燃料电池催化剂的制备方法与流程

文档序号:19121467发布日期:2019-11-13 01:41阅读:2674来源:国知局
燃料电池催化剂的制备方法与流程

本发明涉及一种催化剂的制备方法,特别涉及一种燃料电池催化剂的制备方法。



背景技术:

质子燃料电池是氢能源发展的关键之一,其能将氢能源中所含高能量密度化学能高效率转换成电能,而尾气排放对环境能达到零污染,是电动车最理想的动力源。

而铂系催化剂是现今及未来十年内燃料电池主要的组成部分,但是由于在地球资源中的稀有性,以及还未找到可替代的新型催化剂,故而降低pt的使用量,提高铂的利用率及延长铂系催化剂的使用寿命成为了研究燃料电池催化剂的热点。现有技术中,铂系催化剂的制备方法基本都是适用于实验室用量或小批量的工艺,但随着燃料电池的发展,需要寻找一种适用于量产且合成路线简单可行、杂质种类少的铂系催化剂的制备方法,达到商业化的应用。



技术实现要素:

本发明旨在提供一种工艺简单、反应快速、产品纯化度高且可连续化生产的燃料电池催化剂的制备方法。

本发明通过以下方案实现:

一种燃料电池催化剂的制备方法,按以下步骤进行:

ⅰ将碳载体、铂源依次加入到乙二醇与去离子水的混合液中分散均匀形成混合浆液,之后往混合浆液中加入氢氧化钾的乙二醇溶液,直至混合浆液的ph调节为9~11;实际生产过程中,先将碳载体加入至乙二醇与去离子水的混合液进行超声分散,再将铂源加入至乙二醇与去离子水的混合液进行搅拌,考虑到经济性和分散效果,碳载体的超声分散时间一般控制为30~90min,铂源的搅拌时间一般控制为30~60min;在加入氢氧化钾的乙二醇溶液时,一般是边搅拌边加入,同时不断检测混合浆液的ph值,在ph值达到要求时,再搅拌30~60min,以便混合浆液中各物质混合分散均匀;

ⅱ往步骤ⅰ最终得到的混合浆液中通入氮气,直至混合浆液中的氧气完全排出,之后将混合浆液注入温度为120~150℃的喷雾反应器中进行喷雾反应,将反应产物冷却至室温;实际生产过程中,边搅动边通入氮气,经多次试验得到,往混合浆液中通入氮气的时间控制为30~60min,即可将混合浆液中的氧气完全排出;混合浆液在喷雾反应器中形成喷雾的瞬间进行反应,反应产物自由滴落至喷雾反应器底部;

ⅲ将步骤ⅱ中冷却至室温的反应产物移至正压过滤器中,通过去离子水连续微孔滤膜过滤纯化,直至最后滤液的总离子浓度降至10ppm以下,得到催化剂滤液;

ⅳ将步骤ⅲ制得的催化剂滤液注入喷雾干燥器中进行喷雾干燥,制得pt/c催化剂。

进一步地,铂源为六水合氯铂酸乙二醇溶液、乙酰丙酮铂乙二醇溶液、六水合氯铂酸钠乙二醇溶液、氯化铂乙二醇溶液中的一种或多种;碳载体即碳黑载体,多采用科琴黑ecp600jd和卡博特xc-72r两种型号。

进一步地,所述步骤ⅰ中,乙二醇与去离子水的混合液中的乙二醇与去离子水的体积比为1:0.5~1.5。

进一步地,所述步骤ⅰ中,碳载体的用量按1l乙二醇与去离子水的混合液中含有0.1~8g的碳载体计算,铂源的用量按1l乙二醇与去离子水的混合液中含有0.2~9g的铂元素计算。

进一步地,所述步骤ⅱ中,喷雾反应器的喷雾速度控制为30~60ml/min。

进一步地,所述喷雾反应器为闭合恒温喷雾反应器,其喷嘴为溶剂正压喷嘴。

进一步地,所述步骤ⅳ中,喷雾干燥器的进风温度控制为120~150℃,喷雾干燥器的出风温度控制为40~60℃,喷雾干燥器的进料速度控制为30~40ml/min,喷雾干燥器的喷头为气流喷头。

本发明的燃料电池催化剂的制备方法,具有以下优点:

1、工艺简单,以乙二醇和去离子水作为反应溶剂,其中乙二醇为还原剂,具有反应高效,低廉优势;同时,本发明制备方法中,不需要添加添加剂,使后续纯化处理更加简单,提高了工作效率。

