高品质因数集成电感器的制作方法

文档序号:6809282阅读:291来源:国知局
专利名称:高品质因数集成电感器的制作方法
技术领域
本发明涉及用于高频集成电路的电感器。
串联电阻是电感结构中固有的。硅工艺所形成的电感结构的串联电阻决定了工作频率增加时工作的损耗。损耗会减小电感的品质因数Q,即电感中电抗与串联电阻的比值(当用一定的拓扑给电感结构建模时)。减小频率增加时串联电阻的增加或使其增加最小(具有对电感器Q值的伴随效应)是通过增加电感器中电流流过的截面积实现的。截面积的增加可通过增加形成电感器的导电通路的金属化厚度或宽度,或两者都增加来实现。
电感器所显示出来的随宽度W或深度D的增加而提高的Q值在直流时实际与较低的频率成线性关线。当工作频率增加时,流过电感器通路整个截面积的电流却趋于下降。此后的电流倾向于在电感器截面的外边沿(即周边)流过,如

图1A中所示的L10。这样的电流遵从所谓“趋肤效应”原理。
所制成的用于集成电路中的电感器通常为螺旋形。图1B给出的是在硅衬底22上用铝导体24制成的常规螺旋电感器L20的一部分。图1C给出导体24的导电通路的截面部分。W和L分别代表导体的宽和长,D代表其深度。L是组成电感器导电通路的各段长度L1,L2,…LN的总和。由于导电通路是螺旋形的(尽管由截面图看不清楚),电流引起的磁场往往使得电流沿螺旋型导电通路内边或短边(阴影所示)流过。由于这些边沿效应,频率增加时,在某一特定点之外增加宽度W(因而增加截面积)就不再显示出电感器Q值的相应提高。导电通路的厚度或深度D必须增加或相邻圈之间的磁耦合必须增加以提供所需Q值。
本发明提供一种为半导体应用制造的电感器,其显示出用常规集成电感器制造技术无法实现的增加的自感和提高的Q值。因此,根据本发明所述制成的电感器可在约100MHz到10GHz以上的频率范围使用。工作时,本发明的电感结构表现出的Q值在大约2到15的范围内。
对于制成具有一定圈数N的螺旋形电感结构,附加这里所描述的磁性材料芯,会使该结构的电感更高。换句话说,在本发明的电感结构中可使用较少的圈数(相对已有技术的电感结构),还能得到相似的电感值。由于在根据本发明所述制成的结构中使用了较少的圈数,该结构中的寄生电容也较低。
一方面是,构成电感结构导电通路的相邻金属流道间互感被增加。此外,导电通路具有的串联电阻保持固定,即几乎不随频率的增加下降。这保证频率变化时Q值稳定或得到提高。结构的布置包括在形成电感器导电通路的金属流道上沉积一部分高磁导率的磁性材料,最好是一层。
磁性材料层又被进一步整理以提供低磁阻通路并使通路各部分间的磁耦合最大,同时给磁芯中产生的涡流提供高电阻通路。这种布置使得结构的电感最大同时又使磁芯中产生的影响电感器Q值的涡流损耗最小。最好是,高磁导率磁性材料与电感结构作为其一部分的集成电路没有任何电连接。据信制作高磁导率磁性材料层的工艺与现有硅生产工艺可兼容。
图1A是先前技术的矩形导体的截面;图1B是用常规硅生产技术制成的螺旋电感器的一部分的平面图;图1C是用常规生产技术制成的螺旋电感器部分导电通路的截面图;图2A是本发明的螺旋集成电感结构的平面图;图2B是图2A中的部分螺旋导体的截面图;图3A、3B和3C是包括在本发明中的各种形式的高磁导率磁性材料层的平面图。
本发明所提供的电感结构是用于高频半导体集成电路的。对于形成电感器的导电通路所固有的固定值的串联电阻,这种电感结构的电感得到提高。电感的提高使得本发明的品质因数Q在甚高频时的值为10到16,这用以前的技术是不能实现的。如这里所述制成的电感器的工作范围从大约100MHz到10GHz。
图2A和2B分别给出几个构成本发明电感结构L30的螺旋导电通路的导电元件21、22、23、24、25的螺旋和截面部分。导电通路可置于衬底材料(如半导体材料、衬底材料或介电材料)上或衬底材料中。非导电衬底的一个例子是砷化镓(GaAs),通常被描述为半绝缘材料。
在距离导电通路无件X处放置一段高磁导率的磁性材料30,并用一层介电材料32将其隔开。高磁导率磁性材料最好是平面型的并且提供一条低磁阻通路,其在有电流通过的两相邻流道间引起感生互感。正如从图中所看到的,高磁导率磁性材料不与集成电路中所包含电路的任何部分电连接。
高磁导率材料板30(平板或芯)的使用(如上所述)是有利的,但也在半导体电路中引入了麻烦。在磁性材料中会产生涡流,其以热损的方式损耗能量。当通过构成层30的固体磁性物质(如铁)的磁通量变化时就会感生出涡流。
现在参考图2C,在图2C的右边(条22-24)流入纸平面而在图2C的左边(图25-27)流出纸平面的交变电流产生影响磁芯30的变化的磁通量。通量场用环形箭头标出,标明通量方向。磁通量在磁性材料(磁芯30)中感生出与感生磁通量相当的电流。
当变化的磁通量密度高时,涡流对相当一部分功耗负责。涡流损耗与频率的平方和最大通量密度的平方有关。
