半导体装置和其制造方法与流程

文档序号:26941204发布日期:2021-10-12 16:32阅读:233来源:国知局
半导体装置和其制造方法与流程

1.本公开涉及一种半导体装置和其制造方法。


背景技术:

2.铜-铜键合(copper to copper bonding)是制造半导体装置的一个步骤。铜-铜键合通常通过退火工艺来实施。然而,常规退火工艺在超过250℃的温度下执行,从而导致半导体装置、晶圆或其它电子组件损坏。因此,需要新的方法来提高制造半导体装置的产率。


技术实现要素:

3.根据本公开的一些实施例,一种用于制造半导体装置的方法包含提供第一衬底。所述方法还包含在所述第一衬底上形成第一金属层。所述第一金属层包含第一金属材料。所述方法进一步包含用包含第二金属材料的离子的溶液处理所述第一金属层的第一表面。另外,所述方法包含在所述第一金属层的所述第一表面的一部分上形成包含所述第二金属材料的多个金属颗粒。
4.根据本公开的一些实施例,一种半导体装置包含衬底和导电元件。所述导电元件安置在所述衬底上。所述导电元件包含第一金属层、第二金属层和合金层。所述第一金属层包含第一金属材料。所述第二金属层包含第二金属材料。所述合金层包含所述第一金属材料和所述第二金属材料,并且安置在所述第一金属层与所述第二金属层之间。所述第一金属层和所述第二金属层沿某一方向交替布置。
5.根据本公开的一些实施例,一种半导体装置包含衬底和导电元件。所述导电元件安置在所述衬底上。所述导电元件具有侧面。所述导电元件包含第一金属层、多个金属颗粒和多个合金壳体。所述第一金属层包含第一金属材料。所述多个金属颗粒包含第二金属材料。所述多个金属颗粒中的至少一个金属颗粒嵌入在所述第一金属层中。所述多个金属颗粒中的至少一个金属颗粒具有从所述第一金属层的所述侧面凸出的一部分。所述多个合金壳体包含所述第一金属材料和所述第二金属材料。所述多个合金壳体中的每个合金壳体覆盖对应的金属颗粒。
附图说明
6.当与附图一起阅读以下详细描述时,可以根据以下详细描述容易地理解本公开的各方面。应当注意的是,各种特征可能不一定按比例绘制。实际上,为了讨论的清楚起见,可以任意增大或减小各种特征的尺寸。
7.图1是根据本公开的一些实施例的半导体装置的横截面视图。
8.图2a是图1中所示出的半导体装置的局部放大视图。
9.图2b、图2c和图2d是根据本公开的一些实施例的导电元件的横截面视图。
10.图3、图4、图5、图6和图7是根据本公开的一些实施例的半导体装置的横截面视图。
11.图8a、图8b、图8c、图8d和图8e展示了根据本公开的一些实施例的用于制造半导体
装置的方法的各个阶段。
12.图9a和图9b展示了根据本公开的一些实施例的经过改进的金属衬垫。
13.贯穿附图和详细描述,使用相同的附图标记来指示相同或类似的部件。根据以下结合附图进行的详细描述,本公开将更加明显。
具体实施方式
14.以下公开提供了用于实施所提供主题的不同特征的许多不同实施例或实例。下文描述了组件和布置的具体实例。当然,这些仅仅是实例并且不旨在是限制性的。在本公开中,在以下描述中对在第二特征之上或上形成或安置第一特征的引用可以包含将第一特征和第二特征形成为或安置为直接接触的实施例,并且还可以包含可以在第一特征与第二特征之间形成或安置另外的特征使得第一特征和第二特征可以不直接接触的实施例。此外,本公开可以在各个实例中重复附图标记和/或字母。这种重复是为了简单和清晰的目的并且本身并不指示所讨论的各个实施例和/或配置之间的关系。
15.下文详细讨论了本公开的实施例。然而,应当理解的是,本公开提供了许多可以在各种各样的特定上下文中具体化的适用概念。所讨论的具体实施例仅是说明性的,而不限制本公开的范围。
16.图1是根据本公开的一些实施例的半导体装置1a的横截面视图。在一些实施例中,半导体装置1a包含衬底10、衬底20和导电元件30。
