显示基板及其制造方法、显示装置与流程

文档序号:16849522发布日期:2019-02-12 22:36阅读:213来源:国知局
显示基板及其制造方法、显示装置与流程

本发明属于显示技术领域,具体涉及一种显示基板、一种显示基板的制造方法、一种显示装置。



背景技术:

在现有的显示基板(例如液晶显示基板或oled显示基板)中,为了给各像素供电,显示基板中设有交叉设置的栅线和数据线,为避免二者导通,二者之间设有绝缘层。

为减小栅线的电阻,栅线截面积要足够大,因其宽度有限,故将其厚度增大,这导致栅线的侧壁高且陡峭,当栅线在数据线下方时,栅线侧壁处的绝缘层会相对较薄,栅线侧壁处的数据线也会相对较薄。较薄的绝缘层易导致esd不良,较薄的数据线易导致断线不良。



技术实现要素:

本发明至少部分解决现有的显示基板的静电不良以及断线不良的问题,提供一种显示基板及其制造方法、显示装置。

根据本发明的第一方面,提供一种显示基板,包括基底、设置在所述基底上的第一绝缘层、设置在所述第一绝缘层远离所述基底一侧的第一信号线、覆盖所述第一信号线的第二绝缘层、设置在所述第二绝缘层远离所述基底一侧的第二信号线,所述第一信号线与所述第二信号线具有交叠区,在所述第一绝缘层上设有凹槽,所述第一信号线至少在所述交叠区处设置在所述凹槽内。

可选地,位于所述凹槽内的所述第一信号线的至少部分侧面与所述凹槽壁面接触。

可选地,所述第一信号线位于所述凹槽中的部分的远离所述基底一侧的表面与所述凹槽的开口平齐。

可选地,所述第一信号线全部位于所述凹槽中。

可选地,所述第一信号线的延伸方向与所述第二信号线的延伸方向相交。

可选地,构成所述第一绝缘层的材料包括有机硅玻璃。

可选地,所述显示基板还包括设置在所述凹槽底面与所述第一信号线之间的第三绝缘层。

可选地,所述第一信号线包括栅线,所述第二信号线包括数据线,所述第三绝缘层包括栅绝缘层。

可选地,所述显示基板还包括设置在所述基底朝向所述第一绝缘层的一侧的金属遮光层,所述第一绝缘层覆盖所述金属遮光层,所述显示基板内还设置有驱动薄膜晶体管,所述驱动薄膜晶体管设于所述第一绝缘层远离所述基底一侧,且所述驱动薄膜晶体管在所述金属遮光层所在平面的正投影处于所述金属遮光层内。

根据本发明的第二方面,提供一种显示基板的制造方法,所述显示基板为本发明第一方面所提供的显示基板,所述制造方法包括:

通过构图工艺在基底上形成所述第一绝缘层,并在所述第一绝缘层中形成所述凹槽;

通过构图工艺在所述第一绝缘层上形成所述第一信号线;

在所述第一信号线上形成所述第二绝缘层;

通过构图工艺在所述第二绝缘层上形成所述第二信号线。

可选地,当所述第一绝缘层采用有机硅玻璃溶液形成时,所述通过构图工艺在基底上形成所述第一绝缘层包括:

在所述基底上涂覆有机硅玻璃溶液;

对所述有机硅玻璃溶液进行前烘、曝光、显影以得到所述凹槽。

可选地,当所述显示基板具有所述第三绝缘层时,在形成所述第一绝缘层与形成所述第一信号线之间,该制造方法还包括:

形成覆盖所述第一绝缘层的第三绝缘层。

可选地,当所述显示基板具有所述第三绝缘层时,在形成所述第一绝缘层与形成所述第一信号线之间,该制造方法还包括:

通过构图工艺在所述第一绝缘层的凹槽内形成第三绝缘层。

根据本发明的第三方面,提供一种显示装置,包括本发明第一方面所提供的显示基板。

附图说明

图1为本发明的实施例的一种显示基板的两部分区域的剖面图;

图2为本发明的实施例的另一种显示基板的局部的剖面图;

图3为本发明的实施例的另一种显示基板的局部的剖面图;

图4为本发明的实施例的另一种显示基板的局部的剖面图;