2、混合浆液采用在喷雾反应器中进行雾化反应,混合浆液在雾化瞬间反应,使合成溶液热量传递快速,且受热均匀,节约了反应的时间,得到的催化剂更加均一。

3、本发明使用雾化干燥,缩短处理时间,得到的pt/c催化剂具有极佳的堆密度,避免在干燥过程中形成块状催化剂。

4、本发明集合成、纯化、干燥一体化,可连续化生产,操作简单,生产成本低廉,且日产量高,减少了外部干扰,使pt/c催化剂质量得到有效控制,本发明制得的pt/c催化剂中pt载量控制为10~80wt%,可以实现工业化生产。

附图说明

图1为实施例1制得的pt/c催化剂与johnsonmatthey公司同样pt载量的商业化pt/c催化剂产品的循环伏安曲线对比图;

图2为使用实施例1制得的pt/c催化剂制成的单电池与使用johnsonmatthey公司同样pt载量的商业化pt/c催化剂产品制成的单电池的功率密度曲线对比图。

具体实施方式

以下结合实施例对本发明作进一步说明,但本发明并不局限于实施例之表述。

实施例1

一种燃料电池催化剂的制备方法,按以下步骤进行:

ⅰ碳载体的用量按1l乙二醇与去离子水的混合液中含有3g的碳载体计算,碳载体使用vulcanxc-72碳黑,铂源的用量按1l乙二醇与去离子水的混合液中含有2g的铂元素计算,铂源为六水合氯铂酸乙二醇溶液,乙二醇与去离子水的混合液中的乙二醇与去离子水的体积比为1:1,先将碳载体加入到乙二醇与去离子水的混合液中超声分散30min,再将铂源加入到分散好碳载体的乙二醇与去离子水的混合液中搅拌30min,形成混合浆液,之后往混合浆液中边搅拌边加入氢氧化钾的乙二醇溶液,同时不断检测混合浆液的ph值,在混合浆液的ph调节为10.5时,再继续搅拌30min;

ⅱ往步骤ⅰ最终得到的混合浆液中边搅拌边通入氮气30min,使得混合浆液中的氧气完全排出,之后将混合浆液注入温度为125℃、喷雾速度控制为50ml/min的闭合恒温喷雾反应器中进行喷雾反应,喷雾反应器的喷嘴为溶剂正压喷嘴,混合浆液在喷雾反应器中形成喷雾的瞬间进行反应,反应产物自由滴落至喷雾反应器底部,将反应产物冷却至室温;

ⅲ将步骤ⅱ中冷却至室温的反应产物移至正压过滤器中,通过去离子水连续微孔滤膜过滤纯化,直至最后滤液的总离子浓度降至10ppm以下,得到催化剂滤液;

ⅳ将步骤ⅲ制得的催化剂滤液注入喷雾干燥器中进行喷雾干燥,喷雾干燥器的进风温度控制为130℃,喷雾干燥器的出风温度控制为50℃,喷雾干燥器的进料速度控制为35ml/min,喷雾干燥器的喷头为气流喷头,最终制得pt/c催化剂。

将实施例1制得的pt/c催化剂进行pt载量检测,经检测,其pt载量为40wt%。

将实施例1制得的pt/c催化剂与johnsonmatthey公司同样pt载量的商业化pt/c催化剂产品分别用循环伏安法(cv)进行测试,其测试曲线如图1所示,“---”表示johnsonmatthey公司催化剂产品的循环伏安曲线,“—”表示实施例1制得的pt/c催化剂的循环伏安曲线,从图1中可知,实施例1制得的pt/c催化剂的循环伏安曲线与johnsonmatthey公司催化剂产品的循环伏安曲线相近。

分别使用实施例1制得的pt/c催化剂与johnsonmatthey公司同样pt载量的商业化pt/c催化剂产品制成单电池,之后对单电池进行功率密度测试,其测试曲线如图2所示,“■”表示使用johnsonmatthey公司催化剂产品制成的单电池的功率密度曲线,“▲”表示使用实施例1制得的pt/c催化剂制成的单电池的功率密度曲线,从图2中可知,使用实施例1制得的pt/c催化剂制成的单电池的功率密度曲线与使用johnsonmatthey公司催化剂产品制成的单电池的功率密度曲线基本重合。

