使用一可调谐飞秒振荡器的可调节中红外超连续谱发生器的制造方法

文档序号:10663933阅读:293来源:国知局
使用一可调谐飞秒振荡器的可调节中红外超连续谱发生器的制造方法
【专利摘要】一种超连续谱系统,包括:一光纤激光器(110),其配置为输出具有中心波长的脉冲;一第一非线性波导(120),其配置为偏移来自所述光纤激光器的脉冲的波长;一至少一级的第一光纤放大器(130),其配置为放大来自所述第一非线性波导的输出;和一第二非线性波导(140),其配置为光谱展宽来自所述第一光纤放大器的输出。
【专利说明】使用一可调谐飞秒振荡器的可调节中红外超连续谱发生器
[0001]相关申请的交叉引用
[0002]本申请要求2014年I月7号提交的申请号为61/924,629的美国临时专利申请的权益,其内容通过引用合并至本文中。
技术领域
[0003]本发明涉及超连续谱系统领域,尤其涉及使用一可调谐飞秒振荡器的中红外超连续谱发生器和系统。
【背景技术】
[0004]中红外(MIR)范围内(2um到1um)的宽频光源被应用于例如遥感、红外计数器计量、医疗诊断和光谱学应用。虽然非相干宽频MIR源已经可被应用多年并且被应用于光谱学,但这些源具有受限的功率谱密度和差的光束质量。相干宽频光源基于非线性光谱展宽,广为人知的比如超连续谱源,在光谱的可视以及近红外(NIR)范围内被研究。近来,发展MIR范围内的此超连续谱源引起了大家的兴趣。这种超连续谱源应该具有高功率密度,高光束质量和低噪声(高相干性)以便于提供超过现有非相干MIR源的显著优势。
[0005]MIR范围内的超连续谱源已经被实现并且在现有的出版物中被报道。这种系统主要能被放置在两种常规类别中,与某类栗浦源有关系,该类栗浦源使用了:(a)使用纳秒或皮秒脉冲激光器作为栗浦源的系统,和(b)使用飞秒脉冲激光器作为栗浦源的系统。所述系统被普遍理解为归属于如下类别(a)受低的连射(shot-to-shot)相干性影响。这样的相干性的缺乏在所产生的光谱的噪声特性中尤为明显,从而导致了连射中的光谱的和时间的波动。虽然这些低相干性的系统作为强力的具有高光束质量的宽谱光源时是有利的,但由于相干性问题,这些系统在光谱学的应用被很大地限制了。这些系统归属于如下类别(b)通过仔细调节飞秒栗浦脉冲的性能同时使用非线性介质以展宽所述光谱,系统能被设计为具有高相干性。有关该类别的栗浦源,在先前的技术中有若干激光系统已使用。具有极为接近超连续谱产生的波长范围或在超连续谱产生的波长范围之内的栗浦波长是满足需要的。两种类型的飞秒源已经被使用作为MIR超连续谱的产生方法,其包括基于铥或钬掺杂光纤的锁模光纤激光器,和光参量振荡器。所述光纤激光器在中心波长接近2000nm和可能超出3500nm的波长范围内提供高能量的飞秒脉冲。所述光纤激光器在先前的技术中用于这种应用时具有固定的波长。此外,用于这些光纤激光器的锁模机构仍然在研究和发展中,且商业上可用设备的数量是有限的。所述光参量振荡器(OPO)提供具有可调谐中心波长的飞秒脉冲。然而,这些OPO是占据着很大空间的昂贵系统。此外,当与光纤基源比较时,从OPO获得的可用平均功率是有限的。
[0006]因此,用以产生飞秒脉冲的低成本和小巧的系统是一种需求,所述飞秒脉冲用于中红外超连续谱的产生。此外,用于调节比如波长、峰值功率、能量和偏振的脉冲参数的方法是必需的,以优化所述超连续谱的光谱亮度、频宽、光谱平坦度、和相干性。
[0007]—个具体的光谱应用会使用所述宽频源,所述宽频源结合着傅里叶变换光谱仪和样本处理单元。在MIR范围内的傅里叶变换光谱仪已经在近期得到发展和商业化。通过发展低噪声MIR宽频源,能够提供用于MIR的完整光谱系统,所述光谱系统相比于已存在光谱系统将提供明显优越性。

【发明内容】