17.衬底10可以包含印刷电路板(pcb)、晶圆、重新分布层(rdl)、封装衬底、插入件或其它衬底。pcb可以包含纸基铜箔层压板、复合铜箔层压板或聚合物浸渍的玻璃纤维基铜箔层压板。在一些实施例中,衬底10还可以包含引线框架。在一些实施例中,衬底10可以包含晶圆管芯,如硅晶圆管芯、扇出晶圆管芯、玻璃晶圆管芯或其组合。
18.衬底20面向衬底10。衬底20可以包含印刷电路板(pcb)、晶圆、重新分布层(rdl)、封装衬底、插入件或其它衬底。pcb可以包含纸基铜箔层压板、复合铜箔层压板或聚合物浸渍的玻璃纤维基铜箔层压板。在一些实施例中,衬底20还可以包含引线框架。在一些实施例中,衬底20可以包含晶圆管芯,如硅晶圆管芯、扇出晶圆管芯、玻璃晶圆管芯或其组合。
19.导电元件(conductive element)30安置在衬底10上。导电元件30安置在衬底10与20之间。导电元件30被配置成用作例如电极、导电衬垫、虚设衬垫、导电柱、虚设柱或其组合,并且本公开不限于此。在一些实施例中,导电元件30包含金属层31、金属层32和界面层(interface layer)33。
20.金属层31安置在衬底10上。金属层31包含至少第一金属材料。第一金属材料可以包含铜(cu)、铝(al)、铁(fe)、锌(zn)、镍(ni)、锡(sn)、铅(pb)、银(ag)、汞(hg)、金(au)或其组合。在一些示范性实施例中,选择铜作为第一金属材料的实例。
21.金属层32安置在衬底20上。在一些实施例中,金属层32包含至少第一金属材料。在一些实施例中,金属层32的材料与金属层31的材料相同。
22.在一些实施例中,界面层33安置在金属层31上。在一些实施例中,界面层33安置在金属层31与32之间。在以下段落中伴随图2a和图2b公开了界面层33的细节。
23.在一些实施例中,半导体装置1a进一步包含钝化层60。钝化层60安置在衬底10与衬底20之间。钝化层60可以围绕导电元件30。钝化层60可以被配置成保护导电元件30不受
损伤或污染。钝化层60可以包含如氮化硅、氧化硅或氧氮化硅等无机介电材料、如聚酰亚胺(pi)、聚苯并恶唑(pbo)或苯并环丁烯(bcb)等有机介电材料或其它适合的材料。
24.图2a是根据本公开的一些实施例的图1中示出的半导体装置1a中的区域r的放大视图。在一些实施例中,界面层33包含合金层(alloy layer)331和金属层332。金属层332至少包含与第一金属材料不同的第二金属材料。在一些实施例中,第二金属材料的还原电位(reduction potential)大于或超过第一金属材料的还原电位。在一些实施例中,第二金属材料的离子的还原电位大于或超过第一金属材料的还原电位。在一些实施例中,第二金属材料包含铜、铝、铁、镍、锡、铅、银、汞、金、铂或其组合。在一些示范性实施例中,使用铜作为第一金属材料的实例并且使用银作为第二金属材料的实例。
25.合金层331安置在金属层31与金属层332之间。合金层331是第一金属材料与第二金属材料的合金,如铜-银合金。
26.在一些实施例中,合金层331和金属层332的总和的厚度t1处于约30nm到约50nm的范围内。在一些实施例中,厚度t1处于约50nm到约100nm的范围内。在一些实施例中,厚度t1处于约100nm到约200nm的范围内。在一些实施例中,厚度t1处于约200nm到约400nm的范围内。
27.图2b是根据本公开的其它实施例的图1中示出的半导体装置1a中的区域r的放大视图。
28.如图2b所示,界面层33可以包含多个金属颗粒332'(metal particle)和合金壳体331'(alloy shell)。金属颗粒332'中的每个金属颗粒彼此分离。合金壳体331'中的每个合金壳体覆盖或密封对应的金属颗粒332'。在一些实施例中,金属颗粒332'可以沿从导电元件30的一个侧面跨到导电元件30的另一个侧面的方向布置。在一些实施例中,金属颗粒332'和第一金属层31可以沿从导电元件30的一个侧面跨到导电元件30的另一个侧面的方向交替地布置。在一些实施例中,金属颗粒332'中的每个金属颗粒嵌入在金属层31中或金属层32中。在一些实施例中,合金壳体331'中的每个合金壳体嵌入在金属层31中或金属层32中。
