用于X射线探测器的阵列基板以及包括其的X射线探测器的制作方法

文档序号:18222907发布日期:2019-07-19 23:09阅读:146来源:国知局
用于X射线探测器的阵列基板以及包括其的X射线探测器的制作方法

本公开内容涉及用于使漏电流最小化的x射线检测器的阵列基板,以及包括该阵列基板的x射线检测器。



背景技术:

随着数字技术的快速发展,最近开发了一种基于薄膜晶体管(tft)的x射线探测器并迅速投入医疗用途。x射线检测器是指能够检测通过对象的x射线的透射量(例如,透射率)并在显示器上显示对象的内部图像的设备。

通常,根据数字x射线检测器的尺寸或分辨率,数字x射线检测器被设计成具有数千或数万个像素或更多像素。对应于各个像素的用于数字x射线检测器的阵列基板包括多个薄膜晶体管和多个pin二极管,并且在阵列基板上方形成有闪烁体层。

当x射线被发射到数字x射线探测器时,闪烁体层将入射的x射线转换成可见光,使得可见光被传输到pin二极管。pin二极管包括下电极、pin层和上电极。

施加至pin二极管的可见光在pin层中被重新转换成电子信号。在通过连接至pin二极管的下电极的薄膜晶体管之后,电子信号被转换成图像信号,使得得到的图像信号显示在显示器上。

同时,用于向pin二极管施加电压以驱动pin二极管的偏置电极连接至pin二极管。偏置电极设置在pin二极管上方,并连接至pin二极管的上电极。

如上所述,用于传统数字x射线检测器的阵列基板包括多个pin二极管,并且各个pin二极管可以在各个像素区域中彼此间隔开。

也就是说,由于单个像素区域分别包括连接至单个薄膜晶体管的单个pin二极管,所以若干相邻的pin二极管可以彼此间隔开而不彼此连接。

在这种情况下,当形成用于每一个像素区域的单独的pin二极管时,在整个基础基板上形成pin膜,然后通过蚀刻形成彼此间隔开的各个pin层。

然而,由多个半导体层形成的pin层容易被蚀刻工艺损坏,使得很难控制蚀刻条件以在没有损坏的情况下形成pin层。

具体地,当每一个像素区域形成单独的pin二极管时,pin层的蚀刻侧的界面受到由闪烁体层产生的可见光的影响,使得pin二极管的漏电流大大增加。



技术实现要素:

因此,鉴于上述问题做出了本公开内容,并且本公开内容的目的是提供一种用于x射线检测器的阵列基板以便于在不控制pin二极管的蚀刻条件的情况下形成pin二极管,以及包括该阵列基板的x射线检测器。

本公开内容的另一目的是提供一种用于x射线探测器的阵列基板以使从pin二极管侧面的界面产生的漏电流的增加最小化,以及包括该阵列基板的x射线探测器。

本公开内容的目的不限于上述目的,并且本领域技术人员从以下描述中可以理解其他目的和优点。此外,将容易理解的是,本公开内容的目的和优点可以通过本公开实施例及其组合中所述的手段来实施。

本公开内容的各种实施方式旨在提供一种用于x射线检测器的阵列基板和包括该阵列基板的x射线检测器,其基本上消除了由于相关技术的限制和缺点导致的一个或更多个问题。

根据本公开内容的一个方面,一种用于数字x射线检测器的阵列基板包括:基础基板,其中设置有多个栅极线和垂直于多个栅极线布置的多个数据线,该基础基板被配置成包括由栅极线和数据线的交叉点限定的多个像素区域;多个薄膜晶体管,其设置成靠近栅极线和数据线的交叉点;多个下电极,其设置在各个像素区域中,并连接至各个薄膜晶体管;pin层,其形成在多个下电极上方,并且被配置成覆盖整个多个像素区域;多个上电极,其对应于各个下电极设置在pin层上方;以及遮光部分,其设置在彼此相邻的上电极之间。

pin层被配置为覆盖整个像素区域的单个集成pin层,使得不需要形成每一个像素区域的pin层。因此,不需要使用用于每一像素区域形成每一个pin层的蚀刻工艺,使得使能够从pin层侧面的界面产生的漏电流最小化。

