显示面板的制作方法

文档序号:26494418发布日期:2021-09-03 23:07阅读:71来源:国知局
显示面板的制作方法

1.本发明涉及一种显示装置,且特别涉及一种显示面板。


背景技术:

2.近年来,显示技术及光电元件制作技术不断提升,将低功耗、高亮度、寿命长的发光二极管作为显示面板的显示元件的设计已越来越广泛。在一些应用中,由于发光二极管显示面板不需要以框胶封装而可具有窄边框的结构,发光二极管显示面板可被拼接成需要尺寸的大小而满足不同应用需求。然而,发光二极管显示面板的发光效果、分辨率等特性仍有进步的空间。


技术实现要素:

3.本发明提供一种显示面板,具有良好的出光效率。
4.本发明实施例的显示面板包括基板、发光元件、遮光层以及导光柱。发光元件设置于基板上。遮光层设置于基板上,且具有围绕出开口的侧壁。导光柱配置于基板与发光元件之间,且位于开口中。导光柱与遮光层的侧壁之间具有间隙。
5.在本发明的一实施例中,上述的发光元件的发光面朝向基板。
6.在本发明的一实施例中,上述的导光柱的光折射率由1.5至2.0。
7.在本发明的一实施例中,上述的间隙的宽度由0.5微米至20微米。
8.在本发明的一实施例中,上述的显示面板还包括定位粘着层。定位粘着层配置于发光元件的周边且位于发光元件与遮光层之间。
9.在本发明的一实施例中,上述的导光柱与定位粘着层包括相同的材质。
10.在本发明的一实施例中,上述的定位粘着层包括散布的多个粒子。
11.在本发明的一实施例中,上述的导光柱包括散布的多个粒子。
12.在本发明的一实施例中,上述的粒子包括色彩转换粒子、散射粒子或其组合。
13.在本发明的一实施例中,上述的粒子包括量子点粒子、荧光粉或其组合。
14.在本发明的一实施例中,上述的导光柱的高度由1微米至30微米。
15.在本发明的一实施例中,上述的导光柱具有倾斜侧壁,且导光柱的宽度越远离基板越大。
16.在本发明的一实施例中,上述的倾斜侧壁与导光柱的底面之间的夹角由95度至120度。
17.在本发明的一实施例中,上述的遮光层的侧壁所述导光柱的所述倾斜侧壁相隔所述间隙。
18.在本发明的一实施例中,上述的间隙为空气间隙。
19.在本发明的一实施例中,上述的导光柱的一端延伸到基板的表面上。
20.在本发明的一实施例中,上述的发光元件包括第一接垫以及一对第二接垫。成对的第二接垫位于第一接垫的相对两侧。
21.在本发明的一实施例中,上述的发光元件为发光二极管。
22.在本发明的一实施例中,上述的显示面板还包括驱动电路元件。驱动电路元件配置于基板与遮光层之间,且电连接至发光元件。
23.在本发明的一实施例中,上述的驱动电路元件包括主动元件。
24.基于上述,本公开实施例的显示面板将导光柱设置于发光元件与基板之间,让导光柱导引发光元件发出的光线以达到良好的出光效果。
附图说明
25.图1为本公开一实施例的显示面板的局部俯视图。
26.图2为图1的显示面板根据一些实施例的沿线a

b的剖面示意图。
27.图3为本公开另一实施例的显示面板的局部俯视图。
28.图4为图3的显示面板根据一些实施例沿图3的线c

d的剖面示意图。
29.图5为图3的显示面板根据另一些实施例的剖面示意图。
30.图6为本公开的显示面板根据一些实施例的剖面示意图。
31.附图标记说明:
32.100、200、200’、300:显示面板
33.110:基板
34.120:发光元件
35.122:半导体晶粒
36.122a:第一型半导体层
37.122b:发光层
38.122c:第二型半导体层
39.124:第一接垫
40.126a、126b:第二接垫
41.128:保护层
42.130:遮光层
43.132:开口
44.134:侧壁
45.140、140r、140g、140b、340:导光柱
46.142、342:倾斜侧壁
47.144、344:顶面
48.146、346:底面
49.150:定位粘着层
50.160:驱动电路结构
51.162:驱动电路元件
52.164:信号线
53.166、168:传导件
54.170:封装层
55.360:外侧光学层
56.a

