导电沟道材料的制备方法及薄膜晶体管与流程

文档序号:18890837发布日期:2019-10-15 21:49阅读:362来源:国知局
导电沟道材料的制备方法及薄膜晶体管与流程

本申请涉及显示领域,具体涉及一种导电沟道材料的制备方法及薄膜晶体管。



背景技术:

目前,薄膜晶体管液晶显示器具有耗电量小、对比度高、节省空间等优点,已成为市场上主流的显示装置。

近年来,在薄膜晶体管液晶显示器中,随着分辨率的提高,薄膜晶体管液晶显示器的开口率会降低,为了提高薄膜晶体管液晶显示器的开口率,需要减小薄膜晶体管的导电沟道和金属走线的长度、宽度和厚度,由此带来薄膜晶体管的电学性能下降。

因此,如何在提高薄膜晶体管液晶显示器的分辨率的前提下保证薄膜晶体管液晶显示器的开口率是全世界面板厂家正在努力攻克的难关。



技术实现要素:

本申请提供一种导电沟道材料的制备方法及薄膜晶体管,可以解决现有的在提高薄膜晶体管液晶显示器的分辨率的前提下保证薄膜晶体管液晶显示器的开口率的技术问题。

本申请提供一种导电沟道材料的制备方法,所述制备方法包括:

在金属基底的表面制取碳纳米纤维;

对所述碳纳米纤维进行烧结处理,以形成纤维状金刚石;

将所述纤维状金刚石放入溶剂中进行超声处理,以得到金刚石悬浮液;

将所述金刚石悬浮液涂覆衬底上,形成金刚石沟道层。

在本申请所提供的导电沟道材料的制备方法中,所述在涂覆有催化剂的金属基底的表面制取碳纳米纤维的步骤,包括:

将涂覆有催化剂的金属基底置于化学气相沉积炉内;

在所述化学气相沉积炉内通入混合气体,并控制所述化学气相沉积炉内的温度,以在所述金属基底的表面形成碳纳米纤维;

将所述碳纳米纤维与所述金属基底分离。

在本申请所提供的导电沟道材料的制备方法中,所述混合气体包括碳源气体、氢气以及氩气。

在本申请所提供的导电沟道材料的制备方法中,所述催化剂包括二茂铁、硝酸铁、氯化铁、硝酸镍和氯化镍中的一种或几种的组合,所述金属基底包括铜、镍和不锈钢的一种,所述碳源气体包括丙烯、乙炔和甲烷气体的一种或几种的组合。

在本申请所提供的导电沟道材料的制备方法中,所述对所述碳纳米纤维进行烧结处理,以形成纤维状的金刚石的步骤,包括:

将所述碳纳米纤维置于放电等离子快速热压烧结炉中;

控制所述放电等离子快速热压烧结炉内的压强和温度,并同时开启等离子放电;

保持预设时间后形成纤维状金刚石,并将所述纤维状金刚石取出。

在本申请所提供的导电沟道材料的制备方法中,所述控制所述放电等离子快速热压烧结炉内的压强和温度的步骤,包括:

将所述放电等离子快速热压烧结炉内的压强调至20兆帕~200兆帕;

将所述放电等离子快速热压烧结炉内的压温度至2600摄氏度~3500摄氏度。

在本申请所提供的导电沟道材料的制备方法中,将所述纤维状金刚石放入溶剂中进行超声处理,以得到金刚石悬浮液的步骤,包括:

将所述纤维状金刚石与溶剂混合形成混合液,并将所述混合液放置于超声波处理仪中;

控制所述超声波处理仪的超声处理功率;

保持预设时间后所述混合液形成金刚石悬浮液。

在本申请所提供的导电沟道材料的制备方法中,所述溶剂包括无水乙醇、95%乙醇和丙酮中的一种。

在本申请所提供的导电沟道材料的制备方法中,所述将所述金刚石悬浮液涂覆在衬底上,形成金刚石沟道层的步骤之后,还包括:

在所述金刚石沟道层的两端通过离子注入或等离子掺杂的方式掺杂磷离子。

本申请提供一种薄膜晶体管,其特征在于,包括:

玻璃衬底;

金刚石沟道层,所述金刚石沟道层设置于所述玻璃衬底上;

栅极绝缘层,所述栅极绝缘层设置于所述玻璃衬底上,且把金刚石沟道层完全覆盖起来;

栅极,所述栅极设置于栅极绝缘层上;

源漏极,所述源漏极分别设置于金刚石沟道层的两端,并贯穿栅极绝缘层。

在本申请提供的导电沟道材料的制备方法及薄膜晶体管,通过制取一种既具有优良的半导体特性、又具有光学透明特性的材料做薄膜晶体管的导电沟道材料,从而可以在提高薄膜晶体管液晶显示器的分辨率的前提下保证薄膜晶体管液晶显示器的开口率。