多个上电极可以不形成在除像素区域之外的非像素区域中,使得邻接的上电极可以彼此间隔开。如果上电极以与pin层中相同的方式实施为覆盖整个像素区域的单个电极,则即使在非像素区域的pin层中也不可避免地发生由上电极引起的电场。然而,实施方式的上电极设置成彼此间隔开,使得在非像素区域中出现最小电场。

遮光部分被设置成覆盖薄膜晶体管。更详细地,遮光部分可以设置在非像素区域的pin层上方,或者可以设置在覆盖整个pin层的保护层上方。以此方式,遮光部分设置在非像素区域中,防止光到达非像素区域,并抑制pin二极管的光反应,从而减少漏电流。

遮光部分可以沿着栅极线和数据线设置,使得遮光部分能够有效地抑制pin二极管在非像素区域内的光反应,而不会减少像素区域的数量。

pin层可以包括负(n型)半导体层、本征(i型)半导体层和正(p型)半导体层。对应于除像素区域之外的非像素区域的n型半导体层和p型半导体层中的至少一个可以被去除。非像素区域可以包括栅极线和数据线。因此,为了防止光借助于遮光部分到达以及使非像素区域中的光反应最小化,去除pin层的一些部分以阻挡相应区域中的光反应,使得能够更有效地使漏电流最小化。

附图说明

图1是示出根据本公开内容的实施方式的数字x射线检测器的示意性框图。

图2是示出根据本公开内容的实施方式的与多个像素区域对应的用于数字x射线检测器的阵列基板的平面图。

图3是示出根据本公开内容的实施方式的与多个像素区域对应的用于数字x射线检测器的阵列基板的截面图。

图4和图5示出了基于根据本公开内容的不同实施方式的用于数字x射线检测器的阵列基板中的遮光部分的布置位置的不同示例。

图6示出了根据实施方式的pin层的一些部分从非像素区域移除以用于数字x射线检测器的阵列基板的示例。

具体实施方式

通过参考附图的详细描述,上述目的、特征和优点将变得明显。充分详细地描述了实施方式,以使得本领域技术人员能够容易地实践本公开内容的技术构思。可以省略对公知功能或配置的详细描述,以免不必要地模糊本公开内容的主旨。在下文中,将参考附图详细描述本公开内容的实施方式。在整个附图中,相同的附图标记表示相同的元件。

以下将参考附图描述本公开内容的实施方式。

在以下描述中,假设在各个组成元件的上方(上面)或下方(下面)形成某个物体,这意味着两个组成元件彼此直接接触,或者在两个组成元件之间设置并且形成有一个或更多个组成元件。另外,假设在各个组成元件上面或下方形成某个物体,这意味着该物体也可以基于一个组成元件的位置沿向上或向下方向布置。

应当理解,当一个元件被称为“连接至另一元件”、“耦接至另一元件”或“由另一元件接入”时,一个元件可以经由其他元件“连接至另一元件”、“耦接至另一元件”或“由另一元件接入”,不过一个元件可以直接连接至另一元件或由另一元件直接接入。

图1是示出数字x射线检测器的示意性平面图。参照图1,数字x射线检测器可以包括薄膜晶体管(tft)阵列110、栅极驱动器130、偏置供应器140、电源电压供应器150、读出电路160和定时控制器170。

tft阵列110可以感测从能量源发射的x射线,可以执行感测信号的光电转换,并且因此可以输出电检测信号。在tft阵列110中,每一个单元区域不仅可以由沿水平方向布置的多个栅极线(gl)限定,还可以由沿垂直于水平方向的垂直方向布置的多个数据线(dl)限定。tft阵列110的每一个单元区域可以包括以矩阵排列的多个光敏像素(p)。

