一种高响应度的有机红外探测器件及其制备方法

文档序号:10658647阅读:240来源:国知局
一种高响应度的有机红外探测器件及其制备方法
【专利摘要】本发明属于有机光电子技术领域,公开了一种高响应度的有机红外探测器件及其制备方法,用于解决有机红外探测器件光响应度低的问题。本发明包括至下而上的透明衬底、导电阳极、功能掺杂层、光活性层、功能掺杂层和金属阴极。其中,功能掺杂层由聚(N,N’双(4?丁基苯基)?N,N’?双(苯基)联苯胺)(Poly?TPD)组成,并掺杂质量比为1%~10%的二氧化钛纳米颗粒(TiO2)。通过引入功能掺杂层,阻挡器件内部电子的传输,在反向偏压下,使空穴二次注入,增加光电流,提高光响应度。本发明提及的有机红外探测器件对近红外波段的光敏感,在科学、工业和日常生活等领域有着很大的应用前景。
【专利说明】
一种高响应度的有机红外探测器件及其制备方法
技术领域
[0001]本发明属于有机光电子技术领域,具体涉及采用功能掺杂层的一种高响应度的有机红外探测器件。
【背景技术】
[0002]光探测技术的不断发展对光接收设备提出了越来越高的要求。红外探测器是红外技术中最重要的应用之一,制作高响应度,响应波长在950nm?1200nm的近红外光探测器,并最终实现光电集成接收机芯片一直是人们追求的目标。基于无机半导体材料的红外光探测器件取得了很大的进展,但是无机半导体材料在外延生长和掺杂方面还有问题,也存在着制作工艺复杂,材料成本昂贵的不足。随着有机半导体材料的迅猛发展和有机光电子器件的深入研究,基于有机半导体材料的红外光探测器件得到了科研人员的重视,并取得了一定的进展。与无机红外光探测器相比,有机半导体材料具有质轻,价廉,加工性能优异等特点,更易制备小体积,低功耗,低成本的红外探测器件,解决了无机红外光探测器中普遍存在的设备昂贵、工艺复杂等不足。
[0003]目前,有机红外探测材料与器件的研究在国际上还处于起步阶段。而且,由于有机半导体分子间通常为范德华作用力,载流子迀移率低,光敏材料电阻率很大,从而导致有机红外探测器件响应度较低,严重制约了其发展和应用。因此,提高有机红外光探测响应度是其需要解决的主要问题。

【发明内容】

[0004]本发明的目的是提供一种高响应度的有机红外探测器件,解决现有机红外探测器件光响应度低的问题。
[0005 ]为解决上述技术问题,本发明所采用的技术方案是:
[0006]—种高响应度的有机红外探测器件,由下而上依次为透明衬底、导电阳极、功能掺杂层、光活性层、功能掺杂层和金属阴极,功能掺杂层由聚(N,N’双(4-丁基苯基)-N,N’_双(苯基)联苯胺)(Poly-1TD)和二氧化钛纳米颗粒(T12)混合组成,质量百分比为:Poly-TPD90% ?99%,Ti02 1% ?10%。
[0007]进一步地,所述功能掺杂层厚度为5nm?15nm。
[0008]进一步地,所述透明衬底的材料为玻璃、透明聚合物柔性材料或者生物可降解的柔性材料中的一种或者多种;所述透明聚合物柔性材料为聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、氯醋树脂或聚丙烯酸中的一种或多种的组合。
[0009]进一步地,所述导电阳极材料为氧化铟锡、导电聚合物聚3,4_乙撑二氧噻吩/聚苯乙烯磺酸盐或碳纳米管中的任意一种或多种的组合。
[0010]进一步地,所述光活性层能吸收波长950nm?1200nm的近红外光。
[0011]进一步地,所述光活性层材料为聚(4,4’_双(2-乙基己基)二噻吩并[3,2-b:2’,3’-d]噻咯)-2,6-联苯-ALT-(2,1,3-苯并噻二唑)-4,7-联苯(PSBTBT)、[2,6-(4,4-二-(2-乙基己基)-4!1-环戊烯[2,1-13;3,4-13’]-二噻吩)-交替-4,7-(2,1,3-苯并噻二唑)]共聚物(PCPDTBT)、噻吩(3,4-b)并噻吩和苯并二噻吩的共聚物(PTB),氯代亚-2,3-萘酞菁硼(SubNc)、氯代酞菁招(ClAlPc)、萘酞菁铜(CuNc),硫化铅(PbS)中的一种或多种的组合。
[0012]进一步地,所述金属阴极的材料是金属薄膜或合金薄膜,所述金属薄膜为锂、镁、钙、锶、铝或铟金属薄膜,所述合金薄膜为锂、镁、钙、锶、铝或铟与铜、金或银的合金;金属阴极厚度为I OOnm ο
[0013]与现有技术相比,本发明具有以下有益效果:
[0014](I)本发明所涉及的功能掺杂层,Poly-TPD材料具有较高的最低未占轨道(LUMO)能级,T12充当电子陷阱,二者结合能够阻止器件内部电子的传输,在反向偏压下,使得空穴从阴极一端二次注入,从而增加器件的光电流,提高光响应度。
[0015](2)本发明采用的器件结构是“三明治”式的结构,所有功能层材料采用蒸镀和旋涂成膜,器件制备方法较基于无机材料的红外光探测器件的制备方法简单,且易操作。
[0016](3)器件对950nm?1200nm波段的红外光的敏感。本发明所述的有机红外探测器件具有较高的响应度。
【附图说明】
[0017]图1是本发明的结构示意图;
[0018]图2是本发明的实施例二中所述器件在红外光(波长为950nm,强度为1.6mW/cm2)照射和无红外光照射条件下的电流密度-电压特性曲线;
[0019]图3是本发明的实施例三中所述器件在红外光(波长为950nm,强度为1.6mW/cm2)照射和无红外光照射条件下的响应曲线;
[0020]图4是本发明的实施例三中所述器件在不同强度红外光(波长为950nm)照射条件下的线性度曲线;
[0021 ]图中标记:1、透明衬底,2、导电阳极,3、功能掺杂层,4、光活性层,5、金属阴极。
【具体实施方式】
[0022]下面结合实施例对本发明作进一步的描述,所描述的实施例仅仅是本发明一部分实施例,并不是全部的实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动前提下所获得的其他所用实施例,都属于本发明的保护范围。