29.金属颗粒332'的轮廓可以是圆形的、椭圆形的或不规则形状的。在一些实施例中,合金壳体331'覆盖或密封金属颗粒332'。金属颗粒332'由合金壳体331'与金属层31分开。在一些实施例中,合金壳体331'可以共形地(conformally)覆盖金属颗粒332'。
30.在一些实施例中,金属颗粒332'和对应的合金壳体331'的总和的直径t2处于约10nm到约50nm的范围内。在一些实施例中,直径t2处于约50nm到约100nm的范围内。在一些实施例中,直径t2处于约100nm到约500nm的范围内。
31.在一些实施例中,金属颗粒332'的直径处于约10nm到约50nm的范围内。在一些实施例中,金属颗粒332'的直径处于约50nm到约100nm的范围内。
32.在一些实施例中,合金层331中或合金壳体331'中的第一金属材料(例如,铜)的量处于约20重量%到约40重量%的范围内。在一些实施例中,合金层331中或合金壳体331'中的铜的量处于约40重量%到约70重量%的范围内。在一些实施例中,合金层331中或合金壳体331'中的铜的量处于约70重量%到约90重量%的范围内。
33.在一些实施例中,合金层331中或合金壳体331'中的第二金属材料(例如,银)的量处于约5重量%到约20重量%的范围内。在一些实施例中,合金层331中或合金壳体331'中
的银的量处于约20重量%到约50重量%的范围内。在一些实施例中,合金层331中或合金壳体331'中的银的量处于约50重量%到约80重量%的范围内。
34.在一些实施例中,在金属层31与金属层32之间不存在边界,并且金属层31和金属层32可以被视为包含第一金属材料的单一金属层。
35.合金层331或合金壳体331'可以进一步包含另外的元素,如碳(c)、氧(o)或其它元素。在一些实施例中,另外的元素的量处于约0重量%到约10重量%的范围内。
36.参考图2c,金属层332在导电元件30的中央部分处可以较薄并在两侧处可以较厚。合金层331可以共形地形成于金属层332上。
37.参考图2d,金属层332从导电元件30的一个侧面到导电元件30的另一个侧面可以具有基本上相同的厚度,并且可以是凹面(concave surface)的或凸面(convex surface)的。在一些实施例中,对应于金属层332,合金层331可以是凹面的或凸面的。
38.图3是根据本公开的一些实施例的半导体装置1b的横截面视图。半导体装置1b可以包含衬垫71。衬垫71可以安置在衬底10上。衬垫71可以包含如金属或合金等导电材料。半导体装置1b可以包含钝化层81。钝化层81可以安置在衬底10上,覆盖衬垫71的一部分。钝化层81可以包含氮化物、氧化物、氧氮化物或其它适合的材料。
39.半导体装置1b可以包含衬垫72。衬垫72可以安置在衬底20上。衬垫72可以安置在衬底20上。衬垫72可以包含如金属或合金等导电材料。半导体装置1b可以包含钝化层82。钝化层82可以安置在衬底20上并且覆盖衬垫72的一部分。钝化层82可以包含氮化物、氧化物、氧氮化物或其它适合的材料。
40.导电元件30电连接到衬垫71。导电元件30电连接到衬垫72。金属层31可以具有暴露的侧面31b。在此实施例中,界面层33可以安置在金属层31的上表面31a上。界面层33可以沿平行于x轴的第一方向延伸。界面层33可以跨导电元件30沿第一方向从导电元件30的一个侧面延伸到另一个侧面。在一些实施例中,上表面31a可以垂直于侧面31b。在一些实施例中,上表面31a相对于侧面31b可以是倾斜的。
