功率模块以及电力变换装置的制作方法

文档序号:17042214发布日期:2019-03-05 19:19阅读:162来源:国知局
功率模块以及电力变换装置的制作方法

本发明涉及功率模块的构造以及具备该功率模块的电力变换装置。



背景技术:

在功率模块故障时,发生功率模块的主体、周边部件的更换作业,因此,需要提高功率模块的更换作业性、降低与更换相伴的成本。在专利文献1中,为了将控制基板从搭载有半导体元件的绝缘基板容易地进行拆卸,通过具有弹力的部件将对搭载有半导体元件的绝缘基板进行覆盖的壳体与控制基板连接。

专利文献1:日本特开平6-45515公报

就专利文献1的功率模块而言,搭载有半导体元件的绝缘基板(功率部)和壳体通过封装树脂一体地形成,因此,不容易拆卸,在半导体元件故障时,正常的壳体也需要一起更换。特别是,对于作为发热源的半导体元件和半导体元件的周边,与壳体和壳体的周边相比更容易发生部件更换,因此,如果不使得搭载有半导体元件的绝缘基板和壳体易于拆卸,则存在过度耗费与更换作业相伴的成本的问题。



技术实现要素:

本发明就是为了解决上述问题而提出的,其目的在于,得到使得搭载有半导体元件的绝缘基板和壳体易于拆卸的功率模块。

本发明涉及的功率模块的特征在于,具备:绝缘基板;半导体元件,其设置在绝缘基板之上;内部端子,其设置在绝缘基板之上,与半导体元件电连接;封装材料,其以内部端子的端部露出的方式,将内部端子、半导体元件和绝缘基板进行封装;壳体,其与封装材料分离,覆盖封装材料;以及弹性部件,其将壳体与内部端子的端部连接。

发明的效果

根据本发明涉及的功率模块,搭载有半导体元件的绝缘基板是与壳体分离地封装的,经由弹性部件将被封装的绝缘基板和壳体连接,因此,基板和壳体能够容易地进行拆卸。

附图说明

图1是表示实施方式1的功率模块的剖面图。

图2是表示安装于散热器的实施方式1的功率模块的剖面图。

图3是表示实施方式2的功率模块的剖面图。

图4是表示实施方式3的功率模块的剖面图。

图5是表示使用了板簧的实施方式3的功率模块的剖面图。

图6是表示实施方式4的功率模块的剖面图。

图7是表示具有夹具的实施方式4的功率模块的剖面图。

图8是表示夹具的剖面图。

图9是表示电力变换系统的结构的框图。

标号的说明

1半导体元件,2绝缘基板,2a基座板,2b绝缘层,2c电路图案,3内部端子,4封装材料,5导电性电线,6凹部,7散热器,8螺钉,10壳体,11外部端子,11a外部端子,11b外部端子,12弹性部件,13板簧,14多触点弹簧,15孔,16夹具,50功率模块,51功率模块,52功率模块,53功率模块。100电源,200电力变换装置,201主变换电路,202功率模块,203控制电路,300负载

具体实施方式

实施方式1

对实施方式1中的功率模块50进行说明。图1是表示实施方式1的功率模块50的剖面图。此外,在除了图1以外的其他图中,同一标号表示相同或者相当的部分。就图1所示的功率模块而言,功率部由半导体元件1、绝缘基板2、内部端子3以及导电性电线5构成。功率模块50构成为,具备:功率部,其构成为,半导体元件1经由导电性部件与绝缘基板2接合,该功率部由封装材料4进行树脂封装;以及壳体10,内部端子3的端部从封装材料4露出而与弹性部件12连接。此外,半导体元件1只要是开关元件、二极管即可,可以是例如igbt(insulatedgatebipolartransistor)、pn二极管。并且,半导体元件的个数当然不限定于一个,也可以是大于或等于两个。

绝缘基板2由基座板2a、绝缘层2b、电路图案2c构成。绝缘层2b设置在基座板2a之上。电路图案2c设置在绝缘层2b之上。基座板2a和电路图案2c是由例如铜形成的。绝缘层2b确保与功率模块50的外部的电绝缘,例如,可以由无机陶瓷材料形成,也可以由将陶瓷粉末分散于环氧树脂等热固性树脂之中而成的材料形成。

