阵列基板及显示面板的制作方法

文档序号:26271019发布日期:2021-08-13 19:24阅读:62来源:国知局
阵列基板及显示面板的制作方法

本申请涉及显示技术领域,尤其涉及一种阵列基板,并涉及一种显示面板。



背景技术:

随着屏幕技术的发展,屏幕形态日益多元化,柔性显示装置逐渐成为屏幕技术的主流发展方向。现有的柔性显示装置通常在柔性可弯曲的基底上制作tft器件。为了保持柔性性能,需要同步增加面内tft器件的可弯折性能。当前通常采用的方式是在tft器件周围设置凹槽,并在凹槽中填充有机材料来增强可弯折特性。

然而,在凹槽中填充有机材料时,有机材料容易溢出在凹槽外形成锥形角。在后续制程制作金属布线时,在锥形角附近容易发生金属蚀刻不尽等问题,容易造成线路串扰。并且,当前显示装置对分辨率要求越来越高,在保证高像素要求下,金属布线的蚀刻空间较小而更易出现蚀刻不尽导致的线路串扰等显示异常。

因此,现有的柔性显示装置由于有机材料溢出锥形角容易导致金属布线蚀刻不尽,因而存在线路串扰等显示异常的技术问题,需要改进。



技术实现要素:

本申请的目的在于,针对现有技术中存在的问题,在阵列基板的凹槽的边缘处设置凸出部以避免溢出锥形角处空间过小导致金属蚀刻不尽而出现的金属布线串扰问题。

本申请提供了一种阵列基板,包括:

柔性基底;

薄膜晶体管层,位于所述柔性基底的一侧表面上;

平坦化层,位于所述薄膜晶体管层的远离所述柔性基底的表面上;以及

像素电极层,位于所述平坦化层的远离所述柔性基底的表面上,

其中,所述薄膜晶体管层包括多个驱动电路单元以及多条金属布线,相邻的所述驱动电路单元之间设有凹槽,并且所述凹槽中填充有有机绝缘材料,所述多条金属布线延伸跨越所述凹槽;

其中,所述凹槽在与所述多条金属布线叠置的位置形成多个凸出部,且所述凸出部分布在所述凹槽沿所述金属布线延伸方向的至少一侧。

在一些实施例中,所述薄膜晶体管层包括依次堆叠在所述柔性基底上的第一绝缘层和层间绝缘层;

所述驱动电路单元包括形成在所述柔性基底和所述第一绝缘层之间的有源层,形成在所述第一绝缘层和所述层间绝缘层之间的第一金属层,

其中,所述凹槽贯穿所述层间绝缘层。

在一些实施例中,所述凹槽贯穿所述层间绝缘层和所述第一绝缘层,并延伸至所述柔性基底中。

在一些实施例中,所述多条金属布线形成在所述层间绝缘层上方,并包括从源极或漏极延伸的数据布线,

其中,所述凸出部设置在所述数据布线与所述凹槽的重叠处。

在一些实施例中,所述凸出部沿所述金属布线延伸的方向从所述凹槽的边缘向所述凹槽外凸出,并且所述凸出部的宽度小于所述凹槽的宽度。

在一些实施例中,相邻所述金属布线对应的所述凸出部位于所述凹槽方向相反的两侧。

在一些实施例中,位于所述凹槽同一侧的相邻的凸出部的宽度不同。

在一些实施例中,所述凸出部在所述层间绝缘层延伸的平面上具有梯形或倒梯形形状。

在一些实施例中,所述凹槽的不形成凸出部的部分的侧壁的倾斜度小于所述凸出部的侧壁的倾斜度。

本申请提供了一种显示面板,所述显示面板包括如前所述任一阵列基板。

有益效果:本申请提供的阵列基板及包括所述阵列基板的显示装置,在凹槽的边缘处设置凸出部,从而在凹槽中的填充的有机材料溢出时,使溢出部分交错分布,进而避免溢出锥形角处空间过小导致金属蚀刻不尽而出现的金属布线串扰问题,因而提高了阵列基板的稳定性,降低了故障率。