每一个光敏像素(p)可以包括:pin二极管,被配置成感测从x射线转换的光并作为信号输出所感测的光;以及薄膜晶体管(tft),被配置成响应于栅极信号发送从pin二极管输出的检测信号。pin二极管的一侧可以连接至薄膜晶体管(tft),并且其另一侧可以连接至偏置线(bl)。

薄膜晶体管(tft)的栅电极可以连接至扫描信号通过其传输的栅极线(gl),源电极可以连接至pin二极管,漏电极可以连接至检测信号通过其传输的数据线(dl)。偏置线bl可以与数据线(dl)平行布置。

栅极驱动器130可以通过栅极线(gl)顺序地施加多个栅极信号,每一个栅极信号具有栅极导通电压电平。栅极驱动器130还可以通过多个复位线(rl)施加多个复位信号,每一个复位信号具有栅极导通电压电平。这里,栅极导通电压电平可以指能够使光敏像素的薄膜晶体管导通的电压电平。可以响应于栅极信号或复位信号使光敏像素的薄膜晶体管导通。

栅极驱动器130可以是集成电路(ic),使得栅极驱动器130可以位于连接至tft阵列110的外部基板上,或者可以通过板内栅极(gip)工艺形成在tft阵列110上方。

偏置供应器140可以通过偏置线(bl)施加驱动电压。偏置供应器140可以将预定电压施加至pin二极管。在这种情况下,偏置供应器140可以选择性地将反向偏置或正向偏置施加至pin二极管。

电源电压供应器150可以通过电源电压线(vl)向光敏像素提供电源电压。

读出电路160可以读出从响应于栅极信号导通的薄膜晶体管(tft)产生的检测信号。因此,从pin二极管产生的检测信号可以通过数据线(dl)输入至读出电路160。

读出电路160可以包括信号检测器、多路复用器等。信号检测器可以包括与数据线(dl)一一对应的多个放大电路,并且每一个放大电路可以包括放大器、电容器、复位元件等。

为了控制栅极驱动器130,定时控制器170可以生成开始信号(stv)、时钟信号(cpv)等,并且可以向栅极驱动器130发送开始信号(stv)、时钟信号(cpv)等。为了控制读出电路160,定时控制器170可以生成读出控制信号(roc)、读出时钟信号(clk)等,并且可以向读出电路160发送读出控制信号(roc)、读出时钟信号(clk)等。

下面将参照图2和图3描述根据本公开内容实施方式的与多个像素区域(pa)对应的用于数字x射线检测器的阵列基板210和包括该阵列基板的数字x射线检测器200。

多个栅极线gl和垂直于多个栅极线gl的多个数据线dl可以设置在基础基板211上方。像素区域(pa)可以由沿一个方向布置的栅极线gl和沿垂直于栅极线gl的另一方向布置的数据线dl的交叉区域限定。

沿一个方向布置的栅极线gl和沿垂直于栅极线gl的另一方向布置的数据线dl的交叉区域可以包括以矩阵布置的多个像素区域(pa)。在这种情况下,除像素区域(pa)之外的其余区域可以被定义为非像素区域(npa),非像素区域(npa)可以指像素区域(pa)的边界部分,并且也可以指各自包括栅极线gl和数据线dl的区域。在下面的描述中,将在下文中描述包括在单个像素区域(pa)中的装置(或元件)的布置关系,并且除非另外特别说明,否则也可以同等地应用于其他像素区域(pa)。

可以针对每一个像素区域(pa)形成单独的薄膜晶体管220,以对应于单个像素区域(pa)。因此,多个薄膜晶体管220可以设置在由多个像素区域pa限定的基础基板211上方。在这种情况下,尽管由硅氧化物(siox)膜或硅氮化物(sinx)膜形成的单层或多层结构所形成的缓冲层(未示出)可以设置在基础基板211和薄膜晶体管220之间,但是如果需要,根据在基础基板211上方形成的材料,也可以省略缓冲层(未示出)。