内部端子3的一端与电路图案2c电连接,另一端用于与功率部的外部进行电信号的收发。内部端子3经由电路图案2c向半导体元件1的背面电极电连接。半导体元件1的表面电极经由导电性电线5与电路图案2c电连接。此外,内部端子3只要有导电性即可,例如,也可以是铜块等。

绝缘基板2、内部端子3、导电性电线5以及半导体元件1由封装材料4覆盖。内部端子3被封装材料4覆盖,但为了与外部进行信号收发,内部端子3的端部露出于封装材料4的表面。绝缘基板2的背面由散热器等冷却,因此,也可以从封装材料4露出。封装材料4只要是具有绝缘性的材料即可,不特别地限定,例如是环氧树脂。

功率部和封装材料4由壳体10包围。壳体10与封装材料4分离。此外,壳体10与封装材料4只要不是一体形成即可,壳体10与封装材料4也可以接触。通过使壳体10与封装材料4接触,从而在壳体10与封装材料4之间没有间隙,因此,能够使功率模块50小型化。此外,在壳体10与封装材料4之间存在间隙的情况下,能够吸收壳体10与封装材料4的尺寸公差,因此,产品设计的自由度提高。壳体10由塑性树脂等形成,外部端子11(11a、11b)嵌入形成于壳体10。外部端子11用于与壳体10的外部进行电信号的收发。此外,外部端子11也可以嵌出形成于壳体10。

弹性部件12的一端与搭载有半导体元件1的绝缘基板2之上的内部端子3弹性地连接,另一端与壳体10弹性地连接。在实施方式1中,弹性部件12是线圈弹簧,也可以与壳体10一体地形成。此外,弹性部件12也可以通过在壳体内部嵌入成型,从而与外部端子11一体地形成。并且,弹性部件12只要具有弹力和导电性即可,与电流容量相对应地,也可以是多个线圈弹簧。

在图2中,示出将功率模块50压接于散热器7的图。功率模块50在壳体的一部分具有安装用孔,将螺钉8穿入而安装于散热器7。并且,功率模块50在基座板2a的背面隔着油脂或散热板而安装于散热器7。此外,优选散热板是因为散热板与油脂相比不需要擦拭作业,在散热板的厚度小于或等于0.1mm时热传导率大于或等于1w/mk这一特性。

在图1中对下述情况下的电路结构进行说明,即,半导体元件1为igbt,虽然在图1中没有图示,但二极管在纸面垂直方向位于电路图案2c之上,分别使用一个而进行并联连接。外部端子11a为功率模块50的p端子,经由弹性部件12、内部端子3以及电路图案2c与半导体元件1的背面电极即集电极(collector)电极(electrode)电连接。半导体元件1的表面电极即发射极电极经由导电性电线5与电路图案2c电连接。外部端子11b为功率模块50的n端子,经由内部端子3、弹性部件12与电路图案2c电连接。另外,半导体元件1的集电极电极与二极管的阴极电极电连接,半导体元件1的发射极电极与二极管的阳极电极电连接,形成1in1模块的并联电路。当然也可以构成与上述电路结构不同的电路,例如,也可以形成2in1模块的半桥电路、6in1模块的3相逆变器电路。此外,根据电路结构的不同,外部端子11也可以成为输出端子。

根据本实施方式1的功率模块50,利用弹性部件12进行搭载有半导体元件1的绝缘基板2之上的内部端子3与壳体10的连接,由此,在半导体元件1故障的情况下,能够将绝缘基板2与壳体10容易地进行拆卸,更换搭载有半导体元件1的绝缘基板2,因此,具有下述效果,即,抑制更换所产生的作业成本、部件成本,使部件更换作业的效率性提高。另外,在将功率模块50安装于散热器7时,利用弹性部件12将绝缘基板2之上的内部端子3与壳体10连接,因此,即使与弹性部件12相连接的各部件存在尺寸波动,也会由弹性部件12将波动吸收,因而具有能够确保功率模块50与散热器7的接触压力的效果。