[0008]本发明的实施例提供一种飞秒光纤激光器以及可调谐波长偏移方法,所述飞秒光纤激光器处于1550nm附近的电信频带处,所述可调谐波长偏移方法将脉冲波长转换至铥或钬掺杂光纤的放大频带(大约2000nm)。该方法提供了两个优点:(a)近年来,1550nm处的飞秒激光器已经发展成为可靠且稳定的系统,并且商业上可从几家公司购得,以及(b)所述系统中波长偏移量是可调谐的,以提供调节和优化输出超连续谱的能力。通过使用ISOOnm至2100nm波长范围内的光纤放大器,能够按比例放大输出平均功率。
[0009]本发明的一个实施例提供了一超连续谱系统,包括:一光纤激光器,其配置为输出具有中心波长的脉冲;第一非线性波导,其配置为偏移来自光纤激光器的脉冲波长;至少一级的第一光纤放大器,其配置为放大所述第一非线性波导的输出;和第二非线性波导,其配置为光谱展宽第一光纤放大器的输出。
[0010]本发明的另一实施例提供了用于操作超连续谱系统的方法,所述超连续谱系统包括:一光纤激光器,其配置为输出有中心波长的脉冲;一第一非线性波导,其配置为偏移所述光纤激光器发出脉冲的波长;具有至少一级的一光纤放大器,其配置为放大第一非线性波导的输出;和一第二非线性波导,其配置为光谱展宽来自第一光纤放大器的输出,所述方法包括:从第一光纤放大器的输出或者第二非线性波导的输出接受反馈;和调节进入第二非线性波导的脉冲的峰值功率、能量、波长或偏振。
【附图说明】
[0011]图1为根据本发明一实施例的超连续谱系统的框图;
[0012]图2为根据本发明另一实施例的超连续谱系统的框图;
[0013]图3为根据本发明另一实施例的超连续谱系统的框图;
[0014]图4为根据本发明另一实施例的超连续谱系统的框图;
[0015]图5为根据本发明另一实施例的超连续谱系统的框图;
[0016]图6为根据本发明另一实施例的超连续谱系统的框图;
[0017]图7为根据本发明另一实施例的超连续谱系统的框图;
[0018]图8为根据本发明另一实施例的超连续谱系统的框图。
【具体实施方式】
[0019]结合附图了解根据本发明原理的示例性实施例说明,所述说明将看作整个书面说明的一部分。这里所公开的发明实施例的说明中,对方向或取向的任何指定仅为了说明的方便,不以任何方式限制本发明的范围。相关词语,例如“下部“,“上部”,“水平的”,“垂直的,,,“上方”,“下方”,“向上”,“向下”,“顶部”和“底部”以及它们的派生词,(例如,“水平地”,“向下地”,“向上地”,等等),这些词语应被解释对取向的指定,所述取向如讨论中的附图所接着说明或所示。除非有明确的指明,否则这些相关词语只是为了描述的方便,不需要设备在特定的取向下构建或操作。除非另有明确的描述,否则像“附加的”,“粘着的”,“连接的”,“耦合的”,“互联的”以及类似的词语,指的是一种关系,其中,一些结构直接地或间接通过中间结构以及可动的或者固定的附件或者关系固定或附加到另外的结构上。另外,通过引用具体实施例描述本发明的特点和有益效果。因此,应清楚地认为,本发明不限制于所述具体实施例,所述具体实施例描述了一些可能的非限制的特征组合,所述特征组合可能单独或者在其他特征组合中存在;本发明的范围由附加的权利要求限定。
[0020]所述公开内容描述了目前所预期的实现本发明的最佳方式或方式。所述描述并非为了限制,而是提供本发明的一个例子,提出所述例子仅仅为了参照附图实现说明的目的,从而告知本领域普通技术人员本发明的优点和结构。在附图的不同视图中,相同的附图标记表示相同或相似的部分。
