用于透射电子显微镜阴极发光的装置的制作方法

文档序号:33464457发布日期:2023-03-15 06:04阅读:41来源:国知局
用于透射电子显微镜阴极发光的装置的制作方法
用于透射电子显微镜阴极发光的装置


背景技术:

1.当高能带电粒子(例如电子或离子束)撞击样品时,可以根据样品材料发射光子。这种现象被称为阴极发光(cl)。从紫外(uv)到可见光到红外(ir)波长范围内的这些光子的收集和检测可以提供关于正在研究的样品的大量信息。通常通过将cl发射的光子引导到例如光传感器、图像阵列或光谱设备(其中的任何或全部可以位于电子显微镜束列的外部)而利用cl检查电子显微镜中的样品。电子显微镜束列的内部保持在低压下,因此电子可以行进到样品中,而不会被电子束列中的气体显著散射。光被收集后,可以从低压环境通过光学窗口传输到分析cl光的仪器中。
2.收集通过cl发射的光子的常见方式是通过位于电子束(e-beam)的轴上、并且位于样品上方(扫描电子显微镜(sem)中检查的大块样品的典型情况)、样品下方或样品上方和下方(透射电子显微镜(tem)的典型情况)的收集镜。收集镜通常具有孔,以允许电子束无障碍地穿过所述镜。
3.cl信号的光谱信息的详细分析需要将来自收集镜的cl光耦合到光谱仪,该光谱仪通常用于产生作为光波长的函数的光强度的一维曲线图。一些光谱仪(本文称为“摄谱仪”,但也可以称为其他术语,诸如“成像光谱仪”或“成像摄谱仪”)具有产生进入摄谱仪入口平面的光的二维图像的附加能力,其中光的波长沿着一个维度映射,并且光进入摄谱仪的沿着入射平面的位置映射到另一个维度。
4.在tem中,电子能量(30-300kev)明显高于扫描电子显微镜(0.5-30kev)。在tem中的样品足够薄以使电子束基本上传输通过样品的位置处检查样品,并且cl光可以穿过样品的顶部(电子入射表面或上游表面)和底部(下游表面)。已经开发了tem cl样品保持器,其从放置在样品上方和下方的收集镜收集该光。由于tem样品环境对样品和收集镜提出了严格的空间要求,因此可以通过分离的光纤将cl光从收集镜分离地传输到tem环境外部。光谱仪可以用于分析来自光纤的组合光。
5.tem中使用的较高能量电子更容易产生制动辐射,其也被称为切伦科夫辐射,这是因为电子行进通过样品的速度比光在样品介质中的相速度快。该切伦科夫辐射在下游方向上散射,因此将基本上由样品下方的收集镜收集,但由样品上方的收集镜收集得更少。切伦科夫信号的一阶近似可以通过从来自底部镜的信号中减去来自顶部镜的信号的倍数来实现。切伦科夫辐射的分析可以给出关于样品折射率的信息,并且可以用于改进通过电子能量损失光谱法(eels)同时执行的介电响应特征。
6.一些样品,例如光子器件或分层材料,由于与切伦科夫辐射无关的取向效应,可能产生在下游和上游方向上显著不同的光分布。可以通过从来自底部镜的信号中减去来自顶部镜的信号的倍数来进行对这些差异的估计。
附图说明
7.图1是示出由激发源产生的样品中的阴极发光光(cl)的发射的图;
8.图2是用于在电子显微镜中从体块样本收集阴极发光光的装置的图;
9.图3是示出了cl从tem样品的顶表面和底表面发射、从上游(顶部)和下游(底部)收集镜反射以及进入顶部和底部光纤的绘图;
10.图4是用于同时对来自上游和下游cl收集镜的分离的光信号进行成像的本发明的一方面的实施例的绘图;
11.图5是基于本发明的一方面的实施例的模拟图像,示出了在成像摄谱仪的入射缝隙的平面处的来自两个分离的光纤的光的分布;
12.图6a示出了基于本发明的一方面的实施例的模拟图像,示出了在摄谱仪相机的平面处的分离的光谱;以及
13.图6b示出了根据示例性实施方式的强度对比波长光谱和差异光谱。
具体实施方式
14.本领域技术人员将认识到可以采用本发明的教导来开发的其他详细设计和方法。这里提供的示例是说明性的,并且不限制由所附权利要求限定的本发明的范围。以下详细说明参考了附图。不同附图中的相同附图标记可以标识相同或相似的元件。