41.虽然图3将界面层33展示为沿第一方向延伸的单个连续层,但是界面层33可以包含例如根据一些实施例的如图2b中所示出的多个金属颗粒332'和合金壳体331'。界面层33的金属颗粒332'沿x轴布置。金属颗粒332'可以安置在金属层31的上表面31a上。界面层33还可以包含根据一些实施例的如图2a、图2c和图2d中所示出的金属层332和合金层331。
42.图4是根据本公开的一些实施例的半导体装置1c的横截面视图。除了半导体装置1c的界面层33'可以进一步安置在导电元件30的侧面上之外,图4的半导体装置1c的结构类似于图3的半导体装置1b的结构。
43.在一些实施例中,界面层33'可以沿平行于y轴的第二方向进一步安置在金属层31的侧面31b上。
44.虽然图4展示了界面层33'是单个连续层,但是界面层33'可以包含例如根据一些实施例的如图2b中所示出的多个金属颗粒332'和合金壳体331'。在一些实施例中,安置在侧面31b上的界面层33'的金属颗粒332'可以具有从侧面31b凸出的一部分。在一些实施例中,安置在侧面31b上的界面层33'的合金壳体331'可以具有从侧面31b凸出的一部分。
45.图5是根据本公开的一些实施例的半导体装置1d的横截面视图。除了半导体装置1d的界面层33”可以从钝化层81延伸到钝化层82之外,图5的半导体装置1d的结构类似于图
4的半导体装置1c的结构。
46.图6是根据本公开的一些实施例的半导体装置1e的横截面视图。除了半导体装置1e的金属层32'可以具有容纳第一金属层31的凹面之外,图6的半导体装置1e的结构类似于图4的半导体装置1c的结构。在一些实施例中,金属层32'的凹面可以对应于金属层31的上表面31a和侧面31b。在一些实施例中,金属层32'的轮廓与金属层31的轮廓不同。在一些实施例中,半导体装置1e的界面层33”'可以安置在金属层31的上表面31a和侧面31b上。界面层33”'的一部分从金属层32'暴露。在此实施例中,界面层33”'可以是u形的。在此实施例中,金属颗粒331'的布置可以是u形的。
47.图7是根据本公开的一些实施例的半导体装置1f的横截面视图。除了半导体装置1f可以进一步包含阻挡层(barrier layer)34、金属层35、阻挡层36和金属层37之外,图7的半导体装置1f的结构类似于图3的半导体装置1b的结构。
48.金属层35可以与衬垫72直接接触。金属层37可以与衬垫71直接接触。阻挡层34可以安置在金属层32与金属层35之间。阻挡层36可以安置在金属层31与金属层37之间。金属层37的材料可以包含与第一金属材料不同的第三金属材料。第三金属材料包含铜、铝、铁、镍、锡、铅、银、金或其它适合的材料。金属层35的材料可以与金属层37的材料相同。
49.阻挡层36可以被配置成防止界面层33中的第二金属材料在导电元件30的形成期间扩散到金属层37中。阻挡层36的材料可以包含钛、钽。例如,阻挡层36可以由氮化钛或其它适合的材料制成。阻挡层34的材料可以与阻挡层36的材料相同。
50.图8a、图8b、图8c、图8d和图8e展示了根据本公开的一些实施例的用于制造半导体装置1a的方法的各个阶段。
51.参考图8a,提供衬底10。在衬底10上形成钝化层61。钝化层61可以包含氮化物、氧化物、氧氮化物或其它适合的材料。在一些实施例中,钝化层61可以沉积在衬底10的上表面上,并且然后可以在钝化层61上执行图案化工艺以形成多个开口。
52.可以在钝化层61的开口中形成包含第一金属材料或由第一金属材料制成的金属层31。金属层31可以通过例如溅射工艺、电镀工艺或其它适合的工艺来形成。
53.参考图8b,可以将衬底10浸泡在溶液90中。在一些实施例中,可以将包含第二金属材料的离子的溶液90喷涂或涂覆在金属层31的上表面31a上或钝化层61的上表面上。在一些实施例中,溶液90可以是包含分散在亚硝酸盐溶液中的多个银离子的硝酸银(agno3)溶液。在一些实施例中,当未形成钝化层61时,可以将溶液90进一步涂覆在金属层31的侧面31b上。