附图说明

为了更清楚地说明本申请中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本申请实施例提供的导电沟道材料的制备方法的流程示意图;

图2为本申请实施例提供的导电沟道材料的制备方法的第一子流程示意图;

图3为本申请实施例提供的导电沟道材料的制备方法的第二子流程示意图;

图4为本申请实施例提供的导电沟道材料的制备方法的第三子流程示意图;

图5为本申请实施例提供的导电沟道材料的制备方法的另一流程示意图;

图6为本申请实施例提供的薄膜晶体管的结构示意图。

具体实施方式

下面将结合本申请实施方式中的附图,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。

请参阅图1,图1为本申请实施例提供的导电沟道材料的制备方法的流程示意图。如图1所示,本申请实施例提供的导电沟道材料的制备方法,包括以下步骤:101、在金属基底的表面制取碳纳米纤维;102、对碳纳米纤维进行烧结处理,以形成纤维状金刚石;103、将纤维状金刚石放入溶剂中进行超声处理,以得到金刚石悬浮液;104、将金刚石悬浮液涂覆衬底上,形成金刚石沟道层。

可以理解的,目前薄膜晶体管液晶显示器的开口率主要由阵列基板侧和彩膜基板侧的开口率决定。对于阵列基板侧来说,非开口区域主要是薄膜晶体管的导电沟道区域和金属走线区域,如果利用透明沟道材料和透明电极材料将会大大提高阵列基板侧的开口率。因此本申请实施例通过制取一种既具有优良的半导体特性、又具有光学透明特性的材料做薄膜晶体管的导电沟道材料,从而可以在提高薄膜晶体管液晶显示器的分辨率的前提下保证薄膜晶体管液晶显示器的开口率。

具体地,请参阅图1、图2,图2为本申请实施例提供的导电沟道材料的制备方法的第一子流程示意图。结合图1、图2所示,步骤101具体包括:1011、将涂覆有催化剂的金属基底置于化学气相沉积炉内;1012、在所述化学气相沉积炉内通入混合气体,并控制所述化学气相沉积炉内的温度,以在所述金属基底的表面形成碳纳米纤维;1013、将所述碳纳米纤维与所述金属基底分离。

其中,所述催化剂包括二茂铁、硝酸铁、氯化铁、硝酸镍和氯化镍中的一种或几种的组合,所述金属基底包括铜、镍和不锈钢的一种,所述混合气体包括碳源气体、氢气以及氩气,所述碳源气体包括丙烯、乙炔和甲烷气体的一种或几种的组合。

具体地,请参阅图1、图3,图3为本申请实施例提供的导电沟道材料的制备方法的第二子流程示意图。结合图1、图3所示,步骤102具体包括:1021将所述碳纳米纤维置于放电等离子快速热压烧结炉中;1022、控制所述放电等离子快速热压烧结炉内的压强和温度,并同时开启等离子放电;1023、保持预设时间后形成纤维状金刚石,最后将所述纤维状金刚石取出。

其中,在一种实施方式中,步骤1022具体包括:将所述放电等离子快速热压烧结炉内的压强调至20兆帕~200兆帕;将所述放电等离子快速热压烧结炉内的压温度至2600摄氏度~3500摄氏度。需要说明的是,本申请实施例并不仅仅是调整放电等离子快速热压烧结炉内的参数,而是结合具体的需要,调整出合适的压强和温度。

另外,可以理解的,单单只是调整单一的参数是本领域技术人员可以做到的,但是,本申请实施例在实际操作过程中,由于压强和温度相互影响,在保证最佳温度的同时,又无法保证最佳压强;同样在保证最佳压强的同时,又无法保证最佳温度。因此,本申请实施例通过综合考虑半导体特性以及光学透明特性,从而调试出最佳的温度和最佳的压强。

具体地,请参阅图1、图4,图4为本申请实施例提供的导电沟道材料的制备方法的第三子流程示意图。结合图1、图4所示,步骤103具体包括:1031、将所述纤维状金刚石与溶剂混合形成混合液,并将所述混合液放置于超声波处理仪中;1032、控制所述超声波处理仪的超声处理功率;1033、保持预设时间后所述混合液形成金刚石悬浮液。

其中,在一种实施方式中,所述溶剂包括无水乙醇、95%乙醇和丙酮中的一种。

进一步的,请参阅图5,图5为本申请实施例提供的导电沟道材料的制备方法的另一流程示意图。其中,图5所示的导电沟道材料的制备方法与图1所示的导电沟道材料的制备方法的区别在于,图5所示的导电沟道材料的制备方法,在步骤104之后还包括:步骤105,在所述金刚石沟道层的两端通过离子注入或等离子掺杂的方式掺杂磷离子。