15.如图1所示,当激发束源(例如电子束10、离子束或光子束)将能量传递到样品时,可以从样品30发射cl光。发射的cl光的光子34可以具有相对于激发源光束的波长和角度,θ(xy平面)、φ(相对于z轴),这是样品10的分析区域的元素、化学或介电性质的特征。通过分析波长i(λ)、角度i(θ,φ)或波长-角度i(λ,θ,φ)的发射光子强度(i)分布,可以获得关于这些性质的基本信息。进一步的信息可以通过研究这些分布的光学极化来获得。
16.图2示出了电子束(e-beam)10,该电子束从电子显微镜(未完全示出)的极靴12射出并被引导到体块样品30。在电子束10撞击样品30的点32处,可以产生阴极发光(cl)光34。提供收集镜20以将cl光34反射到检测器(未示出),检测器可以位于电子显微镜的外部。收集镜20通常将具有孔或开口22以允许电子束10通过,因为镜可以由在其他情况下会阻碍电子束的材料(例如金刚石抛光铝)制成。由收集镜20收集的cl光34在被正确聚焦在样品30上时,产生沿着镜20的出射光轴(未标记)准直的光图案35。在典型的cl仪器中,收集镜20所收集的光被发送到一个或多个cl分析仪器。
17.根据本发明的实施例,图3示出了tem电子束310,其进入上部收集镜孔344、行进通过电子透明样品331。电子束310可以产生上游cl光332,其行进通过样品331的入射电子束310进入的表面,或者电子束310可以产生下游cl光333,其行进通过样品331的与入射电子束310进入的位置相对的表面。在行进通过样品331之后,电子束310的很大一部分继续通过下部收集镜孔345,在那里,可以在透射电子显微镜(未示出)中用诸如tem成像、tem衍射或电子能量损失光谱(eels)的技术对电子束进行进一步分析。
18.已经开发了tem cl系统,其从放置在样品上方(上游)和下方(下游)的收集镜收集cl光。收集镜342和343可以是tem样品保持器的一部分或与样品保持器分离。tem样品环境对样品331和收集镜342和343提出了严格的空间要求。来自收集镜343和342的cl光可以通过分离的光纤带到tem环境外部。在实践中,收集镜342和343不收集从样品331发出的所有光。收集镜342将仅将上游cl光332的一部分352传输到上游光纤362中。收集镜343将仅将下游cl光333的一部分353传输到下游光纤363中。
19.本发明的一方面提供了对从tem cl系统中的上游342和下游343收集镜收集的光
352、353的同时的和分离的光谱测量。图4是本发明一方面的实施例的示意图,描绘了摄谱仪从在两个分离的光纤162和163中包含的光创建两个分离的光谱192和193。从上游光纤362到摄谱仪输入光纤162的信号可以经由一根或多根光纤线缆(未示出)来耦合,所述光纤线缆可以容易地被连接和重新连接。类似地,从下游光纤363到摄谱仪输入光纤163的信号可以经由一根或多根光纤线缆(未示出)来耦合,所述光纤线缆可以容易地被连接和重新连接。
20.光纤162和163可以具有对于直接耦合到摄谱仪中不太可能是最佳的数值孔径和纤芯尺寸,因此耦合光学器件170可以用于校正光纤162、163的数值孔径和摄谱仪的数值孔径之间的失配。在替代实施例中,不使用耦合光学器件,而是可以将光纤162和163直接放置在摄谱仪的入射平面176附近。
21.光纤162被示出为承载光信号152,该光信号通过耦合光学器件170通过摄谱仪的入射平面176而被投影。未被入射缝隙175阻挡的光信号152的部分照射衍射光栅180上的区域182。衍射光栅180在聚焦在二维相机190的区域192上的光照射区域182的波长中建立色散。
22.同样,光纤163被示出为承载光信号153,该光信号通过耦合光学器件170通过摄谱仪的入射平面176而被投影。耦合光学器件170可以包括一个或多个透镜或镜,并且可以补偿光纤163和摄谱仪之间的数值孔径的失配。未被入射缝隙175阻挡的光信号153的部分照射衍射光栅180上的区域183。衍射光栅180在聚焦在二维相机190的区域193上的光的波长中建立色散。
23.在本发明的一方面的实施例中,衍射光栅180位于摄谱仪的无限空间中,并且区域182和183可以部分或完全重叠,而不会在相机190处引起信号混合。