[0021]如图1所示,本发明的一实施例为包括四个关键组件的系统。第一个组件为锁模光纤激光器(MLFL) (110),其支持短于Ips的变换极限脉冲宽度以及1500nm和1650nm之间的中心波长。所述MLFL(IlO)是基于掺杂光纤构造为增益介质和锁模机构。来自所述光纤激光器的输出耦合进非线性波导1(120),该非线性波导通过已知的拉曼孤子自频移的过程将它的波长移位到长于1700nm短于2800nm的波长范围内。在一个实施例中,非线性波导1(120)在输入脉冲波长有一反常色散和大于1W—1Iaif1的一非线性系数。第三级,光纤放大器1(130),其为工作在1700nm和2800nm波长范围之间的光纤放大器,例如,基于铥和/或钬掺杂光纤的一放大器系统。在一些实施例中,光纤放大器1(130)是双级或多级放大器。在一些实施例中,除了放大它们的能量外,光纤放大器1(130)增加额外的光谱带宽和/或压缩脉冲,其通过比如自相位调制的非线性过程增加额外的光谱带宽。所述放大器输出耦合到非线性波导2(140),该非线性波导是从一在中红外范围内透明的材料制成的。所述波导被设计为通过非线性过程光谱展宽输入脉冲,该非线性过程例如但不限制于自相位调制、调制不稳定性和拉曼散射。有利的是,如果所述非线性波导2(140)有一近零色散点,其接近于离开光纤放大器1(130)的脉冲的中心波长,且然后微调所述源至色散波长。如果所述非线性波导2在光纤放大器1(130)发出的脉冲的中心波长处有反常色散,则是更有利的。
[0022]在本发明的另一些实施例,一个或多个以下部件能被加到所述系统以提高其性能,如图2所示。
[0023]光纤放大器2(260): —光纤放大器能被包括于所述MLFL(210)和非线性波导I(220)之间,所述放大器在1500m到1650nm波长范围内有一增益,例如,一铒掺杂光纤放大器。所述光纤放大器有三个功能。第一,它将一低功率MLFL的功率提升到拉曼自频移过程的所需水平。第二,它光谱展宽且压缩来自所述锁模振荡器的脉冲,其提高了所述频移过程的效率,使得所述频移脉冲的脉冲能量提高或者脉冲宽度减小。第三,通过调节放大增益,它提供了用于调节波长偏移量的机构。所述波长调节用于所述输出的超连谱续参数的优化,包括它的光谱亮度、带宽、光谱平坦度、和相干性。
[0024]偏振控制器I(250):这个装置是一手动或自动的偏振控制器,其插入在所述MLFL(210)和非线性波导1(220)之间。所述偏振控制器被用作为通过自频移过程控制波长偏移量的第二调节机构。为了额外的稳定性,一自动化控制器可用于动态调节波长到光谱中的所需点。
[0025]值得注意的是,在一个实施例中,偏振控制器1(250)能直接置于锁模光纤激光器(210)后或者在光纤放大器2(260)和非线性波导1(220)之间。
[0026]在一些实施例中,使用偏振保持光纤(polarizat1n maintaining fiber)来构造MLFL(210)以及光纤放大器2(260)。在这些情形中,仅通过使用光纤放大器2(260)的增益来调节波长偏移。
[0027]色散元件1(270):为了在进入光纤放大器1(230)的脉冲上产生所需量的啁啾,该组件包括在非线性波导1(220)之后。所述组件包括一色散装置,包括但不限制于光波导、啁啾布拉格光栅、棱镜对、以及衍射光栅对。在一些实施例中,所述色散值被设计为,通过该色散和放大器的非线性之间的相互作用,将光纤放大器1(230)的输出脉冲压缩至最短持续时间。在其他实施例中,色散元件I被设计为增加所述脉冲持续时间以减少所述放大器中的非线性效应。在这些情形中,使用所述色散元件2(见下文)压缩所述脉冲。所述色散值是通过监听输出超连续谱带宽、光谱平坦度、和相干性来选定的,目的是优化参数。
[0028]在一些实施例中,在非线性波导I后或者在光纤放大器I的多级内增加一波长选择元件,对于为光纤放大器调节所述输出光谱是有利的。
[0029]偏振控制器2(290):该组件调节脉冲在进入光纤放大器I之前的偏振态。通过控制这个偏振态,能调节光纤放大器中的有效非线性,其用于优化光纤放大器I中的非线性脉冲压缩.