其中,附图标记为:10、基底;20、第一绝缘层;31、第一信号线;32、第二信号线;40、第二绝缘层;50、第三绝缘层;60、金属遮光层;71、漏极;72、源极;73、栅极;74、有源区;80、钝化层;90、阳极。

具体实施方式

为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。

在本发明中,两结构“同层设置”是指二者是由同一个材料层形成的,故它们在层叠关系上处于相同层中,但并不代表它们与基底间的距离相等,也不代表它们与基底间的其它层结构完全相同。

在本发明中,“构图工艺”是指形成具有特定的图形的结构的步骤,其可为光刻工艺,光刻工艺包括形成材料层、涂布光刻胶、曝光、显影、刻蚀、光刻胶剥离等步骤中的一步或多步;当然,“构图工艺”也可为压印工艺、喷墨打印工艺等其它工艺。

实施例1:

本实施例提供一种显示基板,包括基底10、设置在基底10上的第一绝缘层20、设置在第一绝缘层20远离基底10一侧的第一信号线31、覆盖第一信号线31的第二绝缘层40、设置在第二绝缘层40远离基底10一侧的第二信号线32,第一信号线31与第二信号线32具有交叠区。

例如如图1和图2所示,第二绝缘层40将第一信号线31和第二信号线32隔开,且二者具有交叠区。

在第一绝缘层20上设有凹槽,第一信号线31至少在交叠区处设置在凹槽内。

在一种实施方式中,位于凹槽内的第一信号线31的至少部分侧面与凹槽壁面接触。

也即是将第一信号线31的至少一段线路设置在凹槽内,且第一信号线31与凹槽等宽故其至少侧面与凹槽壁面接触而无间隙(当然由于实际产品中凹槽和第一信号线31均存在坡度角,故第一信号线31位于凹槽的部分中,也可有部分侧面不与凹槽壁面接触),由此,这一段第一信号线31的侧壁超出第一绝缘层20的高度得到削减(如图2所示)或者根本不再超出第一绝缘层20(如图1所示),当然这一段第一信号线31也可以是完全陷入到该凹槽开口以下(即第一信号线31的上表面可比凹槽的开口更低)。无论以上哪种情况,都能够使得在第一信号线31之上的第二绝缘层40的侧壁的坡度以及第二信号线32的侧壁的坡度变小,从而避免第二绝缘层40的侧壁过薄而造成的esd不良,以及避免了第二信号线32的侧壁过薄而造成的断线不良。

在另一种实施方式中,位于凹槽内的第一信号线31的侧面不与凹槽壁面接触。也即是在形成第一信号线31的图案的构图工艺中,将第一信号线31位于凹槽中的部分的宽度设置的比凹槽底面的宽度窄,这样,位于凹槽内的第一信号线31的侧面便不与凹槽壁面接触。这种实施方式同样能够使得在第一信号线31之上的第二绝缘层40的侧壁的坡度以及第二信号线32的侧壁的坡度变小,从而避免第二绝缘层40的侧壁过薄而造成的esd不良,以及避免了第二信号线32的侧壁过薄而造成的断线不良。

可选地,第一信号线31位于凹槽中的部分的远离基底10一侧的表面与凹槽的开口平齐。

即作为一种优选的实施方式,第一信号线31位于凹槽中的部分的上表面刚好与该凹槽的开口平齐,如此,在该凹槽位置处,第一信号线31之上的第二绝缘层40的底面和第二信号线32的底面都是水平的,它们的底面不会形成斜坡,进一步减少esd不良和断线不良。

而在另一种具体实施方式中,如图2和图3所示,第一信号线31在凹槽中的部分是部分超出该凹槽的开口的。或者如图4所示,第一信号线31在凹槽中的部分是全部在该凹槽的开口以下的。

无论以上哪种情况,均能够降低第二信号线32侧壁的坡度。

具体地,如图1至图3所示,上述凹槽的底面可以是在第一绝缘层20的内部,即该凹槽不是通槽。当然如图4所示,上述凹槽的深度也可以直达基底10,或者说上述凹槽也可以是通槽。

可选地,第一信号线31全部位于凹槽中。

即第一信号线31位于凹槽中的部分的长度与第一信号线31的长度是等长的,第一信号线31不会造成其上的第二绝缘层40在对应第一信号线31位置处的底面出现斜坡。

可选地,第一信号线31的延伸方向与第二信号线32的延伸方向相交。

通常而言,不同层的第一信号线31和第二信号线32的延伸方向是相交的(例如如图1、图2所示的第一信号线31可沿垂直于纸面的方向延伸,而第二信号线32沿左右方向延伸),二者交叉的位置即为交叠区。