24.图5显示了基于根据本发明的一方面的实施例的在光信号152(图4)穿过入射缝隙175的平面时来自光信号152(图4)的光束172的模拟图像。同样,图5显示了在光信号153(图4)穿过入射缝隙175的平面时来自光信号153(图4)的光束173的模拟图像。在示例性实施方式中,光束172和173被很好地分离,以防止在相机190处发生信号混合。
25.图6a显示了基于本发明的一方面的实施例的来自相机190(图4)的模拟图像191。图像区域192示出了光信号152(图4)在被衍射光栅180散射并聚焦在相机190上之后的模拟图像。同样,图像区域193示出光信号153(图4)在被光栅180散射并聚焦在相机190上之后的模拟图像。图像区域192和图像区域193被示为很好地分离。模拟图像191表示投影到二维像素化设备(例如相机190的图像传感器)上的图像,该二维像素化设备可以被组织成多个水平像素行。光谱192和193各自包括像素化装置的多个水平行。
26.相机190可以是电荷耦合器件成像传感器或包括布置在xy平面中的像素的其他固态二维成像。光谱192、193也可以同时投影到一个以上的成像设备(例如ccd传感器和光敏板)上。
27.基于本发明的一方面的实施例,图6b显示了一维的强度对比波长光谱292,其可以通过将图像区域192中每个图像行中的像素的强度相加来计算,其可以通过将图像区域193中的每个图像行中的像素的强度相加来计算。在示例性实施方式中,系统控制器(未示出)可以控制到显示器(例如图6a和图6b所示的显示器)的输出。例如,系统控制器可以包括处理器、微处理器或处理逻辑单元,其可以解释并执行指令以执行各种任务,例如生成强度对
比波长光谱292和293、计算下面描述的差异光谱294等。系统控制器可以实施成硬件、软件或硬件和软件的组合,并且可以执行其他任务以控制本文描述的操作。在一些实施方式中,系统控制器可以实施在电子显微镜中。在其他实施方式中,系统控制器可以相对于电子显微镜在外部实施,例如在本文描述的光学系统中实施。
28.基于本发明的一方面的实施例,并且参考图6b,光谱292可以由从上游反射镜342(图3)收集的光产生,并且光谱293可以由从下游反射镜343收集的光产生。分别且同时地记录上游cl光谱292和下游cl光谱293的优点是,它们的差异光谱294可以由例如系统控制器/处理设备计算并实时显示。在本发明的一方面的实施例中,差异光谱294等于下游cl光谱293减去上游cl光谱292与常数的乘积。作为第一近似,可以将常数设置为1,但可以考虑收集效率的差异或通过样品或光纤的传输效率的差异而调整该常数。在预期切伦科夫辐射是下游cl光谱293和上游cl光谱292之间的主要差异的情况下,可以将常数设置为红色/ir区域295中的下游cl光谱293的积分除以红色/ir区域295中的上游cl光谱292的积分。
29.在本发明的一方面的另一个实施例中,样品上方可以有多于一个的cl收集镜,并且样品下方可以有多于一个的cl采集镜。因此,将有多于一根的光纤将上游cl光耦合到光谱仪和/或多于一根的光纤将下游cl光耦合到光谱仪。这将导致对于上游cl光有多于一个的光谱被投影到成像设备上,和/或对于下游cl光有多于一个的光谱被投影到成像装置上。
30.尽管以上已经详细描述了本发明,但是应当清楚地理解,对于相关领域的技术人员来说显而易见的是,可以在不脱离本发明的精神和范围的情况下修改本发明。在不脱离本发明的精神和范围的情况下,可以对本发明进行各种形式、设计或布置方面的改变。因此,上述描述被认为是示例性的,而不是限制性的,并且本发明的真实范围是在以下权利要求中限定的。
31.除非明确描述,否则在本技术的描述中使用的任何元件、动作或指令都不应被解释为对于本发明是关键或必要的。此外,如本文所用,冠词“一”旨在包括一个或多个项目。此外,除非另有明确规定,否则术语短语“基于”旨在表示“至少部分地基于”。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1