一种适用于高温SOFC/SOEC电堆自动增压装置及电堆密封性测定方法与流程

文档序号:23817500发布日期:2021-02-03 13:51阅读:224来源:国知局
一种适用于高温SOFC/SOEC电堆自动增压装置及电堆密封性测定方法与流程
一种适用于高温sofc/soec电堆自动增压装置及电堆密封性测定方法
技术领域
[0001]
本发明属于燃料电池技术领域,尤其涉及一种高温固体氧化物燃料电池(sofc)及固体氧化物电解池(soec)电堆自动增压装置及电堆密封性测定方法。


背景技术:

[0002]
固体氧化物燃料电池(sofc)是一种在中高温条件下将化学能转化为电能的发电装置,而固体氧化物电解池(soec)可以看作sofc的逆运行,是将电能和热能转化为化学能的储能装置。二者都是在高温下(700~900℃)运行,且单电池的物理结构及单电池组堆的方式相似,结构组件均需要具备一定的强度和抗冲击能力。sofc及soec电堆是发生电化学反应的场所,也是sofc及soec动力系统核心部分,由多个单体电池以串联方式层叠组合构成,将各单体之间嵌入密封件,经前、后端板压紧后用螺杆紧固拴牢,即构成电堆。在单体电池层叠过程中为了保证各连接部件充分接触,需要在电堆上加载一定的机械压力。
[0003]
目前应用在sofc及soec电池电堆增压设备屈指可数,cn201720309830.1公开的“一种适用于中高温的固体氧化物燃料电池电堆加压装置”,对电堆上下两侧施压,通过顶盖和底座对电堆的中心位置施压,加压效果差,而侧壁无法进行加压,接触效果差;专利cn202010277961.2公开的“一种固体氧化物燃料电池电堆加压装置”,在进行电堆增压过程中,存在电堆受压不能同步受力问题,容易导致密封件受损;专利cn201910373675.3公开的“一种燃料电池电堆组装用液压机”,虽然电堆增压均匀受力方面相比前两项发明有所改进,但其所述的液压机进行燃料电池电堆组装时,通过上、下驱动装置对电堆施加压力,由于电堆自身重力原因,很难达到上下驱动装置同时施力控制,这不利于电堆两侧均匀受力。同时以上专利均未考虑到电堆在高温情况下增压组堆。由于高温sofc及soec电堆的密封材料大部分采用玻璃陶瓷类硬密封材料,热膨胀系数较大,电堆在高温(700~900℃)环境下,密封组件容易膨胀破损,若前期电堆在高温环境下控制合理,均匀加压施力,同时监测电堆高温增压过程中的密封性能,则有利于电堆后期的使用寿命。


技术实现要素:

[0004]
发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供一种适用于高温sofc/soec电堆的自动增压装置,解决当前高温sofc/soec电堆增压过程中受力不均问题,进一步提高电堆密封效果,实现电堆在高温环境下的自动增压及测试一体化控制,提高了电堆组堆产品的质量,为高温电堆增压设备工业化提供新的思路。
[0005]
为了实现上述目的,本发明采取的技术方案如下:
[0006]
一种适用于高温sofc/soec电堆自动增压装置,其特征在于,包括用于装载电堆的温控腔体、用于对电堆进行压力加载的载荷加载单元、用于检测电堆密封性的密封检测单元、以及电控单元;
[0007]
所述温控腔体内具有加热元件,能够将温控腔体内加热至电堆需要的测试温度;
[0008]
所述载荷加载单元为一对,对称的设置在温控腔体两侧,且贯穿温控腔体设置,将电堆夹紧在温控腔体内,并对电堆进行压力加载;
[0009]
所述密封检测单元包括两组以上的管路,通过测定管路内进出气体流量来判断电堆的密封性;
[0010]
所述电控单元分别与温控腔体的加热元件、载荷加载单元通过电路连接,通过电控单元分别对加热元件和载荷加载单元进行控制。
[0011]
具体地,所述温控腔体为一马弗炉腔体,其外部设有与腔体内部连接的温度变送器,所述温度变送器与加热元件与电控单元信号连接,电控单元根据温度变送器检测到的温度信号,控制加热元件的启停和升降温速率。
[0012]
具体地,每个载荷加载单元分别包括直线推动机构、压力变送器和助推器;所述直线推动机构和压力变送器位于温控腔体外部,且分别与电控单元信号连接,直线推动机构的输出端与压力变送器连接;所述助推器贯穿温控腔体的内壁,其位于温控腔体外部的一端通过隔热块与压力变送器连接,位于温控腔体内部的一端压紧在电堆上,从而通过两侧对称设置的助推器夹紧在温控腔体内。
[0013]
优选地,所述密封检测单元包括电堆阳极进口管路、电堆阳极出口管路、电堆阴极进口管路、电堆阴极出口管路、电堆空气极进口管路及电堆空气极出口管路,各管路分别穿过载荷加载单元后与电堆相连接。
[0014]
优选地,所述的助推器和温控腔体中留有管路通孔,便于管路插入连接,各管路与外部气源连接。
[0015]
优选地,所述助推器和隔热块均为陶瓷材料,主要成分为氧化锆。
[0016]
进一步地,本发明还提供采用上述装置在高温下测定sofc/soec电堆密封性的方法,包括如下步骤:
[0017]
(1)将电堆放入温控腔体内部,然后密封检测单元连接至电堆上;
[0018]
(2)封盖温控腔体后,通过两侧的载荷加载单元对电堆进行加压,同时通过加热元件将温控腔体内的温度提升至测试温度;
[0019]
(3)向密封检测单元内通入测试气体,同时测定通入电堆的气体进气流量和从电堆排出的气体出气流量。
[0020]
具体地,步骤(2)中,加热元件采用分段升温方式,将温控腔体内的温度提升至800℃~1000℃的测试温度。
[0021]
有益效果:
[0022]
本发明电堆自动增压装置控制精度高,采用的直线推动机构左右同步增压,使得电堆两侧均匀受力,对于增压设备本体受力信号反馈均匀,便于电控单元精准控制,电堆密封效果更好。在升温过程中,密封材料膨胀导致压力变化,增压设备可以快速调整,防止密封材料损坏。采用陶瓷材料助推器增压缓冲器面积大,与电堆左右双面成分接触,保证双面受力均匀,进一步提高电堆密封效果。该装置具备在常温及高温环境下对电堆增压及测试,具有程序升温控制功能,分段测试电堆的密封效果,提高电堆在高温环境下的使用寿命。
附图说明
[0023]
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述
和/或其他方面的优点将会变得更加清楚。
[0024]
图1是该电堆自动增压装置的整体结构示意图。
[0025]
图2是该电堆自动增压装置的电控线路原理图。
[0026]
其中,各附图标记分别代表:100电堆;10温控腔体;11加热元件;12温度变送器;20载荷加载单元;21直线推动机构;22压力变送器;23助推器;24隔热块;30密封检测单元;31a电堆阳极进口管路;31b电堆阳极出口管路;32a电堆阴极进口管路;32b电堆阴极出口管路;33a电堆空气极进口管路;33b电堆空气极出口管路;40电控单元。
具体实施方式
[0027]
根据下述实施例,可以更好地理解本发明。
[0028]
说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“前”、“后”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