b、c

d:线
57.e1、e2:搭接电极
58.g:间隙
59.h140、h340:高度
60.il:绝缘层结构
61.ila:挖空区
62.l120:发光面
63.pd、pg、pr:粒子
64.px:显示像素
65.w140、wg:宽度
66.θ:夹角
具体实施方式
67.图1为本公开一实施例的显示面板的局部俯视图。在图1中,显示面板100至少包括基板110、发光元件120、遮光层130以及导光柱140。具体来说,发光元件120、遮光层130及导光柱140都配置于基板110上。发光元件120的数量可有多个,且这些发光元件120以阵列排列方式设置,但不以此为限。遮光层130具有开口132。在一些实施例中,图1中开口132以外的区域大致上都设置有遮光层130,因此图1为了清晰起见,仅示出遮光层130的开口132的轮廓。导光柱140位于开口132中且导光柱140与开口132之间具有间隙g。在本实施例中,开口132与导光柱140可对应于发光元件120设置。举例而言,开口132的数量与导光柱140的数量可等于发光元件120的数量,且每个发光元件120都对应的重叠其中一个开口132以及其中一个导光柱140。各开口132例如具有环状形状,且包围对应的导光柱140的周边。因此,在上视图中,导光柱140与遮光层130彼此并无重叠或接触。
68.在图1中,显示面板100可还包括定位粘着层150。定位粘着层150可对应于发光元件120的周边配置。换言之,每个发光元件120的周边可设置有对应的定位粘着层150。定位粘着层150可将发光元件120粘附于基板110上。另外,显示面板100还可包括用于电性连接至发光元件120的搭接电极e1以及搭接电极e2,其中搭接电极e2可由多个发光元件共用,但不以此为限。
69.图2为图1的显示面板根据一些实施例的沿线a