[0023]结合附图,本发明的一种高响应度的有机红外探测器件,如图1所示,包括至下而上依次设置的透明衬底1、导电阳极2、功能掺杂层3、光活性层4、功能掺杂层3和金属阴极5,两层功能掺杂层能阻止器件内部电子的传输,在外加电压下,使空穴从阴极一端二次注入,增加器件的光电流,提高光响应度。
[0024]本发明中所述透明衬底的材料为玻璃、透明聚合物柔性材料或者生物可降解的柔性材料中的一种或者多种;所述透明聚合物柔性材料为聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、氯醋树脂或聚丙烯酸中的一种或多种的组合。所述导电阳极材料为氧化铟锡、导电聚合物聚3,4_乙撑二氧噻吩/聚苯乙烯磺酸盐或碳纳米管中的任意一种或多种的组合。所述光活性层为聚(4,4’_双(2-乙基己基)二噻吩并[3,2-b:2’,3’-d]噻咯)-2,6-联苯-ALT-(2,I,3-苯并噻二唑)-4,7-联苯(PSBTBT)、[2,6-(4,4-二-(2-乙基己基)-犯-环戊烯[2,1-13;3,4-13’]-二噻吩)-交替-4,7-(2,1,3-苯并噻二唑)]共聚物(PCPDTBT)、噻吩(3,4-b)并噻吩和苯并二噻吩的共聚物(PTB),氯代亚-2,3-萘酞菁硼(SubNc)、氯代酞菁铝(ClAlPc)、萘酞菁铜(CuNc),硫化铅(PbS)中的一种或多种的组合。所述金属阴极的材料是金属薄膜或合金薄膜,所述金属薄膜为锂、镁、钙、锶、铝或铟金属薄膜,所述合金薄膜为锂、镁、钙、锶、铝或铟与铜、金或银的合金;金属阴极厚度为lOOnm。
[0025]功能掺杂层由聚(N,N’双(4-丁基苯基)_N,N’-双(苯基)联苯胺)(Poly-1TD)和二氧化钛纳米颗粒(T12)混合组成,质量百分比为:Poly-TPD 90%?99%,Ti02 1%?10%。所述功能掺杂层厚度为5nm?15nm。
[0026]以下是本发明的具体实施例:
[0027]实施例一
[0028]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备?017-1^):1102(99%:1%)功能掺杂层(1000印111,1511111),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PbS光活性层(1500rpm,120nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备Poly-TPD:Ti02(90%: 10% )功能掺杂层(2500rpm,5nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag(lOOnm)。在标准测试条件下:950nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度45.5A/W。
[0029]实施例二
[0030]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备Poly-Tro:Ti02(90%:10%)功能掺杂层(2200rpm,7nm),并进行烘烤(100°C,15min),,在功能掺杂层上采用旋涂制备PbS光活性层(1500rpm,120nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备Poly-TPD:Ti02(99%:l%)功能掺杂层(100rpm, 15nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag( lOOnm)。在标准测试条件下:950nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度55.3A/W。
[0031 ] 实施例三
[0032]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备?017-1^):1102(95%:5%)功能掺杂层(1000印111,15醒),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PbS光活性层(1500rpm,120nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备Poly-TPD:Ti02(99%:l%)功能掺杂层(2500rpm,5nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag(lOOnm)。在标准测试条件下:950nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度58.2A/W。
[0033]实施例四
[0034]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备?017-1^):1102(95%:5%)功能掺杂层(1500印111,10醒),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PbS光活性层(1500rpm,120nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备Poly-TPD:Ti02(90%: 10% )功能掺杂层(1500rpm,10nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag( lOOnm)。在标准测试条件下:950nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度68.7A/W。
[0035]实施例五
