冷却至室温,取出硅片;

3)磷硅玻璃去除与边绝缘:采用等离子干法刻蚀去除硅片边缘的n型层和背面的n型区,放入5~12%wt%的氢氟酸溶液在室温下浸泡30~90s;用去离子水冲洗,氮气吹干;

4)正面生长氮化硅钝化和抗反射层:利用等离子体增强化学气相沉积法沉积氮化硅薄膜,pecvd的射频为13.56mhz,沉积腔体的本底真空优于1×10-3pa,射频功率密度为0.5~1.0w/cm2,以电子级氨气和硅烷分别为氮源和硅源,氨气和硅烷的流量比为1:2~6,工作气压为100~200pa,生长温度为200~300℃,在硅片正面生长的氮化硅薄膜厚度为80nm;

5)背面生长氧化铝/氢化氮化铝钝化层:采用反应磁控溅射法,依次生长氧化铝薄膜和氢化氮化铝薄膜。磁控溅射的射频为13.56mhz,靶与衬底间距为7.0~8.0cm;靶材为金属铝,工作气体为氩气,沉积氧化铝的反应气体为氧气,沉积氢化氮化铝的反应气体为氮气和氢气,这些气体和铝的纯度均为99.999%;溅射腔本底真空优于1×10-4pa,工作气压为0.5~2pa,衬底温度为室温;

6)背面激光开槽:对背面沉积的氧化铝/氢化氮化铝钝化层进行烧蚀开槽,激光波长为532nm、功率为20w、频率为50khz、脉冲宽度为50ns;激光开槽宽度为50~70μm,槽间距为400~500μm,烧蚀深度1~2μm;

7)正面和背面电极生长:硅片正面和背面利用磁控溅射法分别生长厚度为1μm的银电极和铝电极;正面利用栅线掩膜板,形成银栅线电极,背面全部形成铝电极;溅射靶材为金属银和铝,溅射腔体的本底真空优于1×10-4pa,工作气体为氩气,工作气压为1.0pa,溅射温度为室温,溅射功率为10w/cm2

8)退火处理:在750~850℃温度和氮气氛围下进行退火处理,时间为5~10min。

本发明的perc电池,不仅背面钝化效果得到提升,而且提高了钝化膜的沉积速率,降低了perc电池的生产成本,提升了量产效率,同时也大幅减少了对环境污染,是非常有推广应用价值的方案。

附图说明

以下结合附图和本发明的实施方式来作进一步详细说明

图1为本发明电池的结构示意图;

图2为本发明电池的制备流程图。

具体实施方式

本实施例所述的perc电池,具有如下的结构:正面银电极1、氮化硅层2、n型晶体硅层3、p型晶体硅层4、氧化铝层5、氢化氮化硅层6、背面铝电极7。

本实施例的制备方法如下:

1)清洗与制绒

首先对硅片进行清洗与损伤层的去除。实验用的硅片为双面非抛光的单晶硅,电阻率为0.5~1.0ω.cm,厚度为200μm,尺寸为40×40mm2。首先将硅片先后浸入丙酮、无水乙醇溶液中并采用超声清洗10min,去除表面油渍和污物;其次,在浓度为30%的氢氧化钠溶液中在80℃温度下水浴处理20min,去除表面损伤层;最后,常温下,在硝酸/氢氟酸/冰醋酸溶液(体积比为3:3:1)的溶液中下腐蚀120s,对表面进行化学抛光,获得平整表面,然后用去离子水反复冲洗3次以上,并用氮气吹干。

其次,利用常规碱体系对硅片正面进行制绒,获得金字塔型结构的陷光表面。为了有效地控制反应速度和绒面的大小,添加一定量的ipa(异丙醇)作为缓释剂和络合剂。采用naoh(1~2%,质量分数)、na2sio3·9h2o(2.5~5.0%,质量分数)、ipa(5~10%,体积分数)的溶液体系,在80~85℃下水浴加热并超声处理20~30min,然后用去离子水冲洗,氮气吹干。