b的剖面示意图。同时参照图1与图2,基板110例如为透明基板。在一些实施例中,基板110可包括玻璃基板、石英基板、塑料基板或是其他具有透明性质又可提供足够机械承载性质的基板。
70.设置于基板110上的发光元件120例如是向下发光式的发光元件。换言之,发光元件120定向成发光面l120朝向基板110。发光元件120例如是发光二极管元件。具体而言,发光元件120可以为毫米发光二极管、微米发光二极管等发光元件。发光元件120可包括半导体晶粒122、第一接垫124、一对第二接垫126a与126b以及保护层128。半导体晶粒122可包括按序堆叠的第一型半导体层122a、发光层122b以及第二型半导体层122c,且经单体化成岛状。第二型半导体层122c的宽度可大于第一型半导体层122a的宽度,且发光层122b的宽度可与第一型半导体层122a的宽度大致对应,但不以此为限。第一接垫124配置于半导体晶粒122上且连接于第一型半导体层122a,第二接垫126a与第二接垫126b配置于半导体晶粒122
上且连接于第二型半导体层122c。另外,第二接垫126a与第二接垫126b位于第一接垫124的两侧,从而有助于让流经发光层122b的电流均匀分布。保护层128则至少覆盖半导体晶粒122的侧壁,以避免不必要的电性短路。图2中发光元件120的结构仅是举例说明之用,并非用于限定发光元件120的实施方式。
71.遮光层130配置于基板110上且具有围绕出开口132的侧壁134。遮光层130可阻挡光线且由不透明材料制作。在一些实施例中,遮光层130的材料可包括黑色光刻胶或是高光学密度(optical density)的类似材料。开口132所占的面积可由侧壁134定义出来,且至少可重叠发光元件120的发光面l120。因此,遮光层130虽具有遮光性质,但因为开口132的设置,使得发光元件120所发出的光线可不受阻挡而朝向基板110发出,并且穿透基板110。
72.导光柱140配置于发光元件120与基板110之间,且位于遮光层130的开口132中。遮光层130的侧壁134与导光柱140之间具有间隙g。在图1中,间隙g完整的环绕导光柱140,也就是说导光柱140与遮光层130并无实体上的接触。导光柱140例如位于发光元件120的发光面l120与基板110之间,且导光柱140例如可接触发光元件120的发光面l120。在一些实施例中,导光柱140可具有黏性而用于粘附发光元件120。不过,在另外一些实施例中,导光柱140可不具粘附性质而仅是抵靠发光元件120。
73.导光柱140具有倾斜侧壁142。也就是说,导光柱140的宽度w140并非固定的。遮光层130的侧壁134也例如是倾斜的,且遮光层130的侧壁134与导光柱140的倾斜侧壁142彼此不相接触,而维持间隙g。间隙g的宽度wg例如可由0.5微米至20微米。在一些实施例中,侧壁134与倾斜侧壁142的倾斜角度可相同也可不同。
74.如图2所示,导光柱140的宽度w140越远离基板110越大。由图2可看出,导光柱140在剖面的结构大致呈现为梯形形状。在一些实施例中,导光柱140的顶面144的面积大于导光柱140的底面146的面积。底面146在基板110上的正投影可重叠顶面144在基板110上的正投影。底面146的面积与顶面144的面积的比例如为60%至95%,但不以此为限。
75.在一些实施例中,顶面144的中心与底面146的中心可彼此对齐,但不以此为限。另外,顶面144的中心可与发光层122b的中心对齐,但不以此为限。在一些实施例中,导光柱140的顶面144的宽度可大于发光元件120的发光层122b的宽度。在一些实施例中,发光元件120的发光层122b在基板110上的正投影可几乎都落在顶面144在基板110上的正投影内。另外,导光柱140的倾斜侧壁142与导光柱140的底面146之间的夹角θ例如可由95度至120度,且导光柱140的高度h140可大于遮光层130的厚度。导光柱140的高度h140可由1微米至30微米,其可依据需要个导光效果而调整。