[0030]值得注意的是,在一个实施例中,偏振控制器2(290)能直接置于非线性波导I(220)之后或者在色散元件I (270)和光纤放大器I (230)之间。
[0031 ] 在一些实施例中,使用偏振保持光纤(polarizat1n maintaining fibers)构造光纤放大器1(230)。在这些情形中,使用光纤放大器1(230)的增益来调节光纤放大器I中的非线性。
[0032]色散元件2(280):这个组件包括在非线性波导2(240)之前,作为用于对在进入所述非线性波导的脉冲上的啁啾量进行调节的装置。所述组件包括一色散元件,包括但不限于光波导、啁啾布拉格光栅、棱镜对、以及衍射光栅对。所述色散值是通过监听下列参数中的一个或者多个来选定的:输出超连续光谱亮度、带宽、光谱平坦度,和相干性,目的是优化所述参数。
[0033]在另一实施例,另一偏振控制器能在光纤放大器I和非线性波导2之间使用。进入非线性波导2中的光的偏振将被调节以优化如下参数的一个或者多个:输出超连续谱光谱亮度、带宽、光谱平坦度,和相干性。
[0034]本发明的一实施例提供了一系统和一方法用于稳定和调谐栗浦波长和脉冲波形,且因此通过调节光纤放大器I或2(330或360)的增益或偏振控制器I或2(350或390),来优化所述超连续谱的参数,如图3所示。如上所述,除了所述MLFL(310)、非线性波导1(320)、光纤放大器1(330)和非线性波导2(340),所述组件的一个或多个:偏振控制器1(350)、光纤放大器2 (360)、色散元件I (370)、偏振控制器2(390)和色散元件2 (380)是可选择包括在内的。通过从所述输出超连续谱光谱、从非线性波导1(320)的输出、或者从光纤放大器1(320)的输出,借助反馈回路滤波器(395)接收反馈,所述变量(增益或偏振)动态调节以稳定系统到期望的状态。调节参数以优化输出光谱平坦度、带宽和相干性。
[0035]第二拉曼自频移
[0036]在一个实施例中,一第二拉曼自频移过程被添加到包含一MLFL(410)、一非线性波导I(420)、一光纤放大器I(430)和一非线性波导2(440)的系统中,以进一步推进栗浦脉冲波长使其更靠近MIR范围,如图4所示。这个拉曼自频移过程在光纤放大器I (430)内发生或在一中间部分如非线性波导3(450)内发生,所述非线性波导3(450)置于光纤放大器1(430)和非线性波导2(440)之间。在这个配置中,所述脉冲在进入非线性波导2(440)之前其波长被偏移到长于2100nm但短于3000nm。所述系统的这个改变提供了两个优势:
[0037](a)所述输出光谱能被扩展到更远至进入MIR范围。很好理解的是,通过偏移所述栗浦脉冲波长到更长的波长能把所述产生的超连续谱偏移到更长的波长。
[0038](b) —些用于MIR应用的非线性材料,具有长于2100nm的零色散波长。在波长长于2100nm范围抽运超连续谱源的能力,允许使用了这些非线性波导的连续体的有效产生。
[0039]非线性波导3(450)有反常色散且是使用在波长范围从2100nm到3000nm传输光的一材料制成的。
[0040]值得注意的是,在一些实施例中,光纤放大器1(430)还起非线性波导的作用,其产生拉曼偏移光,在这些情形中,非线性波导3(450)能从系统去除。