具体地,首先将金刚石悬浮液通过旋转涂覆仪均匀地涂覆在玻璃衬底上,形成金刚石沟道层,然后在金刚石两端通过离子注入或等离子掺杂的方式掺杂磷离子,以在金刚石沟道层的两端形成n型掺杂金刚石。

其中,玻璃衬底上设有缓冲层,所述缓冲层的材料包括siqx和sinx的一种或组合,金刚石微粒为纳米级的,在涂覆在玻璃衬底上时,会牢牢地吸附在玻璃衬底上,不会掉落。

在本申请提供的导电沟道材料的制备方法,通过制取一种既具有优良的半导体特性、又具有光学透明特性的材料做薄膜晶体管的导电沟道材料,从而可以在提高薄膜晶体管液晶显示器的分辨率的前提下保证薄膜晶体管液晶显示器的开口率。

在实际操作中,首先将涂覆有催化剂的金属基底置于化学气相沉积炉内,在所述化学气相沉积炉内通入甲烷气体、氢气和氩气的混合气体,其中通入甲烷气体、氢气和氩气的比例为1:10:50,控制所述化学气相沉积炉内的温度在500摄氏度~1000摄氏度的范围内,然后保持10分钟~20分钟,从而在所述金属基底的表面形成碳纳米纤维,用刀将所述碳纳米纤维与所述金属基底分离。

接着将碳纳米纤维置于放电等离子快速热压烧结炉中,将所述放电等离子快速热压烧结炉内的压强调至20兆帕~200兆帕,将所述放电等离子快速热压烧结炉内的压温度至2600摄氏度~3500摄氏度,并同时开启等离子放电,保持30分钟~60分钟形成纤维状金刚石,将所述纤维状金刚石取出。

然后将纤维状金刚石放入装有丙酮的圆形烧杯中,并将圆形烧杯放在超声波处理仪中,接着控制所述超声波处理仪的超声处理功率保持在2000瓦~5000瓦,处理5小时~10小时后在容器中形成金刚石悬浮液,将圆形烧杯取出。

最后通过旋转涂覆仪把圆形烧杯中的金刚石悬浮液均匀地涂覆在玻璃衬底上,形成金刚石沟道层,在金刚石两端通过离子注入或等离子掺杂的方式掺杂磷离子,在金刚石沟道层的两端形成n型掺杂金刚石。

参阅图6,图6为本申请实施例提供的薄膜晶体管的结构示意图。如图1所示,本申请实施例提供的薄膜晶体管包括玻璃衬底201、第一缓冲层202、第二缓冲层203、金刚石沟道层204、栅极绝缘层205、栅极206、源极207、漏极208、介电层209和平坦层210。

所述玻璃衬底201上设置有第一缓冲层202,第二缓冲层203设置于所述第一缓冲层202上,金刚石沟道层204设置于所述第二缓冲层203上,栅极绝缘层205设置于所述第二缓冲层203上,且把所述金刚石沟道层204完全覆盖起来,栅极206设置于所述栅极绝缘层205上,源极207和漏极208分别设置于所述金刚石沟道层204的两端,并贯穿所述栅极绝缘层205,其中所述源极207设置于所述金刚石沟道层204的左端,所述漏极208设置于所述金刚石沟道层204的右端,介电层209设置于所述栅极绝缘层205上,且把所述栅极206完全覆盖起来,平坦层设置于所述介电层209上。

其中,金刚石沟道层204是采用金刚石作为导电沟道材料,本申请所提供的导电沟道的制备方法制程简单,适用于以玻璃为衬底的薄膜晶体管液晶显示器,另外,把金刚石作为导电沟道材料的制备方法的具体实施步骤可参见前面的实施例,在此不再一一赘述。

可以理解的,金刚石具有禁带宽度大(5.45ev)、热导率高(2000w/m·k)、载流子迁移率高(电子迁移率4500cm2/v·s、空穴迁移率3800cm2/v·s)等一系列优点,在高温、高频、高功率电子器件方面具有巨大的应用潜力。将金刚石应用于薄膜晶体管沟道材料有如下优点:金刚石在可见光范围内透明,能提高开口率;金刚石禁带宽度大,对可见光吸收少,光生漏电流低;金刚石热导率高,能提高器件的高温稳定性。因此采用金刚石作为薄膜晶体管沟道材料,能够在提高薄膜晶体管液晶显示器的分辨率的前提下保证薄膜晶体管液晶显示器的开口率。

以上对本申请实施方式提供了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1