半导体模块、其制造方法以及电力变换装置与流程

文档序号:17597668发布日期:2019-05-07 19:44阅读:129来源:国知局
半导体模块、其制造方法以及电力变换装置与流程

本发明涉及导线或者带状连接件与半导体元件进行了键合的半导体模块、其制造方法以及电力变换装置。



背景技术:

近年来,由于环境法规变严,考虑了环境问题的高品质、高效率、节能的电子设备的需求提高。特别地,作为工业设备、具备电机的家电的驱动控制设备、面向电动汽车或者混合动力汽车的车载控制设备、铁路车辆控制设备、太阳能发电的控制设备等,谋求可应对高功率的电子设备。并且,谋求电子设备的高负载环境下,例如高温环境下工作时的高效化以及低损耗化。高温环境下是指,150℃至175℃或其以上,例如是200℃的温度环境下。正在推进在这样的高温环境下工作的半导体元件的开发。另外,作为封装件的特性,也在推进高密度电流化。

特别地对于作为车载、铁路控制设备而使用的电子设备,谋求在高温环境下的节能性能。至今为止,通常工作温度是例如小于或等于150℃,但今后,对于在大于或等于200℃的高温环境下的使用的需求提高。在大于或等于200℃的高温环境下,使用损耗更低且能够实现高效控制的sic或者gan的宽带隙半导体元件以代替si元件。

因此,在高温环境下的工作中,为了抑制通断损耗、谋求低损耗化以及高效化,需要重新考虑电子设备的材料以及构造。特别地,应用于电子设备的半导体元件的上表面侧的导线配线连接部最容易劣化,影响半导体模块的寿命。因此,实现配线连接部的高品质、高可靠性和长寿命化成为重大课题。

近年来,为了实现电流密度和可靠性的提高,正在研究cu导线的应用而不是应用al导线。但是,由于cu与al相比更硬,因此有时会在导线键合时给半导体元件带来损伤。另外,对于安装有sic或者gan等半导体元件的可应对高温的半导体模块,必须应用能够实现高电流密度化的cu导线。

为了减轻损伤而将上表面电极增厚这一做法在工艺上是困难的,会导致大幅度成本上升。因此,研究了将导体板接合至半导体元件的上表面电极,向导体板进行导线键合,而不是直接向半导体元件的上表面电极进行导线键合。但是,为了确保足够的接合性,需要给予比楔焊更大的载荷以及超声波振动,因此,在导线键合过程中经由导体板以及接合材料给半导体元件带来损伤。另外,作为对上表面电极和导体板进行接合的接合材料,主要使用焊料。但是,由于无pb化,焊料材料的弹性模量增大至40~50gpa。与此相对,提出了使用烧结性的接合材料作为接合材料(例如,参照专利文献1)。

专利文献1:日本特开2017-005037号公报

但是,就以往的烧结性的接合材料而言,无法充分降低导线键合时的对半导体元件的损伤。特别是,由于期望具有大电流密度的cu导线是硬质材料,因此,在使用cu导线的情况下,上述课题显著。其结果,存在在高温且高电流密度下使用的半导体模块的可靠性和寿命降低的问题。



技术实现要素:

本发明就是为了解决上述课题而提出的,其目的在于得到高可靠性且长寿命的半导体模块、其制造方法以及电力变换装置。

本发明涉及的半导体模块的特征在于,具备:半导体元件,其具有上表面电极;导体板,其经由接合材料与所述上表面电极接合;以及配线,其与所述导体板进行键合,是导线或者带状连接件,所述接合材料是向金属的烧结材料的间隙加入了树脂而成的。

发明的效果

在本发明中,作为将半导体元件的上表面电极和导体板进行接合的接合材料,使用向金属的烧结材料的间隙加入了树脂的接合材料。由此,与未加入树脂的接合材料相比,接合材料低弹性化,因此能够抑制导线键合时的对半导体元件的损伤。其结果,能够得到在高温下可应对高电流密度的高可靠性且长寿命的半导体模块。

附图说明

图1是表示实施方式1涉及的半导体模块的剖视图。

图2是表示实施方式2涉及的半导体模块的剖视图。

图3是表示实施方式3涉及的半导体模块的剖视图。

图4是表示实施方式4涉及的半导体模块的剖视图。

图5是表示实施方式5涉及的电力变换系统的结构的框图,在该电力变换系统中应用了电力变换装置。

标号的说明

1散热板,2、3半导体元件,5、7上表面电极,13、15接合材料,14、16导体板,17、18配线,21绝缘基板,200电力变换装置,201主变换电路,202半导体模块,203控制电路

具体实施方式

参照附图,对实施方式涉及的半导体模块、其制造方法以及电力变换装置进行说明。对相同或相应的结构要素标注相同的标号,有时省略重复说明。

实施方式1.