76.定位粘着层150配置于发光元件120的周边,且位在发光元件120与遮光层130之间。定位粘着层150可具有粘着性,以将发光元件120贴附于遮光层130上。在一些实施例中,导光柱140与定位粘着层150具有相同材质,因此可都用于粘附发光元件120。举例而言,导光柱140与定位粘着层150可都采用光刻胶材料制作。不过,在另外一些实施例中,导光柱140与定位粘着层150可具有不同材质。举例而言,导光柱140可选用不具粘性的光刻胶材料制作,而定位粘着层150可选用具有粘性的光刻胶材料制作。另外,导光柱140可选用透明的光刻胶材料制作,而定位粘着层150可不需选用透明的光刻胶材料制作。在一些实施例中,导光柱140中可散布有多个粒子,例如量子点粒子、荧光粉、散射粒子等,以提供需要的光学特性。定位粘着层150则可包括多个粒子散布其中也可不包括多个粒子。
77.除了上述构件外,显示面板100还包括驱动电路结构160。举例而言,驱动电路结构160可例如包括驱动电路元件162、信号线164、传导件166与传导件168,但不以此为限。驱动电路元件162配置于基板110与遮光层130之间。驱动电路元件162可以是薄膜晶体管,也可包括电容或是其他电路元件。在本实施例中,驱动电路元件162可由多层导体层与至少一层半导体层组成,且可进一步包括绝缘层结构il以分隔不同导体层与半导体层及/或保护导体层与半导体层。遮光层130与导光柱140都配置于绝缘层结构il上。信号线164可配置于绝缘层结构il上,用于传递发光元件120所需要的信号(例如电源信号)。传导件166与传导件168可贯穿遮光层130而分别连接到驱动电路元件162以及信号线164。搭接电极e1可连接导通件166而电性连接至对应的驱动电路元件162,而搭接电极e2可连接至传导件168而电性连接至对应的信号线164。如此,驱动电路结构160可电性连接发光元件120而控制发光元件120的发光操作。
78.在本实施例中,发光元件120以发光面l120朝向基板110的方式设置而呈现下发光式的结构。如此,观看显示面板100所显示的画面时,使用者与发光元件120位于基板110的相对两侧且也位于遮光层130的相对两侧。遮光层130的开口132至少露出发光元件120的发光面积,因此,遮光层130的设置并不会阻挡发光元件120发出的光线,从而可确保显示面板100的出光效率。
79.在本实施例中,导光柱140位于发光面l120与基板110之间且设置在发光元件120的出光路径上。导光柱140的光折射率例如由1.5至2.0,且导光柱140的折射率可大于间隙g处的折射率。在一些实施例中,导光柱140与遮光层130之间的间隙g例如为空气间隙。在其他实施例中,间隙g中可填充有填充材料,且填充材料的光折射率小于导光柱140的光折射率。如此,发光元件120由发光面l120发出的光进入导光柱140之后,在倾斜侧壁142处会被全反射而转向基板110行进,这有助于提高显示面板100的出光效率。
80.另外,在一些实施例中,显示面板100可还包括封装层170,且封装层170包覆发光元件120、搭接电极e1与搭接电极e2。要连接至显示面板100的外部电路结构(未示出),例如驱动集成电路(driver ic),可配置于封装层170上,位于发光元件120的背侧(与发光面l120相对的一侧),且通过贯穿封装层170的导电结构(未示出)连接至驱动电路结构160。如此一来,外部电路结构可与发光元件120位于基板110的相同侧,却不影响发光元件120的布局空间,也不会影响显示面板100的显示效果。因此,发光元件120的设置密度可依需求提高以实现高分辨率的显示效果。此外,显示面板100不需为了将外部电路结构与驱动发光元件120用的驱动电路结构160接合而设置贯穿基板110的导通结构,这有助于简化制作流程与结构设计。
81.图3为本公开另一实施例的显示面板的局部俯视图,而图4为图3的显示面板根据一些实施例沿图3的线c