[0041]本发明的另一实施例是包含4个关键组件的系统,如图1所示。第一个组件是一锁模光纤激光器(11^0(110),其支持短于1?8的有限变换脉冲宽度以及190011111和210011111之间的中心波长。将MLFL(IlO)基于掺杂的光纤构造为增益介质以及锁模机构。来自光纤激光器的输出被耦合到非线性波导1(120)中,所述非线波导1(120)通过称为拉曼孤子自频移的过程偏移其波长到长于2100nm且短于3500nm的波长。在一个实施例中,非线性波导1(120)在所述输入脉冲波长处有一反常色散和大于1W—11if1的非线性系数。第三级,光纤放大器I(130),是运作在波长范围2100nm和3500nm之间的一放大器,例如,基于铥(Thulium)和/或钬(Holmium)掺杂光纤的放大器系统。在一些实施例中,光纤放大器1(130)是一双级或多级放大器。在一些实施例中,除了放大它们的能量外,光纤放大器1(130)增加额外的光谱带宽和/或压缩脉冲,其是通过比如自相位调制的非线性过程增加额外的光谱带宽。所述放大器输出耦合进非线性波导2(140)内,该非线性波导是由一在中红外范围内透明的材料制成的。所述波导设计为,通过比如但不限制于自相位调制、调制不稳定性和拉曼散射的非线性过程光谱展宽所述输入脉冲。如果所述非线性波导2(140)有一近零色散点,其接近光纤放大器1(130)发出的脉冲的中心波长,且然后微调所述源至零色散波长,则是有利的,。如果所述非线性波导2在光纤放大器1(130)发出的脉冲的中心波长有反常色散,则是进一步有利的。
[0042]在本发明的另一实施例,一个或多个以下部件能被加到所述系统以提高其性能,如图2所示。
[0043]光纤放大器2(260):—光纤放大器能包括于所述MLFL(210)和非线性波导I (220)之间,所述放大器在波长范围从1900m到2100nm内有一增益,例如,一TM或ΤΜ/Η0掺杂光纤放大器。所述放大器有三个功能,第一,它将低功率MLFL的功率提升到用于拉曼自频移过程所需的功率水平,第二,它压缩来自所述锁模振荡器的脉冲,其提高了频移过程的效率,导致用于频移的脉冲的脉冲能量增大或脉冲宽度减小。第三,通过调节放大器增益,提供了用于调节波长偏移量的机构。所述波长调节用于输出的超连续谱参数的优化,包括该连续谱的光谱亮度、带宽、光谱平坦度、和相干性。
[0044]偏振控制器I(250):这个装置是一手动或自动的偏振控制器,其插入在所述MLFL(210)和非线性波导1(220)之间。通过自频移过程,所述偏振控制器被用作为控制波长漂移量的第二调节机构。为了额外的稳定性,一自动化控制器可被用于动态调节波长至光谱中的期望点。
[0045]值得注意的,是一个实施例中,偏振控制器1(250)能直接置于锁模光纤激光器(210)后或者在光纤放大器2(260)和非线性波导1(220)之间。
[0046]在一些实施例中,使用偏振保持光纤(polarizat1n maintaining fiber)构造所述MLFL(210)和光纤放大器2(260)。在这些情形中,仅使用光纤放大器2(260)的增益来调节波长偏移。
[0047]色散元件1(270):这个元件被包含于非线性波导1(220)之后,以在进入光纤放大器2(260)的脉冲上产生期望的啁啾量。所述组件包括一色散装置,包括但不限于光波导、啁啾布拉格光栅、棱镜对、衍射光栅对。在一些实施例中,所述色散值被设计为,通过该色散和放大器的非线性之间的相互作用,将光纤放大器1(230)的输出脉冲压缩至最短持续时间。在另一些实施例中,色散元件I被设计为增加脉冲持续时间以降低所述放大器中的非线性效应,在这些情形中,使用色散元件2(见下文)将所述脉冲重新压缩。所述色散值是通过监听输出超连续谱带宽、光谱平坦度、和相干性来选定的,目的是优化参数。
[0048]偏振控制器2(290):这个组件调节在进入光纤放大器I前的脉冲的偏振态。通过控制这个偏振态,能调节光纤放大器中的有效非线性,其用于优化光纤放大器I中的非线性脉冲压缩.