附图说明

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1示出了根据本发明的实施例的阵列基板的示意性剖视图。

图2示出了现有技术中在凹槽中形成有机绝缘层的示意图。

图3示出了现有技术汇中凹槽边缘处金属布线蚀刻不尽的情况。

图4示出了根据本发明的实施例的凹槽的示意图。

图5示出了根据本发明的实施例的包括凹槽的部分阵列基板的示意图。

图6示出了根据本发明的实施例的凹槽的示意性剖视图。

图7示出了根据本发明的实施例的阵列基板的制作方法的流程图。

图8示出了根据本发明的实施例的凹槽的制作方法的示意图。

具体实施方式

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。

在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。

在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。

下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。

图1示出了根据本发明的实施例的阵列基板的示意图。

如图1所示,阵列基板包括依次堆叠的柔性基底1、薄膜晶体管层2、平坦化层4和像素电极层5。其中,薄膜晶体管层2位于柔性基底1的一侧表面上;平坦化层4位于薄膜晶体管层2的远离柔性基底1的表面上;像素电极层5位于平坦化层4的远离柔性基底1的表面上。此外,薄膜晶体管层2包括多个驱动电路单元以及多条金属布线24,相邻的驱动单元之间设置有凹槽9。凹槽9中填充有机绝缘材料。

进一步参照图4,图4示出了根据本发明的实施例的凹槽的示意图。如图4所示,多条金属布线延伸跨越凹槽9。其中,凹槽9在与金属布线叠置的位置形成凸出部12,且形成的多个凸出部12分布在凹槽9沿金属布线延伸方向的至少一侧。进一步地,在一些实施例中,相邻金属布线对应的凸出部12位于凹槽9方向相反的两侧。

柔性基底1可以采用聚酰亚胺(pi)等柔性材料制成。柔性基底1可以具有多层结构,例如,其可以包括第一柔性基底和第二柔性基底两层基底。并且,在柔性基底1的靠近薄膜晶体管层2的一侧还可以设置有无机材料制成的阻挡层以阻挡外界水氧的入侵。

薄膜晶体管层2包括依次堆叠的第一绝缘层21、第二绝缘层22和层间绝缘层23。其中,第一绝缘层21、第二绝缘层22和层间绝缘层23均为无机材料形成。

薄膜晶体管层2包括的驱动电路单元包括形成在柔性基底1和第一绝缘层21之间的有源层6,形成在第一绝缘层21和第二绝缘层22之间的第一金属层7以及形成在第二绝缘层22和层间绝缘层23之间的第二金属层8。有源层6包括沟道区以及位于沟道区两端的源区和漏区。有源层6被第一绝缘层21覆盖,因而其置于柔性基底1与第一绝缘层21之间。在第一绝缘层21上与有源层6对应的位置处形成有第一金属层7,第一金属层7被第二绝缘层22覆盖。此外,第二绝缘层22上还设置有第二金属层8,并且第二金属层8被层间绝缘层23覆盖。其中,第一金属层7和第二金属层8可以分别包括第一栅电极和第二栅电极。在一些实施例中,可以仅设置包括第一栅电极的第一金属层,第一金属层被层间绝缘层覆盖。

在一些实施例中,凹槽9贯穿层间绝缘层23。然而,凹槽9的深度不限于此,在一些实施例中,凹槽9可以从层间绝缘层23向下延伸、贯穿层间绝缘层23、第二绝缘层22和第一绝缘层21并延伸到柔性基底1中。

在一些实施例中,凹槽9可以仅贯穿层间绝缘层23、第二绝缘层22和第一绝缘层21而不会延伸到柔性基底1中,以防止降低柔性基底1的强度,致使柔性基底1在弯折过程中出现应力堆积而损坏。在一些实施例中,凹槽9不会完全贯穿全部绝缘层,而仅是贯穿层间绝缘层23、第二绝缘层22和第一绝缘层21中的部分,以在提高弯曲特性的同时保持阵列基板的强度。