2)三氯氧磷扩散

采用常规的三氯氧磷作为液态源扩散,通过氮气携带法将杂质带入扩散炉内实现扩散。首先,将扩散炉预先升温至扩散温度850~900℃,通入氮气(500~1000sccm),驱除炉管内的残留气体;其次,把表面制绒后的硅片放进石英舟,推入恒温区,在氮气(500~1000sccm)保护下预热5min;第三,携源氮气流量为80~120sccm,氧气流量为50~90sccm,5~10min后关闭携源氮气和氧气阀门;第四,关闭扩散炉的加热电源,让石英舟自然冷却至室温,取出硅片。当扩散炉温度下降到450℃后,将石英舟拉至炉口位置,让样品在空气中自然冷却。

3)磷硅玻璃去除与边绝缘

扩散结束以后,采用等离子干法刻蚀去除硅片边缘的n型层和背面的n型区,防止边缘形成短路以及背面形成p-n结。然后,放入氢氟酸溶液(5~12%,质量分数)在室温下浸泡30~90s,去除硅片表面由于扩散工艺造成的磷硅玻璃(psg)。最后,用去离子水冲洗,氮气吹干。

4)正面生长氮化硅钝化和抗反射层

利用等离子体增强化学气相沉积(pecvd)方法沉积氮化硅薄膜时,等离子体中产生的大量氢原子具有优良的体钝化效果,因此氮化硅薄膜具有高质量的表面钝化和体钝化效果以及优良的减反射性能。pecvd的射频为13.56mhz,沉积腔体的本底真空优于1×10-3pa,射频功率密度为0.5~1.0w/cm2,以电子级氨气和硅烷分别为氮源和硅源,氨气和硅烷的流量比为1:2~6,工作气压为100~200pa,生长温度为200~300℃,在硅片正面生长的氮化硅薄膜厚度为80nm。

5)背面生长氧化铝/氢化氮化铝钝化层

在硅片背面采用反应磁控溅射法,依次氧化铝薄膜和氢化氮化铝薄膜。磁控溅射的射频(rf)为13.56mhz,靶与衬底间距为7.0~8.0cm。靶材为金属铝,工作气体为氩气,沉积氧化铝的反应气体为氧气,沉积氢化氮化铝的反应气体为氮气和氢气,这些气体和铝的纯度均为99.999%。溅射腔本底真空优于1×10-4pa,工作气压为0.5~2pa,衬底温度为室温,沉积薄膜的厚度通过膜厚监控仪监测。

首先,沉积厚度为10~20nm的氧化铝薄膜,射频功率为2.5~5w/cm2,氩气流量为30sccm,氧气流量为4~7sccm。氧化铝薄膜沉积结束以后,然后沉积厚度为60~100nm的氢化氮化铝薄膜。关闭射频电源,关闭氩气和氧气阀门,使溅射腔的真空优于1×10-4pa。随后,打开氩气、氮气和氢气的阀门,氩气流量为30sccm,氢气流量为2sccm,氮气流量为5~40sccm,射频功率为4~7w/cm2

6)背面激光开槽

采用nd:yag脉冲激光器对背面沉积的氧化铝/氢化氮化铝钝化层进行烧蚀开槽,使后续沉积的铝电极与硅在退火后实现良好的欧姆接触。激光波长为532nm、功率为20w、频率为50khz、脉冲宽度为50ns。激光开槽宽度为50~70μm,槽间距为400~500μm,烧蚀深度1~2μm。

7)正面和背面电极生长

硅片正面和背面利用磁控溅射法分别生长厚度为1μm的银电极和铝电极。正面利用栅线掩膜板,形成银栅线电极,背面全部形成铝电极。溅射靶材为金属银和铝,溅射腔体的本底真空优于1×10-4pa,工作气体为氩气,工作气压为1.0pa,溅射温度为室温,溅射功率为10w/cm2

8)退火处理

为了使硅片正面金属银与硅片n型掺杂区、背面的铝与p型硅形成良好的欧姆接触,以及使氢化氮化铝中的氢扩散到氧化铝中提高其热稳定性和增强其钝化性能,电池需要在750~850℃温度和氮气氛围下进行退火处理,时间为5~10min。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1