[0049]在一些实施例中,使用偏振保持光纤(polarizat1n maintaining fiber)构造光纤放大器1(230).在这些情形中,使用光纤放大器1(230)的增益来调节光纤放大器I中的非线性。
[0050]值得注意的是,在一个实施例中,偏振控制器2(290)能直接置于锁模光纤激光器(220)后或者在色散元件1(270)和光纤放大器I (230)之间。
[0051]色散元件2(280):这个组件包括在非线性波导2(240)之前,作为用于对在进入所述非线性波导的脉冲上的啁啾量进行调节的机构。所述组件包括一色散装置,包括但不限于光波导、啁啾布拉格光栅、棱镜对、以及衍射光栅对。所述色散值是通过监听如下参数的一个或多个来选定的:输出超连续谱光谱亮度、带宽、光谱平坦度,和相干性,目的是优化参数。
[0052]本发明的一实施例提供了一系统和一方法,用于稳定和调谐所述栗浦波长和脉冲形状,且因此通过调节光纤放大器I或2(330或360)的增益或所述偏振控制器I或2(350或390),来优化所述超连续谱的所述参数,如图3所示。如上所述,除了所述MLFL(310)、非线性波导1(320)、光纤放大器1(330)和非线性波导2(340),所述组件的一个或多个:偏振控制器I (350)、光纤放大器2(360)、色散元件I (370)、偏振控制器2(390)和色散元件2(380)是可选择包括在内的。通过借助反馈回路滤波器(395)从输出超连续谱光谱、从非线性波导1(320)的输出、或者从光纤放大器1(330)的输出接收反馈,所述变量(增益或偏振)是动态调节的,以稳定系统使其达到期望状态。调节参数以优化输出光谱平坦度、带宽和相干性。
[0053]具有两个种子(seed)波长的超连续谱(SC)生成技术
[0054]在一些情形中,有利的是,延伸或平滑所述超连续谱,来将通过一分束器(520)的两种不同的波长植入(seed)上文所述的非线性波导2(560),如图5所示。一个波长能通过MLFL(510)直接产生,而所述第二种子波长将通过非线性波导1(530)产生,并由光纤放大器1(540)放大。
[0055]在一些实施例中,光纤放大器3(580)用于提高从所述MLFL分离的功率。
[0056]在一些实施例中,一合波器(590)用于结合进入非线性波导2前的所述两路径中的光。
[0057]在一些实施例中,变量延迟元件(550)调节所述第一路径中的脉冲的延迟或者变量延迟元件(570)调节所述第二路径中的脉冲的延迟。
[0058]值得注意的是,在一个实施例中,这个方法能与在第二拉曼自频移部分的上述实施例结合。在这个情形中,通过所述MLFL产生一个波长,而通过非线性波导3产生所述第二种子波长。
[0059]利用波混频的飞秒MIR脉冲生成技术
[0060]在一个实施例中,如图6所示,来自所述MLFL(610)的光功率的一部分通过位于所述非线性波导1(630)之前的分束器(620)分离,并且该光功率的一部分在一波长转换装置(660)中与来自光纤放大器I (640)的输出混合。一可调延迟线(650)置于与时域内的脉冲对齐的光束路径上。在一些实施例中,一光纤放大器3(680)用于提高从所述锁模光纤激光器(610)输出分离的功率。在这种情形中,一额外的可调延迟线(670)可能置于所述光纤放大器3(680)之前。一些实施例中,一合波器(690)用于结合进入所述波长转换装置前的来自所述两路径的光。
[0061]有两个类别的装置用于波长转换。
[0062](a)差频产生装置
[0063]所述波长转换装置是由一具有第二阶光学非线性的材料制成的。在这个情形中,输出脉冲有一中心频率,这是来自所述MLFL和光纤放大器I的输出的中心频率之间的区别。所述生成脉冲有在3500nm和I 100nm之间的一中心频率。
[0064](b)四波混频装置