图1是表示实施方式1涉及的半导体模块的剖视图。散热板1例如是一边的长度为30~300mm、厚度为3~20mm的由cu、cu合金复合体、al或者al合金复合体构成的热容量大的散热板。散热板1经由散热脂连接至具有多个鳍片的散热器或者水冷套等。或者,也可以是散热板1自身为在下表面侧具有多个鳍片的散热器,或者与水冷套一体化。在散热板1的元件搭载面形成有电路。散热板1可以是在内部埋入有绝缘材料的散热一体成型,也可以是将电路通过加热或者加压而一体化。

在散热板1之上安装有半导体元件2、3。半导体元件2、3的一边为3mm~18mm,半导体元件2是igbt,半导体元件3是二极管。半导体元件2的下表面电极4是集电极(collector)电极(electrode),上表面电极5是发射极电极。半导体元件3的下表面电极6是阴极电极,上表面电极7是阳极电极。各电极通过溅射或者镀敷方法形成,由将al、au、ag或者cu作为主成分的材料构成。此外,对各电极实施有ti-ni-au或者ag等的金属化处理。此外,半导体元件2不限定于igbt,只要是mosfet等进行电力变换的开关元件即可。半导体元件2、3的下表面电极4、6经由接合材料8、9与散热板1的电路电连接。

导体板14经由接合材料13接合至半导体元件2的上表面电极5。导体板16经由接合材料15接合至半导体元件3的上表面电极7。配线17的一端通过载荷以及超声波振动而与导体板14键合。配线17的另一端与端子11键合。配线18的一端与导体板14键合,另一端与导体板16键合。散热板1和端子12通过配线19连接。

配线17、18、19是例如将cu作为主成分的多根导线。配线17、18、19的直径是300~500μm,根据半导体模块的电流规格而区分使用。或者,配线17、18、19也可以是厚度为0.1~0.5mm的扁平的带状连接件。由此,能够应对电流,能够成为低电阻而对高自发热进行抑制。端子11、12是进行与外部的输入输出的ac端子,与电机等电动机、电池或者线束连接。信号端子与半导体元件2的栅极电极连接,该信号端子从外部输入控制信号。此外,虽然对栅极电极也可以应用与接合材料13以及导体板14相同的结构,但是由于流过栅极电极的电流小,因此信号端子和栅极端子之间的连接也可以是通常的导线键合。

接合材料8、9、13、15是向金属的烧结材料的间隙加入聚酰亚胺或者环氧树脂等树脂而得到的。金属是将ag、cu、sn-cu、ni-sn、ag-sn、au-sn、ag-in或者ag-in等化合物作为主成分的材料,确保了大于或等于400℃的高耐热性。因此,能够应对搭载有可高温工作的sic元件的半导体模块。接合材料13、15是将耐热膜搭载在芯片之上后加热,根据需要进行加压,进行烧结而成的。

接合材料8、9、13、15是由纳米尺寸的微小金属颗粒、溶剂以及表面稳定剂构成的,或者,是将sn或者in作为主成分的片状。因此,接合材料13、15易于临时附着于导体板14、16,也易于考虑到在导线键合时对半导体元件2、3的影响,将接合厚度控制得均匀。通过设为片状而非膏状,从而能够将厚度控制得均匀。接合材料13、15的厚度为10~300μm,是考虑到对半导体元件2、3的损伤而设定的。由于接合材料13、15具有足够的热导率,因此,其热阻不会成为问题。

通过向金属的烧结材料的间隙加入低弹性的树脂,能够得到弹性模量小于或等于10gpa的低弹性的接合材料8、9、13、15。该弹性模量与只有烧结材料的情况相比是1/4~1/5或其以下。

半导体元件2根据经由信号端子而从外部输入的控制信号而受到on/off控制。此时,由于半导体元件2、3的工作而产生的热量经由散热板1向外部散热。由此,能够抑制半导体元件2、3的温度上升,对向配线17、18传导的热量进行抑制,能够确保长寿命的配线连接。

在本实施方式中,作为将半导体元件2、3的上表面电极5、7和导体板14、16接合的接合材料13、15,使用向金属的烧结材料的间隙加入了树脂的接合材料。这样的接合材料13、15的弹性模量为小于或等于10gpa。由此,由于与未加入树脂的接合材料相比接合材料13、15被低弹性化,因此,能够抑制在导线键合时对半导体元件2、3的损伤。即使是由cu这种比以往的al更硬质的材料构成的配线17、18也能够实现键合。其结果,能够得到在高温下可应对高电流密度的高可靠性且长寿命的半导体模块。