[0036]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备Poly-Tro:Ti02(93%:7%)功能掺杂层(2500rpm,5nm),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PCPDTBT光活性层(1000rpm,200nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备POly-1TD:Ti02(93%:7%)功能掺杂层(100rpm, 15nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag( lOOnm)。在标准测试条件下:1200nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度72.7A/W。
[0037]实施例六
[0038]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备?017-1^):1102(93%:7%)功能掺杂层(1000印111,15醒),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PCPDTBT光活性层(1000rpm,200nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备POly-1TD:Ti02(95%:5%)功能掺杂层(2500rpm,5nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag(lOOnm)。在标准测试条件下:1200nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度87.7A/W。
[0039]实施例七
[0040]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备Poly-1TD:Ti02(97%:3% )功能掺杂层(lOOOrpm,15nm),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PCTOTBT光活性层(1500rpm,120nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备Po Iy-1TD:Ti02(97%:3 % )功能掺杂层(100rpm, 15nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag( lOOnm)。在标准测试条件下:1200nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度68.7A/W。
[0041 ]实施例八
[0042]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备Poly-1TD:Ti02(97%: 3% )功能掺杂层(1500rpm,1nm),并进行烘烤(100°C,15min),在功能掺杂层上采用蒸镀制备SubNc光活性层(250nm);在光活性层表面旋涂制备Poly_TPD:Ti02(90%: 10% )功能掺杂层(lOOOrpm,15nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag(10nm)。在标准测试条件下:950nm,1.2mW/cm2红外光,在-2V条件下,测得器件的响应度55.8A/W。
[0043]实施例九
[0044]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备POly-1TD:Ti02(99%:l%)功能掺杂层(2500rpm,5nm),并进行烘烤(100°C,15min),在功能掺杂层上采用蒸镀制备SubNc光活性层(120nm);在光活性层表面旋涂制备Poly-TPD:Ti02(97%:3%)功能掺杂层(1000rpm,15nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag(10nm)。在标准测试条件下:950nm,1.2mW/cm2红外光,在-2V条件下,测得器件的响应度74.7A/W。
[0045]实施例十
[0046]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备?0171?0:1102(90%:10%)功能掺杂层(1000印111,1511111),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PSBTBT光活性层(lOOOrpm,120nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备Poly-Tro:Ti02(97%:3%)功能掺杂层(1500rpm, 1nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag( lOOnm)。在标准测试条件下:100nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度68.7A/W。
[0047]实施例^^一
[0048]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备旋涂制备Poly-TPD:Ti02(95%: 5%)功能掺杂层(lOOOrpm,15nm),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PSBTBT光活性层(lOOOrpm, 120nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备Poly-1TD:Τ?02(95%:5% )功能掺杂层(lOOOrpm, 15nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag( 10nm)。在标准测试条件下:lOOOnm,I.6mW/cm2红外光,在-2V条件下,测得器件的响应度108.4A/W。