[0065]所述波长转换装置是基于非线性波导的,该非线性波导具有一零色散点,其接近于离开光纤放大器的脉冲的波长。在这种情形中,输出脉冲有一中心频率,其通过从光纤放大器I的输出脉冲中心频率的两倍减去锁模激光器输出脉冲的中心频率计算出。所述生成脉冲具有在230011111和1100011111之间的中心波长。
[0066]值得注意的是,在此说明的所述混频概念能与在第二拉曼自频移部分的上述实施例结合。所述混频能发生在非线性波导3和光纤放大器I的输出之间,或者发生在非线性波导3和光纤放大器3的输出之间。
[0067]—实施例涉及到在第二拉曼自频移部分中描述的配置,如图7所示。如上文所述,来自MLFL (710)的输出被耦合到非线性波导I (720),并且被光纤放大器I (730)放大。通过从非线性波导3(740)发送所述脉冲进入一带通滤波器(750),仅选择所述拉曼偏移组件,该组件在中心波长长于2100nm处包含一飞秒脉冲序列。所述系统产生2100nm和3000nm之间的脉冲。
[0068]值得注意的是,如在第二拉曼自频移部分所描述的,在一些实施例中,光纤放大器I还起一非线性波导的作用,其产生拉曼偏移光。在这些情形中,非线性波导3能从系统去除。
[0069]Mid-1R光谱系统
[0070]在一个实施例中,一完整的光谱系统能用上文描述的超连续谱源制造,如图8所示,所述系统包含三个主要的子系统:所述超连续谱源(810)、一样本处理单元(820)、和一光谱仪或干涉仪(830),用于分析来自样本的光的发送、反射或散射。在一些实施例中,所述光谱仪是一傅里叶变换红外光谱仪(FTIR)。所述样本处理单元(820)是任意安装件或附件(mount or enclosure),将允许来自超连续谱源(810)的光通过、反射或散射离开样品。所述样品可以是液体、气体或固体形式的任何材料。所述用于调谐超连续谱光谱性能的方法,通过在调谐超连续谱输出光谱期间执行多光谱扫描,能用于最大化所述系统的光谱范围。
[0071]虽然本发明相当详细地叙述了具有某些特殊性的几个实施例,但不意味着本发明限定于任何此类实施例或任何特定的实施例中,但本发明将根据附加的权利要求进行解释,以从现有技术的角度提供这类权利要求的最广泛的可能解释,因而能有效地涵盖本发明的预期范围。进一步地,以上描述了根据发明人所预知实施例的本发明,所述实施例中已有一个可用的使能描述,虽然本发明做了轻微的修改,并且目前不能预知,但是仍然可以代表其等同物。
【主权项】
1.一种超连续谱系统,包括: 一光纤激光器(110),其配置为输出具有中心波长的脉冲; 一第一非线性波导(120 ),其配置为偏移来自所述光纤激光器的脉冲的波长; 一至少一级的第一光纤放大器(130),其配置为放大来自所述第一非线性波导的输出;和 一第二非线性波导(140),其配置为光谱展宽来自所述第一光纤放大器的输出。2.根据权利要求1所述的系统,其中,所述光纤激光器(110)输出一脉冲,其支持短于Ips的有限变换脉冲宽度以及具有1500nm和1650nm之间的中心波长。3.根据权利要求2所述的系统,其中,所述第一非线性波导(120)偏移来自所述光纤激光器(110)的输出波长,使其长于1700nm并短于2800nmo4.根据权利要求3所述的系统,其中,所述光纤放大器(130)在波长范围1700nm和1800nm之间运行。5.根据权利要求1所述的系统,其中,所述第二非线性波导(140)是由在中红外范围有一些透明度的材料制成的。6.根据权利要求1所述的系统,其中,所述第二非线性波导(140)有一近零散射点,其接近于离开所述光纤放大器的脉冲的中心波长。7.根据权利要求1所述的系统,其中,所述第二非线性波导(140)在离开所述光纤放大器的脉冲的中心波长处有反常散射。8.根据权利要求1所述的系统,进一步包括一第二光纤放大器(260),其配置为提升来自锁模光纤激光器的功率和控制波长偏移量。