导体板14、16由cu或者其合金构成。导体板14、16的厚度为0.1~3mm,依赖于与流过高电流的半导体元件2、3的发热量相对的热容量、向导体板14、16进行导线键合的能量。另外,导体板14、16也可以是多层板。上述导体板14、16将导线键合时的冲击像缓冲垫那样进行吸收,因此,能够进一步抑制对半导体元件2、3的损伤。

由于半导体元件2、3反复通断而发热,因此,将它们安装至确保了热容量及散热性的散热板1。由此,能够得到损耗少的所期望的通断功能。另外,由于还能够抑制传导至配线17、18的热量,因此能够使接合部长寿命化。

以往,将膏状的接合材料涂布或者丝网印刷至半导体元件2、3之上,因此生产效率非常差,导体板14、16的定位困难。因此,在装配之前将导体板14和接合材料13作为一体部件而一体成形。同样,将导体板16和接合材料15一体成形。如果是向金属的烧结材料的间隙加入了树脂的接合材料13、15,则能够在小于或等于100℃的低温下实现临时附着粘合。在向散热板1之上接合半导体元件2之后,对导体板14和接合材料13的一体部件进行加热以及根据需要进行加压而接合。或者,在散热板1之上搭载半导体元件2,在该半导体元件2之上搭载一体部件,进行加热以及根据需要进行加压而同时接合。半导体元件3侧也同样如此。通过使用上述一体部件,从而易于进行定位,由此能够减少工作量,提高生产性。并且,在半导体模块内存在多个接合材料的情况下,能够使它们的膜厚相同,能够提高接合后的可靠性。

实施方式2

图2是表示实施方式2涉及的半导体模块的剖视图。在本实施方式中,在散热板1的外周部通过粘合剂等粘合有作为半导体模块的外轮廓的壳体10。壳体10将半导体元件2、3等的周围包围。壳体10由pps或者pbt等树脂构成,与厚度1mm左右的由铜或者铜合金构成的端子11、12以及信号端子(未图示)一体成型。

壳体10的内部通过将环氧树脂作为主成分的树脂或者凝胶状的硅树脂的封装材料20进行封装。由此,半导体元件2、3,端子11、12、导体板14、16以及配线17、18、19彼此绝缘。

另外,有时还将具有驱动电路和保护电路的控制基板封装在壳体10的内部。控制基板与信号端子连接,该控制基板将用于进行通断的控制信号供给至半导体元件2。控制基板由信号端子支撑而以与散热板1大致平行的状态配置于散热板1的上方。其他的结构以及效果与实施方式1相同。

实施方式3

图3是表示实施方式3涉及的半导体模块的剖视图。在本实施方式中,与实施方式1相比,没有导体板14、16,将配线17、18与接合材料13、15直接键合。接合材料13、15是金属的烧结材料。由于金属的烧结材料是块状的金属体,因此能够将配线17、18与接合材料13、15直接键合。由于没有导体板14、16,因此能够减少工作量以及成本。另外,接合材料13、15优选是在烧结材料的间隙加入了树脂的接合材料。由此,使接合材料13、15低弹性化,因此能够抑制在导线键合时对半导体元件2、3的损伤。另外,如果烧结材料是cu,则能够得到在将cu作为主成分的配线17、18与cu彼此间的高品质、高可靠性的接合。

另外,通过半导体元件2、3之上的接合材料13、15对导线键合时的冲击进行吸收,所以能够将半导体元件2、3安装至绝缘基板21而非散热板1。绝缘基板21的材质是高强度的si3n4,但也可以是具有高热导性的aln,也可以是al2o3。其他的结构以及效果与实施方式1相同。

实施方式4

图4是表示实施方式4涉及的半导体模块的剖视图。在本实施方式中,绝缘基板21经由接合材料22接合至具有散热性的散热板1之上。在散热板1的外周部通过粘合剂等粘合有壳体10。壳体10将半导体元件2、3等的周围包围。壳体10与端子11、12以及信号端子(未图示)一体成型。壳体10的内部通过将环氧树脂作为主成分的树脂或者凝胶状的硅树脂的封装材料20进行封装。即使在这种情况下,也能够以硬质的cu导线进行键合。其他的结构以及效果与实施方式3相同。

此外,半导体元件2、3不限于由硅形成,也可以由与硅相比带隙大的宽带隙半导体形成。宽带隙半导体例如是碳化硅、氮化镓类材料或者金刚石。由上述宽带隙半导体形成的半导体元件2、3,由于耐电压性、容许电流密度高,所以能够小型化。通过使用该小型化的半导体元件2、3,从而能够使组装有该半导体元件2、3的半导体模块也小型化、高集成化。另外,由于半导体元件2、3的耐热性高,所以能够使散热器的散热鳍片小型化,能够将水冷部空冷化,因此能够进一步将半导体模块小型化。另外,由于半导体元件2、3的电力损耗低且高效,因此能够使半导体模块高效化。此外,虽然优选半导体元件2、3双方均由宽带隙半导体形成,但也可以是某一方由宽带隙半导体形成,能够得到上述实施方式所记载的效果。

