一种多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法与流程

文档序号:16664251发布日期:2019-01-18 23:09阅读:415来源:国知局
一种多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法与流程

本发明涉及一种多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法,属于电池催化材料技术领域。



背景技术:

柔性电子产品,如移动手机、电子纸以及可穿戴设备等,由于其超轻,可携带以及可折叠的性能引起研究者的广泛关注。其中,低温燃料电池因其低成本、高功率密度、快速启动等特性,被认为潜在能源。近几年,高机械强度以及优异电化学性能的可折叠柔性能源设备应运而生,发展势头迅猛,被广泛用于超级电容器,可充电电池以及太阳能电池。迄今为止,鲜有报道合成柔性电极载体材料负载催化剂用于燃料电池。

柔性电极一般包括导电高分子,金属以及金属纳米粒子/纳米线以及碳材料如碳纳米管、石墨烯纸以及石墨烯泡沫等,已广泛应用于众多领域。其中,石墨烯纸由单一石墨烯或者氧化石墨烯组成,其独特的优点被广泛应用于可携带柔性电子装置。其优点包括较高的比表面积、良好的导电性、优异的机械强度以及柔韧性。li等研究了采用真空抽滤方法制备石墨烯膜,但石墨烯堆集严重导致其比表面积以及性能大大降低。

为解决上述问题,chen等研究者引入ni纳米粒子作为“插层”从而产生大量介孔-大孔以抑制石墨烯堆集。此外,采用激光还原方法也可抑制石墨烯膜的堆积。上述两种合成方法可制备具有优异导电性的石墨烯纸自支撑膜材料,同时可较好抑制石墨烯堆集,但是其制备方法复杂,成本较高从而限制其实际应用。

此外,中国专利文件cn107723925a公开了一种具有仿莲藕孔结构的多孔碳纳米纤维自支撑膜及其制备方法。本发明的多孔碳纳米纤维自支撑膜具有类似莲藕孔结构的多孔形貌,是通过调控造孔剂(聚苯乙烯)在聚丙烯腈纤维前躯体中的含量,并经过高温碳化制备得到;其制备过程包括:配制聚丙烯腈/聚苯乙烯纺丝液;通过静电纺丝制备聚丙烯腈/聚苯乙烯纳米纤维膜;通过高温碳化聚丙烯腈/聚苯乙烯纳米纤维膜得到多孔碳纳米纤维自支撑膜。该支撑膜采用静电纺丝成膜,成本较高。中国专利文件cn105542332a公开了一种制备聚苯乙烯/石墨烯/贵金属复合粒子的方法,所述方法包括:(1)采用未经表面改性与修饰的聚苯乙烯微球,用水配制成聚苯乙烯微球分散液;(2)将氧化石墨分散在水中,经超声剥离,得到氧化石墨烯水分散液;(3)搅拌下,将氧化石墨烯水分散液加入到聚苯乙烯微球水分散液中,升温至80-100℃,加入水合肼,反应45-150分钟,经离心、洗涤,得到聚苯乙烯/石墨烯复合粒子的水分散液;其中,水合肼与氧化石墨烯的质量比100∶1-5,和(4)在聚苯乙烯/石墨烯复合粒子的水分散液中,加入贵金属前驱体,在20-100℃下反应30-120分钟,然后经离心、洗涤,得到聚苯乙烯/石墨烯/贵金属复合粒子。该方法制备过程复杂,成本较高,而且使用水合肼,存在毒性,难以产业化生产。



技术实现要素:

针对现有技术存在的缺陷,解决石墨烯层堆积和聚集,以及在合成石墨烯柔性膜过程中,其制备过程繁琐,合成周期较长,成本较高,难于产业化生产的问题。本发明提供一种多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法。采用成本低的聚苯乙烯微球作为硬模板以抑制石墨烯堆叠,掺杂碳纳米管,制备出高比表面积、优异的机械强度以及柔韧性的多孔石墨烯/单壁碳纳米管柔性膜材料,作为载体负载pt纳米粒子作为催化剂,可应用于甲醇燃料电池。

本发明的技术方案如下:

一种多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法,包括步骤如下:

将氧化石墨烯(go)分散液与聚苯乙烯微球(ps)溶液混合超声,得到go-ps混合液;

将单壁碳纳米管(swcnt)分散液超声,加入到go-ps混合液,得到go-ps-swcnt混合液;

将go-ps-swcnt混合液真空抽滤成膜,煅烧,即得多孔石墨烯/碳纳米管柔性自支撑膜材料(e-rgo-swcnt)。

根据本发明,优选的,所述的go分散液的浓度为0.5-10mgml-1,进一步优选为5-10mgml-1

优选的,所述的ps溶液的浓度为0.5-5%(w/v),进一步优选为1-3%(w/v);