更详细地,薄膜晶体管220可以形成为包括栅电极221、有源层223、源电极224a和漏电极224b。

为了防止pin二极管240的填充因子的减小,连接至栅极线gl和数据线dl的薄膜晶体管220可以设置成靠近栅极线gl和数据线dl的交叉点。

填充因子是指x射线检测器的光接收区域与一个像素区域的比例。更详细地,填充因子由pin二极管240的区域与一个像素区域之比限定。因此,如果填充因子减小,则尽管对应于减小的填充因子的可见光被发射到pin二极管240,但是因光接收区域的减少也减少了要转换的电信号的数量,使得x射线探测器的性能或吞吐量亦劣化。

因此,对应于多个像素区域(pa)连接至pin二极管240的各个薄膜晶体管220可以设置成靠近栅极线gl和数据线dl的交互点。

更详细地,薄膜晶体管220中的每一个可以设置在像素区域(pa)中,并且仅薄膜晶体管220的一些部分可以设置在像素区域(pa)中。另外,薄膜晶体管220可以沿设置在除像素区域(pa)之外的非像素区域(npa)中的栅极线或数据线设置,使得pin二极管240的填充因子的减小也可以最小化。

由导电材料形成的多个栅电极221可以分别设置在与多个像素区域(pa)对应的基础基板211上方。栅电极221中的每一个可以由选自由钼(mo)、铝(al)、铬(cr)、金(au)、钛(ti)、镍(ni)和铜(cu)构成的组中的任何一种材料形成,或可以由其合金形成。栅电极223可以由单层或多层结构形成。

覆盖基础基板211的整个表面的栅极绝缘层222可以设置在栅电极221上方。栅极绝缘层222可以是由硅氧化物(siox)膜或硅氮化物(sinx)膜形成的单层或多层结构。

有源层223可以设置在与栅电极221中的每一个对应的栅极绝缘层222上方。在有源层223的两端,源电极224a可以接触并连接至漏电极224b。在这种情况下,有源层223可以由诸如铟镓锌氧化物(igzo)的氧化物半导体材料形成,或者也可以由低温多晶硅(ltps)材料或非晶硅(a-si)形成。

覆盖基础基板211的整个表面的第一保护层230可以设置在源电极224a和漏电极224b上方。在与每一个像素区域pa对应的第一保护层230中,可以形成第一接触孔231以对应于源电极224a。pin二极管240的下电极241可以通过为每一个像素区域pa分配的第一接触孔231设置在第一保护层230上方,使得下电极241可以连接至薄膜晶体管220的源电极224a。

pin二极管240可以设置在像素区域pa上方。通过第一接触孔231连接至薄膜晶体管220的pin二极管240的下电极241可以形成在第一保护层230上方。在这种情况下,下电极241可以设置成对应于每一个像素区域(pa),并且相邻像素区域(pa)的下电极241可以彼此间隔开而不互连。根据pin二极管240的特性,下电极241可以由诸如钼(mo)的非透明金属或诸如铟锡氧化物(ito)、铟锌氧化物(izo)或锌氧化物(zno)的透明氧化物材料形成。

覆盖像素区域(pa)的整个表面的集成pin层可以设置在对应于多个像素区域pa的pin二极管240的下电极241上方。

更详细地,可以形成其中依次堆叠具有n型杂质的n型(负)半导体层、不具有杂质的本征(i型)半导体层和包括p型杂质的p型(正)半导体层的pin层243。

与n型半导体层243a和p型半导体层243c相比,本征(i型)半导体层243b可以形成为具有更大的厚度。pin层243可以包括能够将通过闪烁体层290从x射线转换的可见光转换成电信号的材料。例如,pin层243可以包括非晶硒(a-se)、汞碘化物(hgi2)、镉碲化物(cdte)、铅氧化物(pbo)、铅碘化物(pbi2)、三碘化铋(bii3)、砷化镓(gaas)、锗(ge)等。

如上所述,根据本公开内容的pin层243由覆盖像素区域(pa)的整个表面的单个集成pin层243形成,使得不需要每一像素区域(pa)形成每一个pin层243。因此,不需要使用每一像素区域(pa)形成每一个pin层243的蚀刻工艺,使得防止pin层243因蚀刻损坏。