[0049]实施例十二
[0050]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备?017-1^):1102(99%:1%)功能掺杂层(1500印111,10醒),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PSBTBT光活性层(lOOOrpm,120nm),并进行烘烤(100°C,15min);在光活性层表面旋涂制备POly-1TD:Ti02(99%: 1% )功能掺杂层(1500rpm,10nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag( lOOnm)。在标准测试条件下:100nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度68.4A/W。
[0051 ]实施例十三
[0052]对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干;在透明导电阳极ITO表面旋涂制备Poly-Tro:Ti02(90%:10%)功能掺杂层(2500rpm,5nm),并进行烘烤(100°C,15min),在功能掺杂层上采用旋涂制备PSBTBT光活性层(lOOOrpm,120nm),并进行烘烤(100°C,15min);在光活性层表面表面旋涂制备Poly-TPD:Ti02(90%:10%)功能掺杂层(2500rpm,5nm),并进行烘烤(100°C,15min),在功能掺杂层上蒸镀金属阳极Ag(10nm)。在标准测试条件下:100nm,1.6mW/cm2红外光,在-2V条件下,测得器件的响应度78.1A/W。
【主权项】
1.一种高响应度的有机红外探测器件,由下而上依次为透明衬底、导电阳极、功能掺杂层、光活性层、功能掺杂层和金属阴极,其特征在于,功能掺杂层由聚(N,N’双(4-丁基苯基)-N,N’_双(苯基)联苯胺)(Poly-TPD)和二氧化钛纳米颗粒(T12)组成,质量百分比为:Poly-TPD 90%?99%,Ti02 1%?10%。2.根据权利要求1所述的一种高响应度的有机红外探测器件,其特征在于,所述功能掺杂层厚度为5nm?15nm。3.根据权利要求1所述的一种高响应度的有机红外探测器件,其特征在于,所述透明衬底的材料为玻璃、透明聚合物柔性材料或者生物可降解的柔性材料中的一种或者多种;所述透明聚合物柔性材料为聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、氯醋树脂或聚丙烯酸中的一种或多种的组合。4.根据权利要求1所述的一种高响应度的有机红外探测器件,其特征在于,所述导电阳极材料为氧化铟锡、导电聚合物聚3,4_乙撑二氧噻吩/聚苯乙烯磺酸盐或碳纳米管中的任意一种或多种的组合。5.根据权利要求1所述的一种高响应度的有机红外探测器件,其特征在于,所述光活性层能吸收波长950nm?1200nm的近红外光。6.根据权利要求1所述的一种高响应度的有机红外探测器件,其特征在于,所述光活性层材料为聚(4,4’-双(2-乙基己基)二噻吩并[3,2-13:2’,3’-(1]噻咯)-2,6-联苯41^-(2,1,3-苯并噻二唑)-4,7-联苯(PSBTBT)、[2,6-(4,4_二-(2-乙基己基)-4H-环戊烯[2,l-b;3,4-b,]_二噻吩)-交替-4,7-(2,1,3-苯并噻二唑)]共聚物(PCPDTBT)、噻吩(3,4_b)并噻吩和苯并二噻吩的共聚物(PTB),氯代亚-2,3-萘酞菁硼(SubNc)、氯代酞菁铝(ClAlPc)、萘酞菁铜(CuNc),硫化铅(PbS)中的一种或多种的组合。7.根据权利要求1所述的一种高响应度的有机红外探测器件,其特征在于,所述金属阴极的材料是金属薄膜或合金薄膜,所述金属薄膜为锂、镁、钙、锶、铝或铟金属薄膜,所述合金薄膜为锂、镁、钙、锶、铝或铟与铜、金或银的合金;金属阴极厚度为lOOnm。8.根据权利要求1-7任一项所述的一种高响应度的有机红外探测器件的制备方法,其特征在于,步骤如下: (1)对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干; (2)在透明导电阳极ITO表面旋涂制备Poly_TPD:Ti02功能掺杂层,并进行烘烤; (3)在功能掺杂层上采用蒸镀或旋涂制备光活性层; (4)在光活性层表面旋涂制备功能掺杂层,并进行烘烤; (5)在功能掺杂层上蒸镀金属阳极。9.根据权利要求8所述的一种高响应度的有机红外探测器件的制备方法,其特征在于,步骤如下: (I)对由衬底及透明导电阳极ITO所组成的基板进行清洗,清洗后用氮气吹干; ⑵在透明导电阳极ITO表面旋涂制备旋涂制备P0ly-Tro:T1jj]能掺杂层,Poly-1TD与T12的重量比为95%:5%,旋涂参数为:1000rpm,15nm,并在100°C烘烤15min; (3)在功能掺杂层上采用旋涂制备PSBTBT光活性层,旋涂参数为:1000rpm,120nm,并在100°C 烘烤 15min; (4)在光活性层表面旋涂制备Poly-1TD:Ti02功能掺杂层,Poly-TPD与T12的重量比为95%:5%,旋涂参数为:1000印111,1511111,并在100°(:烘烤1511^11; (5)在功能掺杂层上蒸镀金属阳极Ag,厚度lOOnm。
【文档编号】H01L51/42GK106025081SQ201610547981
【公开日】2016年10月12日
【申请日】2016年7月13日
【发明人】于军胜, 王晓, 范谱, 孔天宇
【申请人】电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1