实施方式5

本实施方式是将上述实施方式1~4所涉及的半导体模块应用于电力变换装置。电力变换装置例如是逆变器装置、转换器装置、伺服放大器、电源单元等。本发明不限定于特定的电力变换装置,但以下,对将本发明应用于三相逆变器的情况进行说明。

图5是表示实施方式5涉及的电力变换系统的结构的框图,在该电力变换系统中应用了电力变换装置。该电力变换系统具备电源100、电力变换装置200、负载300。电源100是直流电源,向电力变换装置200供给直流电力。电源100能够由各种电源构成,例如,能够由直流系统、太阳能电池、蓄电池构成,也可以由与交流系统连接的整流电路或ac/dc转换器构成。另外,也可以使电源100由将从直流系统输出的直流电力变换为规定的电力的dc/dc转换器构成。

电力变换装置200是连接在电源100和负载300之间的三相逆变器,将从电源100供给的直流电力变换为交流电力,向负载300供给交流电力。电力变换装置200具备:主变换电路201,其将直流电力变换为交流电力而输出;以及控制电路203,其将对主变换电路201进行控制的控制信号向主变换电路201输出。

负载300是由从电力变换装置200供给的交流电力进行驱动的三相电动机。此外,负载300不限定于特定的用途,是搭载于各种电气设备的电动机,例如,用作面向混合动力汽车、电动汽车、铁路车辆、电梯或者空调设备的电动机。

以下,对电力变换装置200详细地进行说明。主变换电路201具备开关元件和回流二极管(未图示),通过使开关元件进行通断,从而将从电源100供给的直流电力变换为交流电力,向负载300供给。就主变换电路201的具体的电路结构而言,存在各种结构,但本实施方式涉及的主变换电路201是两电平的三相全桥电路,能够由6个开关元件和与各个开关元件逆并联的6个回流二极管构成。主变换电路201的各开关元件和各回流二极管由与上述实施方式1~4中的任意者相当的半导体模块202构成。6个开关元件两个两个地串联连接而构成上下桥臂,各上下桥臂构成全桥电路的各相(u相、v相、w相)。并且,各上下桥臂的输出端子即主变换电路201的3个输出端子与负载300连接。

另外,主变换电路201具备对各开关元件进行驱动的驱动电路(未图示),但驱动电路既可以内置于半导体模块202,也可以是独立于半导体模块202而另外具有驱动电路的结构。驱动电路生成对主变换电路201的开关元件进行驱动的驱动信号,供给至主变换电路201的开关元件的控制电极。具体地说,按照来自后述的控制电路203的控制信号,向各开关元件的控制电极输出将开关元件设为接通状态的驱动信号和将开关元件设为断开状态的驱动信号。在将开关元件维持为接通状态的情况下,驱动信号是大于或等于开关元件的阈值电压的电压信号(接通信号),在将开关元件维持为断开状态的情况下,驱动信号成为小于或等于开关元件的阈值电压的电压信号(断开信号)。

控制电路203对主变换电路201的开关元件进行控制,以向负载300供给规定的电力。具体地说,基于应向负载300供给的电力,对主变换电路201的各开关元件应成为接通状态的时间(接通时间)进行计算。例如,能够通过与应输出的电压相对应地对开关元件的接通时间进行调制的pwm控制,对主变换电路201进行控制。并且,向主变换电路201所具备的驱动电路输出控制指令(控制信号),以在各时刻向应成为接通状态的开关元件输出接通信号,向应成为断开状态的开关元件输出断开信号。驱动电路按照该控制信号,将接通信号或者断开信号作为驱动信号而向各开关元件的控制电极输出。

就本实施方式涉及的电力变换装置而言,由于应用实施方式1~4涉及的半导体模块作为半导体模块202,所以能够得到高可靠性且长寿命的电力变换装置。

在本实施方式中,对在两电平的三相逆变器应用本发明的例子进行了说明,但本发明不限定于此,能够应用于各种电力变换装置。在本实施方式中,采用了两电平的电力变换装置,但也可以是三电平、多电平的电力变换装置,在向单相负载供给电力的情况下,也可以向单相逆变器应用本发明。另外,在向直流负载等供给电力的情况下,也能够向dc/dc转换器或者ac/dc转换器应用本发明。

另外,应用了本发明的电力变换装置不限定于上述的负载为电动机的情况,例如,还能够用作放电加工机、激光加工机、或感应加热烹调器、非接触器供电系统的电源装置,并且,也能够用作太阳能发电系统或蓄电系统等的功率调节器。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1