另外,集成pin层243被实施为覆盖所有像素区域(pa),使得每一个像素区域(pa)中的pin层243的侧面的界面不暴露在外,并且由pin二极管243的侧表面处的界面引起的光反应被抑制,导致最小的漏电流。

对应于各个下电极241的多个上电极245可以设置在pin层243上方。多个上电极245可以不形成在非像素区域(npa)中,并且可以以相邻的上电极245彼此间隔开的方式设置。例如,上电极245可以被设置成对应于除形成为与栅极线gl和数据线dl交叠的区域之外的各个像素区域(pa)。

上电极245可以由诸如铟锡氧化物(ito)、铟锌氧化物(izo)或锌氧化物(zno)的透明导电材料形成,以提高接收x射线并执行x射线的波长的转换的闪烁体层290的光传输效率。

如果上电极245被实施为单个集成电极以与pin层243中相同的方式覆盖像素区域(pa)的整个表面,则由上电极245引起的电场也可以形成在非像素区域(npa)的pin层243中,导致漏电流增加。

然而,由于多个上电极245可以分别形成在像素区域(pa)中,因此每一个非像素区域(npa)不包括每一个上电极245,使得在非像素区域(npa)中出现最小电场,并且能够使漏电流的产生最小化。

遮光部分270可以设置在相邻的上电极245之间。在这种情况下,如图5所示,遮光部分270可以设置在pin层243上方。遮光部分270可以屏蔽和吸收入射光,可以由不透明的金属材料或光不会透过的有机材料形成。例如,遮光部分270可以使用黑矩阵。

更详细地,遮光部分270可以设置在除像素区域(pa)之外的非像素区域(npa)中。根据本公开内容,pin层243形成为覆盖像素区域(pa)和非像素区域(npa)的整个表面,在除像素区域(pa)之外的非像素区域(npa)中也可以发生由闪烁体层290产生的可见光引起的光反应。以此方式,当在非像素区域(npa)的pin层243中发生由可见光引起的光反应时,漏电流可能增加。

因此,遮光部分270设置在非像素区域(npa)中,可以使到达非像素区域(npa)的可见光的量最小化,使得防止在非像素区域(npa)中发生pin层243的光反应,而导致漏电流减小。

另外,遮光部分270可以沿着栅极线gl和数据线dl设置,使得像素区域(pa)的尺寸不减小,并且可以有效地使非像素区域(npa)中的pin二极管240的光反应的数量最小化。

遮光部分270可以设置成覆盖薄膜晶体管,使得可以防止光直接到达薄膜晶体管。

为了更有效地抑制非像素区域(npa)中的可见光的光反应,可以从包括n型半导体层243a、i型半导体层243b和p型半导体层243c的pin层243去除对应于非像素区域(npa)的n型半导体层243a和p型半导体层243c中的至少一个。

参照图6,在像素区域(pa)中,跨越多个像素区域(pa)形成的pin层243'被实施为包括n型半导体层243a'、i型半导体层243b'和p型半导体层243c'的完美pin层243'。相反,在非像素区域(npa)中,n型半导体层243a'和p型半导体层243c'从pin层243'去除,并且pin层243c'仅具有i型半导体层243b',使得pin层243'在非像素区域(npa)中被实施为不完美pin层。

如上所述,对应于非像素区域(npa)的pin层被实施为不完美pin层,从该pin层去除n型半导体层243a'和p型半导体层243c'的一些部分。结果,尽管未被遮光部分270遮挡的可见光到达非像素区域(npa)的pin层,但是可以发生很少的可见光的电转换。

如上所述,非像素区域(npa)中的可见光的电转换被最小化,使得能够更有效地使在非像素区域(npa)中产生的漏电流最小化。

形成为覆盖上电极245和pin层243的整个表面的第二保护层250可以设置在多个上电极245上方。在这种情况下,对应于各个上电极245的第二保护层250可以设置有第二接触孔251。可以在每一个像素区域(pa)的第二保护层250上方形成偏置电极260,使得偏置电极260可以通过第二接触孔251连接至pin二极管240的上电极245。