当然,如图3所示,第二信号线32也可以是沿垂直于纸面的方向延伸的,即其与第一信号线31延伸方向相同,但比第一信号线31宽,二者也会具有交叠区。

优选地,第一信号线31和第二信号线32二者的延伸方向垂直。即第一信号线31和第二信号线32更优选是垂直交叉的。

可选地,构成第一绝缘层20的材料包括有机硅玻璃。

也即是采用有机硅玻璃溶液形成第一绝缘层20。由于有机硅玻璃溶液(sog)的流动性很高,故可很容易的形成平整的层;且由于有机硅玻璃溶液本身的性质,故其只需经过前烘、曝光、显影、后烘即可完成构图工艺,从而得到有机硅玻璃的外形,无需进行刻蚀,从而有利于简化工艺。

可选地,如图1所示,显示基板还包括设置在凹槽底面与第一信号线31之间的第三绝缘层50。

即在该凹槽内先铺一层第三绝缘层50再在第三绝缘层50上设置第一信号线31。第三绝缘层50一方面可以增强该凹槽底部的绝缘效果,另一方面可用于调节凹槽内第一信号线31的高度。

可选地,第一信号线31包括栅线,第二信号线32包括数据线,第三绝缘层50包括栅绝缘层。

具体地,图1中的第一信号线31为栅线(其可与栅极73同层设置),图1中的第二信号线32为数据线(其可与漏极71、源极72同层设置),图1中的第三绝缘层50为栅绝缘层(当然该第三绝缘层50与处在栅极73和有源区74之间的那部分栅绝缘层可以是分开的),第三绝缘层50的部分位于驱动薄膜晶体管的器件区域内。

可选地,如图1所示,显示基板还包括设置在基底10朝向第一绝缘层20的一侧的金属遮光层60,第一绝缘层20覆盖金属遮光层60,显示基板内还设置有驱动薄膜晶体管,驱动薄膜晶体管设于第一绝缘层20远离基底10一侧,且驱动薄膜晶体管在金属遮光层60所在平面的正投影处于金属遮光层60内。

金属遮光层60设置在驱动薄膜晶体管的器件区下方,从而避免光照对该驱动薄膜晶体管的影响。该金属遮光层60可通过过孔与源极72相连(如图1所示),以形成存储电容的一极(存储电容的另一极可与栅极73连接)。当然该金属遮光层60也可通过过孔与栅极73相连以形成存储电容的一极(存储电容的另一极可与一个定压信号源连接,如与电源连接)。

在这种实施方式中,第一绝缘层20还起到平坦化的作用。

实施例2:

本实施例提供一种显示基板的制造方法,显示基板为实施例1所提供的显示基板,该制造方法包括:

通过构图工艺在基底10上形成第一绝缘层20,并在第一绝缘层20中形成凹槽;

通过构图工艺在第一绝缘层20上形成第一信号线31;

在第一信号线31上形成第二绝缘层40;

通过构图工艺在第二绝缘层40上形成第二信号线32。

即在基底10上依次形成实施例1中的第一绝缘层20、第一信号线31、第二绝缘层40、第二信号线32。

可选地,当第一绝缘层20采用有机硅玻璃溶液形成时,通过构图工艺在基底10上形成第一绝缘层20包括:

在基底10上涂覆有机硅玻璃溶液;

对有机硅玻璃溶液进行前烘、曝光、显影以得到凹槽。

由于有机硅玻璃溶液本身的特性,无需进行光刻即能完成构图工艺。进一步,对得到的凹槽进行后烘,从而使结构稳定。

可选地,当显示基板具有第三绝缘层50时,在形成第一绝缘层20后形成第一信号线31之前,该制造方法还包括:形成覆盖第一绝缘层20的第三绝缘层50。

即作为一种可行的实施方式,第三绝缘层50是覆盖对应整个基底10的表面区域。

可选地,当显示基板具有第三绝缘层50时,在形成第一绝缘层20后形成第一信号线31之前,该制造方法还包括:

通过构图工艺在第一绝缘层20的凹槽内形成第三绝缘层50。

即作为一种可行的实施方式,第三绝缘层50仅覆盖包括凹槽的部分区域。

以下为图1所示显示基板的具体的工艺步骤。

第一步:提供基底10,基底10例如是透明材料形成,可采用石英玻璃等,厚度为50-1000um;采用溅射设备在基底10上沉积金属层(如al或cu),经构图工艺得到金属遮光层60的图案。

第二步:利用旋涂方法沉积有机硅玻璃溶液,经前烘、曝光、显影得到用于源极72与金属遮光层60相连的过孔以及用于后续容纳第一信号线31的凹槽。之后对产品进行后烘,得到致密的硅的氧化物,其厚度在300-500nm范围内。如此,得到第一绝缘层20,它同时还起到缓冲金属遮光层60高度的作用。其中,若用于源极72与金属遮光层60相连的过孔与用于后续容纳第一信号线31的凹槽二者深度不同,则其曝光程度应不同(如采用灰阶掩膜版曝光),但显影可一起进行的。

第三步:采用溅射设备在第一绝缘层20上沉积氧化物作为有源区74的材料,之后进行光刻、湿刻、剥离光刻胶等构图工艺得到有源区74。有源区74的材料可以是igzo、znon、itzo等非晶氧化物。

第四步:采用cvd工艺沉积用于形成第三绝缘层50(此处具体为栅绝缘层,简称gi层)的材料;再利用溅射设备沉积栅极金属层(用于形成栅极73和栅线(第一信号线31)),栅极金属层的厚度选为200-1000nm,选材例如是al、mo、cr、cu、ti等,经光刻、湿刻得到栅极73和栅线的图案;保留光刻胶不被剥离,继续以栅极金属层上的光刻胶作为掩模,干刻出驱动薄膜晶体管的栅绝缘层的图案。

其中,至少部分栅线设在前述的凹槽内,故降低了这部分栅线的段差。当然,作为优选的方式,栅线应全部位于凹槽,且更优选其上表面与凹槽的开口齐平;但由于栅线可能厚度比第一绝缘层20的厚度大,故其部分超出凹槽也是可行的。

本领域技术人员同样可以使用两张掩模板分两次构图工艺依次得到栅绝缘层的图案、栅线和栅极73的图案。或者,栅绝缘层也可覆盖整个基底(当然在凹槽中也有),故其不需要构图工艺。

第五步:采用nh3、n2、h2中的任意一种气体对暴露的有源区74进行导体化处理,以降低其与漏极71、源极72之间的接触欧姆电阻。

第六步:采用pecvd工艺沉积第二绝缘层40(具体为层间绝缘层,简称idl)材料,通过干刻工艺得到漏极71、源极72各自与有源区74接触的过孔,同时也得到源极72与金属遮光层60接触的过孔。第二绝缘层40为sinx或siox单层结构,或二者层叠的多层结构。

第七步:采用溅射工艺沉积用于形成漏极71和源极72的金属材料,可选的材料包括al、mo、cr、cu、ti等,厚度为200-1000nm,经光刻、湿刻工艺得到漏极71、源极72、以及第二信号线32(具体为数据线)的图案。

注意到,由于之前的第一信号线31被设置在凹槽内,此时第二信号线32在与第一信号线31交叠的部分也是平整的。

第八步:采用pecvd工艺沉积用于形成钝化层80的材料,可选的材料包括sinx、siox、sioxny中的一种材料,或其中多种材料交叠设置,钝化层80的厚度设置在100-500nm范围内,之后经曝光、干刻等构图工艺得到连通至源极72的过孔。

第九步:采用溅射工艺沉积用于形成阳极90的材料,厚度为200-1000nm,经曝光、湿刻等构图工艺得到阳极90图案。

当然,在后续步骤中,还可包括继续形成有机发光层、阴极等其它结构的步骤,在此不再详细描述。

当然,以上各步骤中各结构的材料、厚度等只是一种示例,而不是对其可行方案的限定。

图1仅示出了显示基板中的一个亚像素中的一个驱动薄膜晶体管以及一段第一信号线31(栅线)、一段第二信号线32(数据线),显示基板的其余部分可采用常规设计,故未画出。

实施例3:

本实施例提供一种显示装置,包括本发明实施例1所提供的显示基板。

具体的,该显示装置可为液晶显示面板、有机发光二极管(oled)显示面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。

可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1