54.在一些实施例中,可以在金属层31的上表面31a上或钝化层61的上表面上执行预处理。预处理可以用于去除形成于上表面31a上的天然氧化物。预处理可以包含例如清洁工艺或其它适合的工艺。
55.在一些实施例中,溶液90可以包含aucn、agcn、cuso4、niso4、znso4或其它适合的盐或材料。在一些实施例中,溶液90的浓度可以处于约0.001m到约0.1m的范围内。在一些实施例中,溶液90的浓度可以处于约0.01m到约0.05m的范围内。
56.参考图8c,可以在金属层31的上表面31a上形成包含第二金属材料或由第二金属材料制成的多个金属颗粒91。在一些实施例中,金属颗粒91可以包含银。当第二金属材料的离子的还原电位大于或超过第一金属材料的还原电位时,将发生伽伐尼(galvanic)置换反
应。伽伐尼置换反应使第一金属材料氧化成第一金属材料的离子,并且使第二金属材料的离子还原成第二金属材料。因此,可以在金属层31的上表面31a上形成金属颗粒91。例如,在将硝酸银溶液涂覆在铜上时,银离子被还原形成银纳米颗粒,并且铜被氧化形成铜离子。反应可以如下呈现:
57.2agno
3(aq)
+cu
(s)

2ag
(s)
+cu(no3)
2(aq)
58.伽伐尼置换反应可以在特定温度下发生。例如,可以在介于约25℃到约100℃之间的温度下用银置换铜。在一些实施例中,所述多个金属颗粒91中的每个金属颗粒的大小处于约20nm到约35nm的范围内。在一些实施例中,所述多个金属颗粒91中的每个金属颗粒的大小处于约35nm到约50nm的范围内。在一些实施例中,所述多个金属颗粒91中的每个金属颗粒的大小处于约50nm到约70nm的范围内。在一些实施例中,所述多个金属颗粒91中的每个金属颗粒的大小处于约70nm到约90nm的范围内。当金属颗粒91的大小处于此范围内时,将在较低温度下形成界面层33。
59.在一些实施例中,当不存在钝化层61时,可以在金属层31的侧面31b上进一步形成金属颗粒91,如银颗粒。在一些实施例中,金属层31的上表面的粗糙度处于约1nm到约10nm的范围内。在一些实施例中,金属层31的上表面的粗糙度处于约10nm到约50nm的范围内。
60.参考图8d,提供衬底20。可以在衬底20上形成金属层32和钝化层62。用于形成金属层32和钝化层62的工艺可以与形成金属层31和钝化层61的那些工艺类似或相同,并且本文中不再重复。在一些实施例中,可以在金属层32的表面上形成金属颗粒91。
61.参考图8e,形成金属-金属键合(metal to metal bonding,如金属层31到金属层32的键合),并且产生半导体装置1a。金属层31和金属层32可以通过可以在例如低于200℃下执行的加热工艺来键合。当执行加热工艺时,形成界面层33。在一些实施例中,将钝化层61与钝化层62键合以形成钝化层60。
62.另外,将钝化层61键合到钝化层62,并且形成边界s1。在此步骤中,混合键合在图8d到图8e的步骤期间完成。混合键合包含两种不同类型的键合。更具体地,图8d到图8e的步骤包含形成金属层之间的键合并且形成钝化层之间的键合。可以在金属层31上选择性地形成金属颗粒91,并且所述金属颗粒因此可以提高金属层31与金属层32的键合,而不会不利地影响钝化层61与钝化层62的键合。
63.在一些实施例中,第一金属材料是铜并且第二金属材料是银。在此实施例中,铜和银可以形成抑制或防止形成金属间化合物(imc)的合金。因此,导电元件30的电阻减小。此外,可以在较低温度下和/或以较少时间执行用于形成金属-金属键合(如金属层31到金属层32之间的键合)的工艺。