为使铁芯变压器中的涡流(和与之相关的损耗)减至最小,铁芯用与磁通方向平行放置的成组薄片构成。如图3A、3B和3C所示,施加变化的磁通量(相对中孔,指向或穿出纸平面)在磁芯材料30的平面中感生出净电流。感生电流用环形箭头指示。因而,感生涡流就产生与所加的变化磁通量相反的随时间变化的磁通量(由纸平面指向外边)。感生的涡流垂直于变化的磁通量的方向。结果,感生涡流就可通过将磁芯分成薄片减至最小。相应地,环形涡流的通路就受到了限制,整个磁性材料中的涡流损耗也就减少了。
示于图3A的平板磁芯30的形状包括一大致在中央的矩形孔。矩形孔可减少关于中心相对的两边上的通路间不希望有的磁耦合。然而,这种设计没有涉及与涡流的产生有关的问题。图3B给出由于上述原因分成楔形并且中央有孔的磁芯(即最佳实施例的平面型磁芯)。这种设计既减少了不想要的耦合又相对图3A的设计减少了涡流损耗。图3C给出采用多条磁性材料构成的磁芯。这种设计相对图3B进一步减小了涡流损耗。磁性材料条最好与形成电感器导体的金属流道所形成的线成直角(正交)。
这里所描述的仅是对本发明原理的应用的说明。本领域的技术人员可以实现其它的布置和方法但没有脱离本发明的精神或范围。
权利要求
1.一种在衬底中形成的电感结构,其可与半导体集成电路相集成,包括a)电导体,其提供在所述衬底上制成螺旋平面图案的导电通路,其中所述通路的相邻段是大致平行的;b)磁芯性材料芯,其位于所述平面图形上以便在所述相邻段内由电流感生的互感被磁芯增加,在所述磁芯内产生的涡流损耗的量是受控的。
2.权利要求1所定义的电感结构,其中所述磁芯由高磁导率材料制成。
3.权利要求1所定义的电感结构,其中所述磁芯被布置成中间不连续状以减少所述螺旋平面图案各段间不希望有的电感的诱因。
4.权利要求1所定义的电感结构,其中所述磁芯包括四个电隔离的楔形部分,所述四个部分被安置成中间不连续状以减少置于所述螺旋形对边上的所述导电通路段中不希望出现的电感诱因,并减少所述磁芯中的涡流损耗。
5.权利要求4定义的电感结构,其中所述楔形部分由多条磁性材料构成以进一步减小所述结构中的涡流损耗。
6.权利要求5所定义的电感结构,其中将多个条形磁性材料放置得大致与述导电通路的相邻段成直角。
7.权利要求1所定义的电感结构,其中所述磁芯是平板型的。
8.权利要求1所定义的电感结构,其还包括一块置于所述图形上的介电材料以将所述图形与所述磁芯隔离开。
9.权利要求1所定义的电感结构,其中所述衬底由下列之一构成半导体、非导体和介电材料。
10.权利要求1所定义的电感结构,其中所述图形和所述磁芯的安排使得能提供直到大约12GHz的高频工作。
11.一种包括衬底材料和电感结构的半导体集成电路,所述电感结构还包括a)一电导体,其在所述衬底上以螺旋平面图形的形式提供一导电通路,其中所述导电通路的相邻段大致平行;b)一磁性材料芯,其置于所述平面图形上,以使在相邻导电元件中引起感生互感的增加,并且在所述磁芯中,所述磁芯中适量的涡流损耗被控制。
12.权利要求11所定义的电路,其中所述磁芯由高磁导率磁性材料构成。
13.权利要求11所述电路,其中所述磁芯被安排得中间不连续以减少置于所述图形对边的所述螺旋平面图形段中不希望出现的电感的诱因。
14.权利要求11所述的电路,其中所述磁芯包括四个电隔离的楔形部分,所述四部分被布置成中间不连续状以减少置于所述螺旋图形对边上的所述导电通路段中不希望出现的电感的诱因,并减少所述磁芯中的涡流损耗。
15.权利要求14所述的电路,其中所述楔形设计部分由多条磁性材料构成以进一步减少所述结构中的涡流损耗。
16.权利要求15所述的电路,其中所述多个磁性材料条被放置成大致与相邻的所述导电通路段成直角。
17.权利要求11所定义的电路,其中所述磁芯是平板型的。
18.权利要求11所定义的电路,其还包括一块置于所述图形上的介电材料以将所述图形与所述磁芯电隔离。
19.权利要求9所定义的电路,其中放置所述图形和所述磁芯是为保证高频率时的工作。
20.权利要求11所定义的电路,其中所述衬底由下列之一构成半导体,非导体和介电材料。
21.权利要求11所定义的电路,其中放置所述图形和所述磁芯是为保证直到12GHz的高频工作。
全文摘要
提供一种在高频时显出自感增加和Q值提高的电感结构。改进之处在于靠近电感结构放置适量的磁性材料以增加电感器有电流流过的导电通路相邻部分间的互感。
文档编号H01L27/04GK1132918SQ9512020
公开日1996年10月9日 申请日期1995年12月4日 优先权日1994年12月6日
发明者科克·波顿·阿仕比, 伊科诺莫茨·A·科里亚斯 申请人:美国电报电话公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1