进一步参照图1,凹槽9的侧壁可以是倾斜的,并且从凹槽的底部到开口部位孔径逐渐变大,从而有利于有机材料填充。

凹槽9中填充有有机材料,形成有机绝缘层10,有机绝缘层10的上表面与层间绝缘层23的上表面平齐,以便后续形成其他层级结构或金属布线。

多条金属布线24形成在层间绝缘层23上方。金属布线24包括从源极或漏极延伸的数据布线。并且,如图1所示,源极和漏极通过形成在第一绝缘层21、第二绝缘层22和层间绝缘层23上的过孔连接到下方的有源层6的源区和漏区。在一些实施例中,凸出部12设置在数据布线于凹槽的重叠处。

平坦化层4形成在金属布线24的上方,并在平坦化层4上方形成像素电极层5。像素电极层5包括像素电极,所述像素电极通过形成在平坦化层4上的过孔连接到位于其下方的漏极。

此外,柔性基底1和有源层6之间还可以设置有缓冲层。缓冲层可以由化学气相沉积等技术形成,其可以为氧化硅薄膜、氮化硅薄膜或氧化硅薄膜和氮化硅薄膜交替层叠设置形成的复合薄膜,用以进一步阻挡外界水氧的侵入。

在本申请的实施例中,第一绝缘层21、第二绝缘层22和层间绝缘层23等均为无机绝缘层。然而,无机绝缘层硬度偏高,为了提高阵列基板的可弯曲特性,防止阵列基板在弯折过程中出现应力堆积而造成损坏本申请还在相邻驱动电路单元之间设置有凹槽9,并在凹槽9中填充有机绝缘材料以形成有机绝缘层。有机材料具有良好的柔韧性和延展性,因此在相邻驱动电路单元之间设置凹槽9并在其中填充有机材料可以进一步提高阵列基板的可弯折特性。

如图2所示,图2示出了现有技术中在凹槽中形成有机绝缘层的示意图。在填充有机材料时,有机材料容易溢出而在凹槽的边缘位置处形成凸起。进一步参照图3,图3示出了现有技术汇中凹槽边缘处金属布线蚀刻不尽的情况。在凹槽中填充有机绝缘层10,有机绝缘层10从凹槽9溢出,而在两侧边缘处形成溢出部分11,当后续在有机绝缘层和层间绝缘层上形成数据布线层时,需要对数据布线层进行图案化形成多条金属布线,然而在溢出部分11处容易发生蚀刻不尽而出现部分残留,从而导致数据布线之间连通而导致数据串扰等问题。

请参照图5,图5示出了根据本发明的实施例的包括凹槽的部分阵列基板的示意图。在图5中,在包括源漏层、栅电极、有源层(图5中示出的sdlayer、ge2layer、ge1layer和polylayer)等结构的驱动电路单元的上下两侧设置有凹槽。凹槽包括填充有有机绝缘材料的有机光阻填充区和有机绝缘材料溢出形成的有机光阻填充溢出区。图5中示出了像素结构包括多条金属走线,其不仅包括与凹槽同向延伸的电压线、扫描线、信号使能线(图5中示出的vi、scan、em)等金属走线,还包括纵向延伸跨越凹槽的多条金属布线,如图5中示出的vi,data,vdd等。然而,在形成上述多条跨越凹槽布线时,容易出现如图2和图3所示的由于蚀刻不尽导致的残留。

为了避免上述问题,根据本申请的实施例的凹槽9在与所述金属布线叠置的位置形成凸出部12,从而使溢出部分发生错位,进而防止在溢出部分出现连续的布线材料残留而导致不同布线之间的导通,从而减少相邻布线之间因蚀刻残留导致的布线信号串扰。

凹槽的与每条金属布线相交的两侧边缘均可以形成有凸出部,从而有机层的溢出锥形角错开,避免溢出锥形角处空间过小导致金属蚀刻不尽。在一些实施例中,如图4所示,凹槽9可以仅在与金属布线叠置的一侧边缘处形成凸出部12,从而防止凹槽9与凸出部12的整体宽度过大而对阵列基板的硬度造成影响。

此外,在一些实施例中,与相邻金属布线对应的凸出部可以在形成在凹槽的不同侧,所述凸出部彼此交错排列,从而进一步提高溢出锥形角附近的蚀刻空间,避免金属蚀刻不尽导致的相邻金属布线导通串扰的问题。