64.在此实施例中,通过伽伐尼置换反应在金属层上形成金属颗粒91,这可以省去将金属层31键合到金属层32之前的等离子体处理。等离子体处理可能损伤钝化层61的表面,从而使钝化层61与62之间的键合更加困难。在此实施例中,钝化层61的上表面未受到等离子体工艺的损伤,因此钝化层61与62的键合更强。与通过等离子体处理金属层和钝化层的工艺相比,使用伽伐尼置换反应的本公开的实施例可以形成更强的混合键合(hybrid bonding)。在未形成金属颗粒91的对比实例中,在铜衬垫的表面上执行等离子体工艺以在其上产生空隙,从而加速铜原子在随后的退火中的扩散速率,并且然后针对铜-铜键合工艺执行退火工艺。然而,等离子体工艺对材料不具有选择性并且钝化层的表面也受到等离子
体的轰击,这使得钝化层到钝化层的键合更加困难。在本公开的一些实施例中,伽伐尼置换反应对金属层31以及钝化层61和62具有选择性。也就是说,仅在金属层31的界面上而非钝化层61和62上形成金属颗粒91,从而减少了钝化层61和62上的污染。因此,钝化层-钝化层键合更加容易形成。
65.另外,金属颗粒91可以帮助键合具有不同形状的两个金属层(如图6中所示出的),从而提高半导体装置的产率。
66.图9a和图9b展示了根据本公开的一些实施例的经过改进的金属衬垫。图9a或图9b中所示出的经过改进的金属衬垫可以是图8c中所示出的包含金属层31和形成于金属层31的上表面31a上的多个金属颗粒91的结构。
67.如图9a中所示出的,经过改进的金属衬垫可以包含位于金属层31的上表面31a上的多个金属颗粒91a。多个金属颗粒91a可以彼此分离。在一些实施例中,金属颗粒91a可以随机地分布在金属层31的上表面31a上。
68.如图9b中所示出的,经过改进的金属衬垫可以包含位于金属层31的上表面31a上的多个金属颗粒91b。金属颗粒91b在金属层31的上表面31a上的布置可以呈树枝形状。颗粒的布置可以通过工艺时间、工艺温度和含离子(例如,ag
+
)的溶液90的浓度来控制。在此实施例中,在金属层31到金属层32的键合之后形成的金属颗粒或合金壳体可以以树枝形状(dendritic shape)布置。
69.布置的树枝形状可以帮助形成大小较小的金属颗粒91b、降低金属层31与金属层32的键合期间的工艺温度。
70.如本文所使用的,除非上下文另有明确指示,否则单数术语“一个/一种(a/an)”和“所述(the)”可以包含复数指代物。
71.如本文所使用的,术语“导电的(conductive)”、“导电的(electrically conductive)”以及“电导率(electrical conductivity)”指代输送电流的能力。导电材料通常表示展示出对电流流动几乎没有或没有阻碍的那些材料。电导率的一种度量是西门子每米(s/m)。通常,导电材料是电导率大约超过104s/m,如至少105s/m或至少106s/m的导电材料。材料的电导率有时可能随温度变化。除非另有说明,否则材料的电导率是在室温下测量的。
72.另外,量、比率和其它数值在本文中有时以范围格式呈现。应当理解的是,此类范围格式是为了方便和简洁而使用的,并且应该灵活地理解为包含明确指定为范围的界限的数值,而且还包含所述范围内涵盖的所有单独数值或子范围,如同每个数值和子范围被明确指定一样。
73.虽然已经参考本公开的具体实施例描述和展示了本公开,但是这些描述和图示并非限制性的。本领域的技术人员应当理解,在不脱离如由权利要求限定的本公开的精神和范围的情况下,可以作出各种改变并且可以取代等同物。图示可能不一定按比例绘制。由于制造工艺和公差,本公开中的艺术再现与实际装置之间可能存在区别。可能存在未具体展示的本公开的其它实施例。说明书和附图应被视为是说明性的而非限制性的。可以作出修改以使特定情况、材料、物质构成、方法或工艺适于本公开的目标、精神和范围。所有此类修改均旨在落入所附权利要求的范围内。虽然已经参考以特定顺序执行的特定操作描述了本文所公开的方法,但是应理解,可以在不脱离本公开的教导的情况下对这些操作进行组合、
细分或重新排列以形成等效方法。因此,除非本文明确指出,否则操作的顺序和分组并不是本公开的限制。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1