实施方式2

对实施方式2的功率模块51进行说明。图3是表示实施方式2的功率模块51的剖面图。就实施方式2的功率模块51而言,在从封装材料4露出的内部端子3的端部形成有凹部6。

根据本实施方式2的功率模块51,在从封装材料4露出的内部端子3的端部形成有凹部6。弹性部件12通过插入至凹部6,从而不仅能够从凹部6的底面通电,还能够从凹部6的侧面通电,使通电面积提高,能够增加功率模块51的电流容量。另外,在将功率模块51向散热器7安装时,利用凹部6对弹性部件12进行支撑,因此,能够容易地进行向散热器7的安装。

实施方式3

对实施方式3的功率模块52进行说明。图4是表示实施方式3的功率模块52的剖面图。实施方式3的功率模块52的特征在于,弹性部件是多触点弹簧14。此外,多触点弹簧14只要具有多个触点即可,例如,也可以是使螺旋状态的螺旋弹簧形成了波形状的线圈波浪弹簧、如图5所示那样的板簧13。

根据本实施方式3的功率模块52,由于弹性部件是多触点弹簧14,所以相对于线圈弹簧,接触面积增加,因此,能够提高通电面积,能够增加功率模块52的电流容量。另外,多触点弹簧14能够以短行程产生与线圈弹簧相比更大的弹力,因此,能够容易地进行功率模块52向散热器7的安装作业。并且,为了增加接触面积,线圈弹簧需要使用多个,与此相对,多触点弹簧14能够使部件个数为一个,因此,能够实现部件的轻量化。

实施方式4

对实施方式4的功率模块53进行说明。图6是表示实施方式4的功率模块53的剖面图。实施方式4的功率模块53的特征在于,在壳体10具备孔15,从封装材料4的侧面露出的内部端子3的端部插入至孔15,在壳体10的内部弹性部件12将外部端子11和内部端子3的端部电连接。

孔15的一端设置于与封装材料4的侧面相对的壳体10的内侧面,另一端设置在壳体10的上表面。此外,弹性部件12沿孔15以可在散热器7的安装方向发挥弹性的方式设置。在将被封装的功率部安装于壳体10时,使内部端子3朝向与纸面垂直的方向滑动而插入至孔15。

另外,如图7所示,也可以在壳体10一体地形成夹具16。如图8所示,夹具16由操作部21、支点部22和按压部23构成。在支点部22插入轴24,以使得操作部21和按压部23能够以支点部22为中心旋转。轴24由壳体10支撑。夹紧动作是在功率模块53固定于散热器7的状态下进行的。通过使操作部21以轴24为中心旋转,从而按压部23也旋转,向按压散热器7的方向作用力。

根据本实施方式4的功率模块53,由于内部端子3从封装材料4的侧面露出,在壳体10的内部经由弹性部件12与外部端子11连接,所以在半导体元件1故障的情况下,能够将搭载有半导体元件1的绝缘基板2和壳体10容易地进行拆卸,更换搭载有半导体元件1的绝缘基板2,因此,具有下述效果,即,抑制更换所产生的作业成本、部件成本,提高部件更换作业的效率性。另外,通过在壳体10一体地形成夹具16,从而在将功率模块53安装于散热器7时,能够容易地进行散热器7与功率模块53的压接作业,因此,具有提高部件更换作业的效率性的效果。

实施方式5

本实施方式是将上述实施方式1至4所涉及的功率模块应用于电力变换装置。本发明不限定于特定的电力变换装置,但以下,作为实施方式5,对将本发明应用于三相逆变器的情况进行说明。

图9是表示电力变换系统的结构的框图,该电力变换系统应用了本实施方式所涉及的电力变换装置。

图9所示的电力变换系统由电源100、电力变换装置200、负载300构成。电源100是直流电源,向电力变换装置200供给直流电力。电源100能够由各种电源构成,例如,能够由直流系统、太阳能电池、蓄电池构成,也可以由与交流系统连接的整流电路、ac/dc转换器构成。另外,也可以使电源100由将从直流系统输出的直流电力变换为规定的电力的dc/dc转换器构成。