9.根据权利要求1所述的系统,进一步包括一第一偏振控制器(250),其通过一拉曼孤子自频移过程控制波长偏移量。10.根据权利要求1所述的系统,进一步包括一第一色散元件(270),其配置为在进入所述第二光纤放大器的脉冲上产生一期望值的啁啾量。11.根据权利要求1所述的系统,进一步包括一第二偏振控制器(290),其配置为调节进入所述第一光纤放大器的脉冲的偏振态。12.根据权利要求1所述的系统,进一步包括一第二色散元件(280),其配置为调节进入所述第二非线性波导的脉冲上的啁啾量。13.根据权利要求1所述的系统,进一步包括一第三偏振控制器(290),其配置为调节进入所述第二非线性波导的脉冲的偏振态。14.根据权利要求1所述的系统,进一步包括一第三非线性波导(450),其置于所述第一光纤放大器和所述第二非线性波导之间,以偏移来自所述第一光纤放大器的输出的波长。15.根据权利要求1所述的系统,进一步包括一分束器,其位于所述第二光纤放大器之后,用于将所述光纤激光器的输出分为第一路径和第二路径,第一路径上的输出耦合到所述第一非线性波导,且来自所述第一光纤放大器的光与所述第二路径的输出结合,并耦合到所述第二非线性波导,目的是将两种不同的波长植入第二非线性波导。16.根据权利要求1所述的系统,进一步包括一分束器(520),其位于所述光纤激光器之后,用于将所述光纤激光器的输出分为第一路径和第二路径,第一路径上的输出耦合到所述第一非线性波导,且来自所述第一光纤放大器的光与所述第二路径的输出结合,并耦合到所述第二非线性波导,目的是将两种不同的波长植入第二非线性波导。17.根据权利要求16所述的系统,进一步包括一可变延迟线(550,570),其位于第一路径上或位于第二路径上。18.根据权利要求16所述的系统,进一步包括一第三光纤放大器(580),其位于第二路径上。19.根据权利要求1所述的系统,进一步包括一带通滤波器(750),其配置为在输出脉冲里选择一光谱带。20.用于操作超连续谱系统的一方法,该系统包括:一光纤激光器(110),其配置为输出具有一中心波长的脉冲;一第一非线性波导(120),其配置为偏移来自所述光纤激光器的脉冲的波长;一具有至少一级的光纤放大器(130),其配置为放大来自所述第一非线性波导的输出;和一第二非线性波导(140),其配置为光谱展宽来自所述第一光纤放大器的输出,所述方法包括: 从所述第一光纤放大器的输出或者所述第二非线性波导的输出接收反馈;和 调节进入所述第二非线性波导的脉冲的峰值功率、能量、波长或者偏振。21.—光谱系统,包括: 根据权利要求1所述的超连续谱系统; 一样本处理单元,其配置为引导来自超连续谱系统输出的光穿过或反射离开一样本;和 一光谱仪或干涉仪,其配置为分析穿过样本、反射离开样本或者被样本散射的光。22.用于提高光谱系统的光谱范围的一方法,该光谱系统包括:一光纤激光器,其配置为输出具有一中心波长的脉冲;一第一非线性波导,其配置为偏移来自所述光纤激光器的脉冲的波长;至少一级的一第一光纤性放大器,其配置为放大来自所述第一非线性波导的输出;一第二非线性波导,其配置为光谱展宽来自所述第一光纤放大器的输出;一样本处理单元,其配置为引导来自所述超连续谱系统的光输出,使其通过或者反射离开一样本;和一光谱仪或干涉仪,其配置为分析通过样本、反射离开样本或被样本散射的光,所述方法包括:当调节所述超连续谱的一个或多个参量时执行多光谱测量。
【文档编号】H01S3/067GK106030934SQ201580009941
【公开日】2016年10月12日
【申请日】2015年1月5日
【发明人】R·萨利姆, P·芬德尔, A·凯布尔
【申请人】统雷有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1