在一些实施例中,凸出部的宽度小于凹槽的宽度。进一步地,凸出部的宽度可以小于凹槽宽度的1/4,从而防止凹槽与凸出部宽度过大而对阵列基板的硬度造成影响。

在一些实施例中,凸出部在凹槽同一侧的相邻的凸出部的宽度彼此不同,从而进一步提高溢出锥形角附近的蚀刻空间,避免金属蚀刻不尽导致的相邻金属布线导通串扰的问题。

凸出部可以具有不同形状。在一些实施例中,凸出部可以在层间绝缘层延伸的平面上具有梯形或倒梯形形状等形状。在一些实施例中,凸出部包括与凹槽相邻的两个侧边以及位于两个侧边之间的长边。其中,两个侧边与凹槽边缘的夹角可以为非直角,长边可以与凹槽边缘的延伸方向形成夹角。在另一些实施例中,凸出部的侧边和长边均可以为曲线。

图6示出了根据本发明的实施例的凹槽的示意性剖视图。图6中的各部件与参照图1描述的各部件相同,因此,仅对凹槽做进一步详细描述,而省略了其他部件的描述。

如图6所示,凹槽9的一侧形成有凸出部12,凸出部12与凹槽在同一道光罩下蚀刻形成,并且具有与凹槽相同的深度。凸出部12可以贯穿全部绝缘层并延伸到柔性基底1中。凸出部12也可以仅贯穿部分绝缘层,以在提高阵列基板的弯曲性能的同时维持阵列基板的强度。

在另一些实施例中,凸出部与凹槽的深度可以不同,其深度可以小于凹槽的深度以避免凹槽和凸出部的整体宽度和深度过大对阵列基板的硬度造成影响。

进一步参照图6可以看出,凸出部12的侧壁具有与凹槽9的侧壁不同的倾斜角度。凸出部12的侧壁与绝缘层形成的水平倾角可以小于凹槽9的侧壁与绝缘层形成的水平倾角,即,凸出部12的侧壁的倾斜度可以大于凹槽9的侧壁的倾斜度。在一些实施例中,凹槽9的侧壁的水平倾角可以为70度到85度,凸出部12的水平倾角可以为60度到80度,优选地,为65度。在本申请中,通过将凸出部的倾角设置得比凹槽的侧壁更小,使凸出部的侧壁具有更大的倾斜度,可以更便于有机材料的填充,减少有机材料的溢出,避免锥形角的形成,进而改善因金属蚀刻不尽导致的金属布线导通串扰问题。

因此,本申请的阵列基板在凹槽的与金属布线交叠的边缘处设置凸出部,从而凹槽中填充的有机材料的溢出部分交错分布,避免溢出锥形角处空间过小导致金属蚀刻不尽而出现的金属布线导通串扰问题,因而提高了阵列基板的稳定性,降低了故障率。

本申请还提供一种阵列基板的制作方法。图7示出了根据本发明的实施例的阵列基板的制作方法的流程图。如图7所示,其包括步骤s1~s7。图8示出了根据本发明的实施例的凹槽的制作方法的示意图。图8(a)示出了凹槽的形成步骤,图8(b)示出了本申请的实施例的填充有机绝缘材料的有机光阻后的凹槽的示意图。以下,结合图7和图8描述阵列基板的制作方法。

s1提供一柔性基底。

柔性基底可以采用聚酰亚胺(pi)等柔性材料制成。柔性基底可以具有多层结构,例如,包括第一柔性基板和第二柔性基板两层基板。此外,还可以在柔性基底的一侧设置无机材料制成的阻挡层以阻挡外界水氧的入侵。

之后在柔性基底上形成薄膜晶体管层,薄膜晶体管层包括多个驱动电路单元和多条金属布线。形成薄膜晶体管层的步骤具体包括:

s2在柔性基底上形成多个驱动电路单元。

此外,形成驱动电路单元包括在柔性基底上形成有源层,并对有源层进行掺杂形成源区和漏区,并且有源层被第一绝缘层覆盖。在第一绝缘层上与有源层对应的位置处形成第一金属层,并且,在第二绝缘层上设置第二金属层。其中,第一金属层和第二金属层可以图案化为栅电极。