电力变换装置200是连接在电源100和负载300之间的三相逆变器,将从电源100供给的直流电力变换为交流电力,向负载300供给交流电力。电力变换装置200如图9所示具备:主变换电路201,其将直流电力变换为交流电力而输出;以及控制电路203,其将对主变换电路201进行控制的控制信号向主变换电路201输出。

负载300是由从电力变换装置200供给的交流电力驱动的三相电动机。此外,负载300不限定于特定的用途,是搭载于各种电气设备的电动机,例如,用作面向混合动力汽车、电动汽车、铁路车辆、电梯或者空调设备的电动机。

以下,对电力变换装置200的详情进行说明。主变换电路201具备开关元件和回流二极管(未图示),通过使开关元件进行通断,从而将从电源100供给的直流电力变换为交流电力,向负载300供给。对于主变换电路201的具体的电路结构,存在各种结构,但本实施方式涉及的主变换电路201是2电平的三相全桥电路,能够由6个开关元件和与各个开关元件逆并联的6个回流二极管构成。将上述实施方式1至4中的任意者所涉及的功率模块应用于主变换电路201的各开关元件和回流二极管中的至少一个。6个开关元件两个两个地串联连接而构成上下桥臂,各上下桥臂构成全桥电路的各相(u相、v相、w相)。并且,各上下桥臂的输出端子即主变换电路201的3个输出端子与负载300连接。

另外,主变换电路201具备对各开关元件进行驱动的驱动电路(未图示),但驱动电路既可以内置于功率模块202,也可以是独立于功率模块202而另外具有驱动电路的结构。驱动电路生成对主变换电路201的开关元件进行驱动的驱动信号,供给至主变换电路201的开关元件的控制电极。具体地说,按照来自后述的控制电路203的控制信号,向各开关元件的控制电极输出将开关元件设为接通状态的驱动信号和将开关元件设为断开状态的驱动信号。在将开关元件维持为接通状态的情况下,驱动信号是大于或等于开关元件的阈值电压的电压信号(接通信号),在将开关元件维持为断开状态的情况下,驱动信号成为小于或等于开关元件的阈值电压的电压信号(断开信号)。

控制电路203对主变换电路201的开关元件进行控制,以向负载300供给规定的电力。具体地说,基于应向负载300供给的电力,对主变换电路201的各开关元件应成为接通状态的时间(接通时间)进行计算。例如,能够利用与应输出的电压相对应地对开关元件的接通时间进行调制的pwm控制,对主变换电路201进行控制。并且,向主变换电路201所具备的驱动电路输出控制指令(控制信号),以使得在各时刻向应成为接通状态的开关元件输出接通信号,向应成为断开状态的开关元件输出断开信号。驱动电路按照该控制信号,将接通信号或者断开信号作为驱动信号向各开关元件的控制电极输出。

在本实施方式涉及的电力变换装置中,作为主变换电路201的开关元件和回流二极管而应用实施方式1至4所涉及的功率模块,因此,通过利用弹性部件进行搭载有半导体元件的绝缘基板之上的端子与壳体的连接,由此,在半导体元件故障的情况下,能够将绝缘基板与壳体容易地进行拆卸,更换搭载有半导体元件的绝缘基板,因此,具有下述效果,即,抑制更换产生的作业成本、部件成本,提高部件更换作业的效率性。

在本实施方式中,对向2电平的三相逆变器应用本发明的例子进行了说明,但本发明不限定于此,能够应用于各种电力变换装置。在本实施方式中,采用了2电平的电力变换装置,但也可以是3电平、多电平的电力变换装置,在向单相负载供给电力的情况下,也可以向单相逆变器应用本发明。另外,在向直流负载等供给电力的情况下,也能够向dc/dc转换器、ac/dc转换器应用本发明。

另外,应用了本发明的电力变换装置不限定于上述的负载为电动机的情况,例如,还能够用作放电加工机、激光加工机、或感应加热烹调器、非接触器供电系统的电源装置,并且,也能够用作太阳能发电系统、蓄电系统等的功率调节器。

此外,本发明能够在本发明的范围内对各实施方式及各变形例自由地进行组合,对各实施方式适当地进行变形、省略。

另外,将部件与部件接合的导电性部件优选使用焊料、使用了金属填料的金属膏、或因热而金属化的烧结金属等电阻低的金属。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1