覆盖第二保护层250的整个表面的第三保护层281可以设置在多个偏置电极260上方。在这种情况下,如图3和图4所示,遮光部分270可以设置在非像素区域(npa)的第三保护层281或第二保护层250上方。如上所述,遮光部分270可以设置在选自pin层243、第二保护层250和第三保护层281中的任何一层上方,并且可以设置成提高制造效率。

由有机材料形成的平坦化层283可以设置在第三保护层281上方,并且闪烁体层290可以设置在平坦化层283上方。闪烁体层290可以以膜形状形成在平坦化层283上方,或者也可以通过另外的生长处理形成在第三保护层281或平坦化层283上方。在这种情况下,闪烁体层290可以由碘化铯(csi)形成。

上述数字x射线检测器200可以如下操作。

发射到数字x射线检测器200的x射线可以通过闪烁体层290转换成可见光。可见光可以通过pin二极管240的pin层243转换成电子信号。

更详细地,当可见光发射到pin层243时,本征(i型)半导体层243b被p型半导体层243c和n型半导体层243a耗尽,由此在其中产生电场。由光产生的电子和空穴可以因电场而漂移,然后分别被收集在p型半导体层243c和n型半导体层243a中。

pin二极管240可以将可见光转换成电子信号,并且可以将电子信号传递到薄膜晶体管220。传递的电子信号可以在通过连接至薄膜晶体管220的数据线之后显示为图像信号。

如上所述,根据本公开内容的用于数字x射线检测器的阵列基板不针对每一个像素区域形成pin二极管的pin层,并且以能够覆盖所有像素区域的集成结构的形式配置pin层。因此,根据本公开内容的用于数字x射线检测器的阵列基板不需要用于为每一个像素区域形成附加pin层的蚀刻工艺,通过便于pin二极管的制造来提高生产率,并且通过防止由这样的蚀刻造成的损坏而使漏电流最小化。

在与指示所有像素区域的整个像素区域对应的集成pin二极管中,与pin层的方式不同,下电极和上电极不以覆盖整个像素区域的集成结构形成,并且对应于各个像素区域彼此间隔开,使得能够使形成在非像素区域而不是像素区域中的电场的数量最小化。因此,pin二极管的主沟道由与每一个像素区域的上电极和下电极对应的pin层形成,从而实现稳定的pin二极管特性。

为了有效地防止在非像素区域中发生pin层的光反应,遮光部分设置在位于pin二极管的邻接上电极之间的非像素区域中,以屏蔽来自闪烁体层的可见光,使得能够使在非像素区域的pin层中反应的可见光最小化。

由于非像素区域的pin层的n型半导体层和p型半导体层中的至少一个被去除,所以防止非像素区域中到达pin层而没有被遮光部分遮挡的可见光与不完美的pin层发生光反应,使得可以使pin二极管的漏电流最小化。

根据以上描述明显的是,本公开内容的实施方式不需要控制用于形成pin层的制造条件,并且可以便于pin二极管的制造工艺,从而导致整体制造生产率的提高。

本公开内容的实施方式不需要针对每一个像素区域使用蚀刻工艺形成单独的pin层,从而使能够从蚀刻的pin层的侧面的界面产生的漏电流最小化。

尽管pin二极管的pin层形成为覆盖整个像素区域的单个集成结构,但pin二极管的上电极对应于各个像素区域而彼此间隔开,并且非像素区域中产生的电场被最小化,使得漏电流的产生也被最小化。

另外,本公开内容的实施方式可以将遮光部分布置在非像素区域中,或者可以去除pin层中的一些层,使得在非像素区域中遇到的光反应的数量最小化,导致最小的漏电流。

在不脱离本公开内容的范围和精神的情况下,本公开内容所属领域的技术人员可以对上述本公开内容进行各种替换、改变和修改。因此,本公开内容不限于上述示例性实施方式和附图。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1