此外,还可以在柔性基底和有源层之间设置缓冲层。缓冲层可以由化学气相沉积等技术形成。其可以为氧化硅薄膜、氮化硅薄膜或氧化硅薄膜和氮化硅薄膜交替层叠设置形成的复合薄膜,用以进一步阻挡外界水氧的侵入。

s3在驱动电路单元中形成过孔并且在驱动电路单元之间形成凹槽。

通过蚀刻工艺,在驱动电路单元中形成过孔以暴露有源层的源区和漏区,并且在相邻驱动电路单元之间形成凹槽。所述凹槽可以贯穿层间绝缘层、第二绝缘层和第一绝缘层并延伸到柔性基底中。在一些实施例中,凹槽可以仅贯穿部分绝缘层,以防止降低柔性基底的强度,致使柔性基底在弯折过程中出现应力堆积而损坏。

s4在凹槽中填充有机材料以形成有机绝缘层。

在凹槽中填充有机材料从而形成有机绝缘层,有机绝缘层的上表面与层间绝缘层的上表面平齐,以便后续形成其他层级结构或金属布线。

s5在驱动电路单元上方设置数据布线层。

数据布线层可以图案化为源极、漏极、数据线等金属布线。其中,源极和漏极通过过孔连接到下方的有源层的源区和漏区。

s6在金属布线上方形成平坦化层。

在显示区域中,在平坦化层中形成贯穿所述平坦化层的过孔以暴露漏极。

s7在平坦化层上方形成像素电极层。

所述像素电极层可以图案化为像素电极。所述像素电极通过平坦化层中的过孔连接至漏极。

此外,凹槽在与所述金属布线叠置的位置形成凸出部,从而使溢出部分发生错位,进而防止在溢出部分出现连续的布线材料残留而导致不同布线之间的导通,从而减少相邻布线之间因蚀刻残留导致的布线信号串扰。

在一些实施例中,凹槽可以仅在与金属布线叠置的一侧边缘处形成凸出部,从而防止凹槽与凸出部的整体宽度过大而对阵列基板的硬度造成影响。此外,与相邻金属布线对应的凸出部可以在形成在凹槽的不同侧,所述凸出部彼此交错排列,从而进一步提高溢出锥形角附近的蚀刻空间,避免金属蚀刻不尽导致的相邻金属布线导通串扰的问题。

本申请提供的阵列基板的制造方法,在凹槽的边缘处设置凸出部,从而在凹槽中的填充有机材料溢出时,使溢出部分交错分布,进而避免溢出锥形角处空间过小导致金属蚀刻不尽而出现的金属布线导通串扰问题,因而提高了阵列基板的稳定性,降低了故障率。

本申请还提供一种显示面板。所述显示面板包括阵列基板、上基板和位于阵列基板与上基板之间的显示层,其中,阵列基板为如前所述的阵列基板。

本申请的实施例提供了一种液晶显示面板。所述液晶显示面板包括阵列基板、彩膜基板以及位于阵列基板与之间的液晶层。

其中,阵列基板可以与如上所述的柔性基板相同。彩膜基板上可以包括玻璃基底以及设置在玻璃基底上的公共电极、滤色器层和黑矩阵等。公共电极与阵列基板上的像素电极之间形成电场来控制液晶层中的液晶分子的偏转。

本申请的实施例提供了一种oled显示面板。所述oled显示面板包括阵列基板、上基板和位于阵列基板和上基板之间的发光器件层。

其中,阵列基板与如上所述的柔性基板基本相同。发光器件层可以包括空穴注入层、空穴传输层、发光层、电子传输层和电子注入层等。上基板上还设置有阴电极,其与阵列基板上的像素电极形成电场,使像素电极的空穴和阴电极的电子在发光层中复合以使发光层发光。

本申请提供的阵列基板及包括所述阵列基板的显示装置,在凹槽的边缘处设置凸出部,从而在凹槽中的填充有机材料溢出时,使溢出部分交错分布,进而避免溢出锥形角处空间过小导致金属蚀刻不尽而出现的金属布线导通串扰问题,因而提高了阵列基板的稳定性,降低了故障率。

以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1