[0029]
如图1和图2所示,该适用于高温sofc/soec电堆自动增压装置包括用于装载电堆100的温控腔体10、用于对电堆100进行压力加载的载荷加载单元20、用于检测电堆100密封性的密封检测单元30、以及电控单元40;
[0030]
其中,所述温控腔体10内具有加热元件11,能够将温控腔体10内加热至电堆100需要的测试温度;所述载荷加载单元20为一对,对称的设置在温控腔体10两侧,且贯穿温控腔体10设置,将电堆100夹紧在温控腔体10内,并对电堆100进行压力加载;所述密封检测单元30包括两组以上的管路,通过测定管路内进出气体流量来判断电堆100的密封性;所述电控单元40分别与温控腔体10的加热元件11、载荷加载单元20通过电路连接,通过电控单元40分别对加热元件11和载荷加载单元20进行控制。
[0031]
具体地,温控腔体10为一马弗炉腔体,其外部设有与腔体内部连接的温度变送器12,所述温度变送器12与加热元件11与电控单元40信号连接,电控单元40根据温度变送器12检测到的温度信号,控制加热元件11的启停和升降温速率。
[0032]
每个载荷加载单元20分别包括直线推动机构21、压力变送器22和助推器23;所述直线推动机构21和压力变送器22位于温控腔体10外部,且分别与电控单元40信号连接,直线推动机构21的输出端与压力变送器22连接;所述助推器23贯穿温控腔体10的内壁,其位于温控腔体10外部的一端通过隔热块24与压力变送器22连接,位于温控腔体10内部的一端压紧在电堆100上,从而通过两侧对称设置的助推器23夹紧在温控腔体10内。装置工作时,由电控单元40向直线推动机构21,压力变送器22传递加压信号,直线推动机构21,压力变送器22收到加压信号后,左右同时推动隔热块24,隔热块24受到压力后,并将压力传递至助推器23,此时,助推器23再将两侧压力传递至电堆100,经过上述的压力传递,最终将直线推动力机构21的直线推动力传递至电堆100,实现了对电堆100的同步的增压。
[0033]
直线推动机构21的推臂上安装的压力变送器22,可在线监测电堆加压过程中的压
力数据并传送至电控单元40。由电控单元40统一对电堆加压过程中的温度及压力进行控制调节。温控腔体10(马弗炉腔体,加热温度区间为常温~1400℃)上安装有温度变送器12,可在线监控电堆加压过程中的温度并传送至电控单元40。
[0034]
密封检测单元30包括电堆阳极进口管路31a、电堆阳极出口管路31b、电堆阴极进口管路32a、电堆阴极出口管路32b、电堆空气极进口管路33a及电堆空气极出口管路33b,各管路分别穿过载荷加载单元20后与电堆100相连接。助推器23和温控腔体10中留有管路通孔,便于管路插入连接。
[0035]
该电堆自动增压装置的工作原理如下:
[0036]
第一步:先将电堆100放入温控腔体10内部,然后将电堆阳极进口管路31a、电堆阳极出口管路31b、电堆阴极进口管路32a、电堆阴极出口管路32b、电堆空气极进口管路33a及电堆空气极出口管路33b穿过助推器23与电堆100相连接。
[0037]
第二步,封盖温控腔体10后,由直线推动机构21推动隔热块24传递至助推器23,向电堆100同步进行左右增压驱动,待加压至一定压力后,温控腔体10开始升温。
[0038]
第三步,温控腔体10采用分段控制,即分段升温、分段停留,将温控腔体10内的温度提升至800℃~1000℃的测试温度。随后在电堆阳极进口管路31a、电堆阴极进口管路32a及电堆空气极进口管路33a依次通入测试气体,测试期间若电堆阳极出口管路31b、电堆阴极出口管路32b及电堆空气极出口管路33b气体出口流量与气体进气流量均相同,如果以上三项检查都合格,视为密封通过。如若有一项不符合要求,视为密封不通过,则需立即停止增压。待电堆升温至最高温度后,密封测试通过,则电堆增压操作视为结束。
[0039]
本实施例中,直线推动机构21优选型号:et24-174-s-s-fp-2-s;隔热块24、助推器23材质优选陶瓷材料,其主要成分为氧化锆;电堆阳极进口管路31a、电堆阳极出口管路31b、电堆阴极进口管路32a、电堆阴极出口管路32b、电堆空气极进口管路33a及电堆空气极出口管路33b管材优选sus316l;压力变送器22型号优选:gss415轮辐式;温度变送器12型号优选:wrn430k型。
[0040]
本发明提供了一种适用于高温sofc/soec电堆自动增压装置及电堆密封性测定方法的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1