d的剖面示意图。图3与图4的显示面板200大致相似前述的显示面板100,因此两实施例中以相同的元件符号表是相同的构件。具体来说,显示面板200包括基板110、多个发光元件120、遮光层130、多个导光柱140r、140g与140b、多个定位粘着层150、搭接电极e1、搭接电极e2与封装层170,其中每个发光元件120可由其中一个定位粘着层150贴附于基板110上。在此,基板110、多个发光元件120、遮光层130、多个定位粘着层150、搭接电极e1、搭接电极e2与封装层170的配置关系、结构设计与材质都可参照前述实施例的说明而不另描述。
82.导光柱140r、140g与140b分别对应于不同发光元件120而设置,且导光柱140r、导光柱140g与导光柱140b每一者与遮光层130之间隔有间隙g。也就是说,遮光层130具有多个开口132,且导光柱140r、导光柱140g与导光柱140b每一者设置于其中一个开口132中。间隙g的大小可参照前述实施例。在本实施例中,导光柱140r、导光柱140g与导光柱140b例如具有不同的光学性质。举例而言,发光元件120所发出的光为蓝色光时,导光柱140r可具有光转换作用,以将发光元件120发出的光线转换成红色光;导光柱140g可具有光转换作用,以将发光元件120发出的光线转换成绿色光;而导光柱140b可为透明的,以允许发光元件120发出的光线穿过导光柱140b之后仍为蓝光。
83.在一些实施例中,导光柱140r、导光柱140g与导光柱140b可以都采用光刻胶材料制作。导光柱140r可包括多个粒子pr,且粒子pr可散布在导光柱140r的整个体积之内。导光柱140g可包括多个粒子pg,且粒子pg可散布在导光柱140g的整个体积之内。粒子pr与粒子pg可包括波长转换粒子,例如量子点粒子、荧光粉或是类似粒子,以提供波长转换功能。在一些实施例中,粒子pr与粒子pg还可以包括散射例子。在另外一些实施例中,导光柱140b也可选择性的进一步包括多个粒子,且散布在导光柱140b中的粒子可以为散射粒子而不具有波长转换作用。换言之,散布于导光柱140b中的粒子不会改变发光元件120所发出的光的色彩。
84.导光柱140r中的粒子pr例如为红色的波长转换材料,因此发光元件120发出的光线(例如是蓝光)经过导光柱140r后会转变成红光而朝基板110射出。导光柱140g中的粒子pg例如为绿色的波长转换材料,因此发光元件120发出的光线(例如是蓝光)经过导光柱140g后会转变成绿光而朝基板110射出。导光柱140b例如可不包括波长转换粒子或是包括有不具波长转换作用的散射粒子,因此发光元件120发出的光线(例如是蓝光)经过导光柱140b后仍为蓝色。如此一来,导光柱140r、导光柱140g与导光柱140b与对应的三个发光元件120可以构成一个显示像素px,而可用于显示彩色影像。
85.图5为图3的显示面板根据另一些实施例的剖面示意图。图5的显示面板200'大致相同于图4的显示面板200,因此两图中相同的元件符号可表示相同的构件,在此不另重述。具体来说,显示面板200’包括基板110、发光元件120、遮光层130、导光柱140r与140g、定位粘着层150及封装层170,且这些构件的配置关系、结构设计与材质等可参照前述说明。本实施例的定位粘着层150还包括有多个粒子pd,且这些粒子pd散布于定位粘着层150中。定位粘着层150中的粒子pd可相同于导光柱140r中的粒子pr及/或导光柱140g中的粒子pg。在一些实施例中,导光柱140b中可散布有多个粒子(例如不具光转换作用的扩散粒子),且定位粘着层150中的粒子pd可相同于导光柱140b中的粒子。
86.在一些实施例中,可选择以导光柱140r的材质制作对应于导光柱140r的定位粘着层150,以导光柱140g的材质制作对应于导光柱140g的定位粘着层150,以及可选择以导光柱140b的材质制作对应于导光柱140b的定位粘着层150。如此,不同的定位粘着层150的材质可不相同。不过,本公开不以此为限。在另外一些实施例中,所有的定位粘着层150也可选择性的相同于导光柱140r中的粒子pr、导光柱140g中的粒子pg或导光柱140b中的粒子(如有的话)。也就是说,对应不同导光柱140r、140b与140b的定位粘着层150可包括相同种类的粒子pd。
87.图6为本公开的显示面板根据一些实施例的剖面示意图。图6的显示面板300大致
相似图2的显示面板100,因此两图中相同的元件符号将表示相同的构件,在此不另描述。在本实施例中,显示面板300主要包括基板110、发光元件120、遮光层130、导光柱340、定位粘着层150、封装层170以及外侧光学层360,其中基板110、发光元件120、遮光层130与定位粘着层150的配置关系、结构设计与材质等具体特征可参照前述实施例的描述,且可具有如图1所示的布局关系。
88.导光柱340在剖面中具有梯形结构,其包括倾斜侧壁342、顶面344以及底面346。倾斜侧壁342与遮光层130的定义出开口132的侧壁相隔一间隙g,使得导光柱340与遮光层130不相接触。导光柱340的顶面344可接触发光元件120,而导光柱340的底面346可接触基板110。此外,基板110上所设置的绝缘层结构il可具有对应于开口132的挖空区ila,使得导光柱340位于挖空区ila中。如此一来,导光柱340的高度h340例如可大致等同发光元件120至基板110的距离。换言之,导光柱340与基板110之间并无其他构件或膜层(例如绝缘层结构il),这有助于提升显示面板300的出光效率。举例而言,由于导光柱340直接接触基板110,因此发光元件120发出的光线通过导光柱340之后可直接进入基板110,而可降低光的损失。
89.另外,在本实施例中,显示面板300可包括设置于基板110的外侧的外侧光学层360。外侧光学层360设置于使用者与基板110之间。在一些实施例中,外侧光学层360可包括图案化遮光层、抗反射层、或是元偏振层。外侧光学层360的设置有助于避免显示面板300内的构件反射外界光线而干扰显示面板300的显示效果。当外侧光学层360为图案化遮光层时,外侧光学层360在基板110上的正投影面积可以大致重叠遮光层130在基板110上的正投影面积。本实施例的外侧光学层360可选择性的应用至前述实施例的显示面板100与200任一者中。
90.在上述任一实施例中,显示面板100、200与300采用下发光式的发光元件120,因此显示面板100、200与300不需为了显示介质而设置框胶,这有助于缩减边框宽度,甚至具有无边框的设计。显示面板100、200与300设置了具有开口132的遮光层130以及位于开口132中的导光柱140、140r、140g、140b或340。导光柱140、140r、140g、140b或340与遮光层130间隔开来,使得在发光元件120与基板110之间的导光柱140、140r、140g、140b或340可提供导光作用。因此,显示面板100、200与300中可具备有理想的出光效率。
91.另外,当显示面板100、200与300需要接合至外部电路结构,例如驱动集成电路(driver ic),外部电路结构可接合于发光元件120的背侧(与发光面l120相对的一侧)。如此一来,外部电路结构可与发光元件120位于基板110的相同侧,却不影响发光元件120的布局空间,也不会影响显示面板100、200与300的显示效果。因此,发光元件120的设置密度可依需求提高以实现高分辨率的显示效果。此外,显示面板100、200与300不需为了将外部电路结构与驱动发光元件120用的驱动电路结构160接合而设置贯穿基板110的导通结构,这有助于简化制作流程与结构设计。
92.综上所述,本公开实施例的显示面板可具有理想的出光效率、窄边框及简化的结构设计。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1