实施例2

一种燃料电池催化剂的制备方法,其步骤与实施例1中的燃料电池催化剂的制备方法的步骤基本相同,其不同之处在于:

1、步骤ⅰ中,碳载体的用量按1l乙二醇与去离子水的混合液中含有2g的碳载体计算,碳载体使用科琴黑ecp600jd,铂源的用量按1l乙二醇与去离子水的混合液中含有3g的铂元素计算,铂源为乙酰丙酮铂溶液,乙二醇与去离子水的混合液中的乙二醇与去离子水的体积比为1:0.5,碳载体的超声分散时间控制为60min,铂源的搅拌时间控制为40min,混合浆液的ph值控制为9,在混合浆液的ph调节为9时,再继续搅拌40min;

2、步骤ⅱ中,往混合浆液中通入氮气的时间控制为60min,闭合恒温喷雾反应器的温度控制为140℃、喷雾速度控制为40ml/min;

3、步骤ⅳ中,喷雾干燥器的进风温度控制为120℃,喷雾干燥器的出风温度控制为40℃,喷雾干燥器的进料速度控制为30ml/min。

将实施例2制得的pt/c催化剂进行pt载量检测,经检测,其pt载量为60wt%。

实施例3

一种燃料电池催化剂的制备方法,其步骤与实施例1中的燃料电池催化剂的制备方法的步骤基本相同,其不同之处在于:

1、步骤ⅰ中,碳载体的用量按1l乙二醇与去离子水的混合液中含有4g的碳载体计算,碳载体为碳黑(科琴黑ecp600jd),铂源的用量按1l乙二醇与去离子水的混合液中含有1g的铂元素计算,铂源为六水合氯铂酸钠溶液,乙二醇与去离子水的混合液中的乙二醇与去离子水的体积比为1:1.5,碳载体的超声分散时间控制为90min,铂源的搅拌时间控制为60min,混合浆液的ph值控制为11,在混合浆液的ph调节为11时,再继续搅拌60min;

2、步骤ⅱ中,往混合浆液中通入氮气的时间控制为45min,闭合恒温喷雾反应器的温度控制为150℃、喷雾速度控制为60ml/min;

3、步骤ⅳ中,喷雾干燥器的进风温度控制为150℃,喷雾干燥器的出风温度控制为60℃,喷雾干燥器的进料速度控制为40ml/min。

将实施例3制得的pt/c催化剂进行pt载量检测,经检测,其pt载量为20wt%。

实施例4

一种燃料电池催化剂的制备方法,其步骤与实施例1中的燃料电池催化剂的制备方法的步骤基本相同,其不同之处在于:

1、步骤ⅰ中,碳载体的用量按1l乙二醇与去离子水的混合液中含有8g的碳载体计算,铂源的用量按1l乙二醇与去离子水的混合液中含有1.5g的铂元素计算,铂源为氯化铂溶液,碳载体的超声分散时间控制为70min,铂源的搅拌时间控制为45min,混合浆液的ph值控制为11,在混合浆液的ph调节为11时,再继续搅拌45min;

2、步骤ⅱ中,往混合浆液中通入氮气的时间控制为50min,闭合恒温喷雾反应器的温度控制为120℃、喷雾速度控制为30ml/min;

3、步骤ⅳ中,喷雾干燥器的进风温度控制为140℃,喷雾干燥器的出风温度控制为40℃,喷雾干燥器的进料速度控制为30ml/min。

将实施例4制得的pt/c催化剂进行pt载量检测,经检测,其pt载量为16wt%。

实施例5

一种燃料电池催化剂的制备方法,其步骤与实施例1中的燃料电池催化剂的制备方法的步骤基本相同,其不同之处在于:

1、步骤ⅰ中,碳载体的用量按1l乙二醇与去离子水的混合液中含有2g的碳载体计算,铂源的用量按1l乙二醇与去离子水的混合液中含有8g的铂元素计算;

2、步骤ⅱ中,往混合浆液中通入氮气的时间控制为50min,闭合恒温喷雾反应器的温度控制为140℃、喷雾速度控制为40ml/min;

3、步骤ⅳ中,喷雾干燥器的进风温度控制为140℃,喷雾干燥器的出风温度控制为45℃,喷雾干燥器的进料速度控制为30ml/min。

将实施例5制得的pt/c催化剂进行pt载量检测,经检测,其pt载量为80wt%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1