优选的,所述的swcnt分散液的浓度为0.01-0.5wt%,进一步优选为0.1-0.3wt%。

根据本发明,优选的,go-ps-swcnt混合液中go、ps和swcnt的质量比为(10-17):(5-10):1。

根据本发明,优选的,go-ps-swcnt混合液真空抽滤,得到柔性高的膜材料。

根据本发明,优选的,煅烧步骤中,煅烧温度为100-800℃,进一步优选300-500℃;

优选的,升温到煅烧温度的升温速率为1-10℃min-1

优选的,煅烧时间为10min-6h,进一步优选25min-1h;

优选的,在惰性气体保护下煅烧,进一步优选在ar气保护下煅烧。

根据本发明,优选的,煅烧完成后,即得多孔石墨烯/碳纳米管柔性自支撑膜材料。

本发明还提供一种负载pt纳米粒子的多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法,包括步骤如下:

(1)真空抽滤go-ps-swcnt混合液成膜,将其煅烧得到e-rgo-swcnt柔性膜;

(2)采用电化学沉积方法,将e-rgo-swcnt柔性膜表面沉积pt纳米粒子,制备pt负载的e-rgo-swcnt催化剂(pt/e-rgo-swcnt)。

根据本发明,优选的,1mg柔性膜表面负载pt的质量为0.001mg-0.1mg,进一步优选为0.005mg-0.05mg。即柔性膜和pt的质量比为1:(0.001-0.1)。

根据本发明,一种优选的负载pt纳米粒子的多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方案,包括步骤如下:

(1)将浓度为5-10mgml-1的go分散液与浓度为1-3%(w/v)的ps溶液混合超声,得到go-ps混合液;

(2)将浓度为0.1-0.3wt%的swcnt分散液超声,加入到go-ps混合液中,得到go-ps-swcnt混合液;

(3)将go-ps-swcnt混合液真空抽滤成膜,煅烧得到e-rgo-swcnt柔性膜;

(4)采用电化学沉积方法,将e-rgo-swcnt柔性膜表面沉积pt纳米粒子,pt纳米粒子的沉积量为0.001mg-0.1mg,柔性膜和pt的质量比为1:(0.001-0.01)。制备pt/e-rgo-swcnt催化剂。

根据本发明,优选的,采用电化学沉积方法,将e-rgo-swcnt柔性膜表面沉积pt纳米粒子的步骤如下:

采用电化学工作站(上海辰华chi760e)沉积pt纳米粒子。实验采用三电极体系,工作电极为e-rgo-swcnt柔性膜,对电极与参比电极分别为铂丝与饱和甘汞电极(sce)。制备过程采用恒电位法,其电压为-0.2v,电解质溶液为3.0mmh2ptcl6+0.5mh2so4。pt纳米粒子的沉积电量为0.01c-0.1c,1mg柔性膜对应的pt纳米粒子的沉积质量为0.005mg-0.05mg。柔性膜和pt的质量比为1:(0.001-0.1)。

本发明制得的多孔石墨烯/碳纳米管柔性自支撑膜材料无需集流体,本身可作为催化剂的柔性载体材料负载pt催化剂。该多孔材料可较好抑制石墨烯的堆集,掺杂单壁碳纳米管可提高离子渗透,有利于pt纳米粒子沉积至膜内部而不仅仅在膜表面,将其负载pt纳米粒子制备的pt/e-rgo-swcnt催化剂,做成工作电极,铂片为对电极,hgo/hg电极为参比电极,采用三电极系统,可用于甲醇电催化氧化。

与已有技术相比,本发明的有益效果体现在:

1、采用价格低廉的ps作为模板制备多孔石墨烯膜可抑制石墨烯堆集,掺杂swcnt有利于形成完整导电膜材料。仅采用抽滤方法即可得到柔性膜材料,该制备方法简单操作,使其能较好地实现可扩大化生产,进而应用于工业生产当中。

2、本发明制备的柔性膜材料,具有较高的比表面积,3d多孔相互连接框架,以及良好的导电性,是一种较好的催化剂载体,无需额外自流体即可负载pt催化剂。

3、本发明制备的pt/e-rgo-swcnt催化剂对甲醇具有较高的催化性能,相对于传统的pt/rgo以未加swcnt的pt/e-rgo催化剂,该制备的pt/e-rgo-swcnt甲醇催化具有较大优势。

附图说明

图1为实施例1中pt/e-rgo-swcnt的扫描隧道显微镜图。(a)平面;(b)剖面。

图2为实施例1中pt/e-rgo-swcnt的x射线衍射图。

图3为实施例1中pt/e-rgo-swcntx射线光电子能谱图。

图4为为实施例1中pt/e-rgo-swcnt和对比例1pt/e-rgo以及对比例2pt/rgo催化剂中催化甲醇循环伏安图。

具体实施方式

下面通过具体实施例对本发明做进一步说明,但不限于此。

实施例中所用原料均为常规市购产品。

实施例中,电化学沉积方法将e-rgo-swcnt柔性膜表面沉积pt纳米粒子的步骤如下:

采用电化学工作站(上海辰华chi760e)沉积pt纳米粒子。实验采用三电极体系,工作电极为e-rgo-swcnt柔性膜,对电极与参比电极分别为铂丝与饱和甘汞电极(sce)。制备过程采用恒电位法,其电压为-0.2v,电解质溶液为3.0mmh2ptcl6+0.5mh2so4。pt纳米粒子的沉积电量为0.01c-0.1c,1mg柔性膜对应的pt纳米粒子的沉积质量为0.005mg-0.05mg。

实施例1

一种负载pt纳米粒子的多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法,包括步骤如下:

(1)将7mlgo分散液(10mgml-1)溶解至28ml去离子水,超声分散至均匀溶液,备用;

将1.4mlps溶液(2.5%(w/v))溶解至2.1ml去离子水,混合超声至均匀溶液,得到go-ps混合液;

(2)将3.34mlswcnt分散液(0.15wt%)超声,将其加至上述go-ps混合液,混合搅拌15min,得到go-ps-swcnt混合液;

(3)将go-ps-swcnt混合液真空抽滤成膜,在ar保护气体中将膜复合材料升温至煅烧温度进行高温煅烧,煅烧温度为500℃,升温速率为10℃min-1,煅烧时间为1h,煅烧得到e-rgo-swcnt柔性膜;

(4)采用电化学沉积方法,将e-rgo-swcnt柔性膜表面沉积pt(0.025mg)纳米粒子,柔性膜和pt的质量比为1:0.025。制备pt/e-rgo-swcnt催化剂。

图1为实施例1中pt/e-rgo-swcnt的扫描隧道显微镜图。(a)平面;(b)剖面。从图1a可以看出,pt纳米粒子分散至膜表面。从扫描隧道显微镜剖面图(图1b)可以看出,pt纳米粒子沿着碳纳米管到达膜内部。

图2为实施例1中pt/e-rgo-swcnt的x射线衍射图。由图2可以得出,25.5°衍射峰归属于c(002),与此同时,40.0,46.4,67.7和81.6°分别归属于pt(111),(200),(220),(311)的四个晶面,表面pt成功负载于cm。

图3为实施例1中pt/e-rgo-swcnt的x射线光电子能谱图。由图3可以得出,该催化剂中中包含pt4f,c1s,o1s。

实施例2

一种负载pt纳米粒子的多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法,包括步骤如下:

(1)将7mlgo分散液(5mgml-1)溶解至28ml去离子水,超声分散至均匀溶液,备用;将1.4mlps溶液(1%(w/v))溶解至2.1ml去离子水,混合超声至均匀溶液,得到go-ps混合液;

(2)将3.34mlswcnt分散液(0.1wt%)超声,将其加至上述go-ps混合液,混合搅拌15min,得到go-ps-swcnt混合液;

(3)将go-ps-swcnt混合液真空抽滤成膜,在ar保护气体中将膜复合材料升温至煅烧温度进行高温煅烧,煅烧温度为300℃,升温速率为10℃min-1,煅烧时间为5h,煅烧得到e-rgo-swcnt柔性膜;

(4)采用电化学沉积方法,将e-rgo-swcnt柔性膜表面沉积pt(0.005mg)。柔性膜和pt的质量比为1:0.005。制备pt/e-rgo-swcnt催化剂。

实施例3

一种负载pt纳米粒子的多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法,包括步骤如下:

(1)将7mlgo分散液(8mgml-1)溶解至28ml去离子水,超声分散至均匀溶液,备用;将1.4mlps溶液(3%(w/v))溶解至2.1ml去离子水,混合超声至均匀溶液,得到go-ps混合液;

(2)将3.34mlswcnt分散液(0.3wt%)超声,将其加至上述go-ps混合液,混合搅拌15min,得到go-ps-swcnt混合液;

(3)将go-ps-swcnt混合液真空抽滤成膜,在ar保护气体中将膜复合材料升温至煅烧温度进行高温煅烧,煅烧温度为400℃,升温速率为10℃min-1,煅烧时间为3h,煅烧得到e-rgo-swcnt柔性膜;

(4)采用电化学沉积方法,将e-rgo-swcnt柔性膜表面沉积pt(0.015mg)。柔性膜和pt的质量比为1:0.015。制备pt/e-rgo-swcnt催化剂。

实施例4

一种负载pt纳米粒子的多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法,包括步骤如下:

(1)将7mlgo分散液(10mgml-1)溶解至28ml去离子水,超声分散至均匀溶液,备用;将1.4mlps溶液(1.5%(w/v))溶解至2.1ml去离子水,混合超声至均匀溶液,得到go-ps混合液;

(2)将3.34mlswcnt分散液(0.2wt%)超声,将其加至上述go-ps混合液,混合搅拌15min,得到go-ps-swcnt混合液;

(3)将go-ps-swcnt混合液真空抽滤成膜,在ar保护气体中将膜复合材料升温至煅烧温度进行高温煅烧,煅烧温度为600℃,升温速率为10℃min-1,煅烧时间为0.5h,煅烧得到e-rgo-swcnt柔性膜;

(4)采用电化学沉积方法,将e-rgo-swcnt柔性膜表面沉积pt(0.01mg)。柔性膜和pt的质量比为1:0.01。制备pt/e-rgo-swcnt催化剂。

实施例5

一种多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法,包括步骤如下:

(1)将7mlgo分散液(9mgml-1)溶解至28ml去离子水,超声分散至均匀溶液,备用;将1.4mlps溶液(1.5%(w/v))溶解至2.1ml去离子水,混合超声至均匀溶液,得到go-ps混合液;

(2)将3.34mlswcnt分散液(0.25wt%)超声,将其加至上述go-ps混合液,混合搅拌15min,得到go-ps-swcnt混合液;

(3)将go-ps-swcnt混合液真空抽滤成膜,在ar保护气体中将膜复合材料升温至煅烧温度进行高温煅烧,煅烧温度为450℃,升温速率为10℃min-1,煅烧时间为1.5h,煅烧得到e-rgo-swcnt柔性膜。

实施例6

一种多孔石墨烯/碳纳米管柔性自支撑膜材料的制备方法,包括步骤如下:

(1)将7mlgo分散液(8mgml-1)溶解至28ml去离子水,超声分散至均匀溶液,备用;将1.4mlps溶液(2%(w/v))溶解至2.1ml去离子水,混合超声至均匀溶液,得到go-ps混合液;

(2)将3.34mlswcnt分散液(0.15wt%)超声,将其加至上述go-ps混合液,混合搅拌15min,得到go-ps-swcnt混合液;

(3)将go-ps-swcnt混合液真空抽滤成膜,在ar保护气体中将膜复合材料升温至煅烧温度进行高温煅烧,煅烧温度为400℃,升温速率为10℃min-1,煅烧时间为2h,煅烧得到e-rgo-swcnt柔性膜。

对比例1、不加入swcnt,制备e-rgo膜负载pt纳米粒子。

(1)将7mlgo分散液(10mgml-1)溶解至28ml去离子水,超声分散至均匀溶液,备用;

(2)将1.4mlps溶液(2.5%(w/v))溶解至2.1ml去离子水,混合超声至均匀溶液,得到go-ps混合液;

(3)将go-ps混合液真空抽滤成膜,在ar保护气体中将膜复合材料升温至煅烧温度进行高温煅烧,煅烧温度为500℃,升温速率为10℃min-1,煅烧时间为1h,煅烧得到e-rgo柔性膜;

(4)采用电化学沉积方法,将e-rgo柔性膜表面沉积pt(0.025mg)纳米粒子,制备pt/e-rgo催化剂。

对比例2、go抽滤成膜,制备rgo膜负载pt纳米粒子

(1)将7mlgo分散液(10mgml-1)溶解至28ml去离子水,超声分散至均匀溶液,备用;

(2)将go混合液真空抽滤成膜,在ar保护气体中将膜复合材料升温至煅烧温度进行高温煅烧,煅烧温度为500℃,升温速率为10℃min-1,煅烧时间为1h,煅烧得到rgo柔性膜;

(4)采用电化学沉积方法,将rgo柔性膜表面沉积pt(0.025mg)纳米粒子,制备pt/rgo催化剂。

试验例1

测试实施例1中的pt/e-rgo-swcnt、对比例1中的pt/e-rgo和对比例2中的pt/rgo催化剂酸性条件下催化甲醇的循环伏安曲线,如图4所示,扫描速率为50mvs-1。由图4可以看出:在正扫和反扫过程各出现了一个氧化峰。在正扫过程中,位于0.75v左右的氧化峰归于甲醇的氧化,而在反扫过程中,位于0.5v左右的氧化峰则主要归于正扫过程中甲醇醇未完全氧化的中间产物的进一步氧化。从图4中可以看出,pt/e-rgo-swcnt催化剂对甲醇电催化氧化的峰电流密度(191.71mamg-1)远高于pt/e-rgo(109.72mamg-1)以及pt/rgo(68.51mamg-1)。因此,相对于对比例1pt/e-rgo,对比例2pt/rgo催化剂,实施例1pt/e-rgo-swcnt催化剂对甲醇具有更高催化性能。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1