电源管理拓扑结构的制作方法

文档序号:7486190阅读:237来源:国知局
专利名称:电源管理拓扑结构的制作方法
技术领域
本实用新型涉及电源管理系统,更具体的是涉及用于电子装置的各种电源管理拓扑结构。
技术背景各种便携式电子装置都有一个电源管理系统,该系统监视、控制并引导各种电源给电子装置的系统负载供电。这些电源通常都包括一个固定输出的交流直流(ACDC)适配器和一个或多个可充电电池。该电源系统包括一个电源转换模块,例如,一个直流/直流转换器,该转换器可把ACDC适配器提供的固定直流电压转换为一个精确的可控制的可变输出直流电压给电池充电。
电源系统从ACDC适配器或主电池供电给系统,如果符合适当的条件,并进行电池充电。如此,通常有一个用于选择性的连接ACDC适配器和系统的ACDC电源开关,一个用于选择性的连接主电池和系统的电池开关,以及一个连接主电池和直流/直流转换器的输出来充电的充电开关。当系统由ACDC适配器供电时,ACDC电源开关闭合,而电池开关断开,充电开关可以是闭合或者断开。相反,当系统由电池供电时,电池开关闭合,而ACDC电源开关和充电开关皆断开。
为了使电池充电达到其最大工作电压,ACDC适配器的输出电压通常选择为高于电池的最大工作电压(通常至少高出1至2伏)。因为ACDC适配器的输出电压为固定值,而电池的输出电压可能变化很大(根据充电状态),所以ACDC适配器和电池不能在某段时间并联给系统负载供电。这种电压差异会导致产生高电压电源(ACDC适配器)到低电压电源(电池)之间的不需要的内部电流。结果是,为了解决系统的暂时高电压需要,ACDC适配器通常会超尺寸,从而大大增加了电源系统的成本。
另外,因为ACDC适配器的输出电压固定,它的输出电压不能用来给要求精确充电电压和电流控制的电池充电。如此,必须有一个由直流/直流转换器完成第二步电源转换。第二步电源转换进一步造成了成本的增加并且降低了电源系统的总效率。
因此,本领域对电源管理拓扑结构存在一种需要,即电源管理拓扑结构能仅用一步电源转换就可提供一个可控制直流输出给系统负载和电池,或能使相并联的可控制直流电源和电池给系统负载供电,或者同时具有上述两个特征。
实用新型内容根据本实用新型,一种电源拓扑结构包括一个与可控制直流电源相连的第一路径;一个与电池相连的第二路径;一个与系统负载相连的第三路径;所述第一、第二和第三路径连接于一个公共节点;一个与第一路径相连的第一开关,该第一开关允许可控制直流电源和系统负载经由公共节点选择性连接;和一个与第二路径相连的第二开关,该第二开关允许电池与公共节点选择性相连。
根据本实用新型,另一个实施例给出的一种电源拓扑结构包括一个可控制直流电源;一个与可控制直流电源相连的第一路径;一个与电池相连的第二路径;一个与系统负载相连的第三路径;所述第一、第二和第三路径连接于一个公共节点;一个与第一路径相连的第一开关,该第一开关允许可控制直流电源和系统负载经由公共节点选择性连接;和一个与第二路径相连的第二开关,该第二开关允许电池与公共节点选择性相连。
根据本实用新型,又一个实施例给出的一种电子装置包括一个引导电源给电子装置的各个部件供电的电源拓扑结构。根据本实用新型,电子装置包括一个电源拓扑结构,该电源拓扑结构包括一个与可控制直流电源相连的第一路径;一个与电池相连的第二路径;一个与系统负载相连的第三路径;所述第一、第二和第三路径连接于一个公共节点;一个与第一路径相连的第一开关,该第一开关允许可控制直流电源和系统负载经由公共节点选择性连接;和一个与第二路径相连的第二开关,该第二开关允许电池与公共节点选择性相连。
根据本实用新型,又一个实施例给出的一种电子装置包括一个可控制直流电源;一个与可控制直流电源相连的第一路径;一个与电池相连的第二路径;一个与系统负载相连的第三路径;所述第一、第二和第三路径连接于一个公共节点;一个与第一路径相连的第一开关,该第一开关允许可控制直流电源和系统负载经由公共节点选择性连接;和一个与第二路径相连的第二开关,该第二开关允许电池和公共节点选择性相连,其中第一开关和第二开关有一个响应电源管理控制拓扑结构的控制信号的导通状态。
根据本实用新型,又一个实施例给出的一种电源系统包括一个具有动态可控制输出电源参数的可控制直流电源;一个用来控制输出电源参数并选择第一电源模式的电源管理控制拓扑结构,其中可控制直流电源给系统负载供电。


图1所示为一种有电源拓扑结构的电子装置的高层框图,该电源拓扑结构包括一个可控制直流电源和一个电源管理控制拓扑结构;图2所示为图1中电子装置的电源拓扑结构的一个实施例的高层框图,其中可控制直流电源为一个可控制适配器;图3所示为图1中电子装置的电源拓扑结构的另一个实施例的高层框图,其中可控制直流电源为一个可以从固定输出适配器接收电源的直流/直流转换器。
图4所示为图2中电源拓扑结构的一个实施例的详细框图,其中可控制直流电源为一个可控制适配器,电池源包括多个电池,电源系统包括一个适配器检测电阻、一个系统检测电阻和一个用于每个电池的检测电阻;图5所示为图2中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个可控制适配器,电池源包括多个电池,电源系统包括一个适配器检测电阻和一个用于每个电池的检测电阻;
图6所示为图2中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个可控制适配器,电池源包括多个电池,电源系统包括一个系统检测电阻和一个用于每个电池的检测电阻;图7所示为图2中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个可控制适配器,电池源包括多个电池,电源系统包括一个适配器检测电阻和一个用于电池源的电池检测电阻;图8所示为图2中的电源拓扑结构的的另一个实施例的详细框图,其中可控制直流电源为一个可控制适配器,电池源包括多个电池,电源系统包括一个系统检测电阻和一个用于多个电池的电池检测电阻;图9所示为图3中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个固定输出适配器,电池源包括多个电池,电源系统包括一个适配器检测电阻、一个系统检测电阻和一个用于每个电池的检测电阻;图10所示为图3中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个直流/直流转换器,电池源包括多个电池,电源系统包括一个位于直流/直流转换器输出端的直流/直流转换器检测电阻和一个用于每个电池的检测电阻;图11所示为图3中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个直流/直流转换器,电池源包括多个电池,电源系统包括一个系统检测电阻和一个用于每个电池的检测电阻;图12所示为图3中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个直流/直流转换器,电池源包括多个电池,电源系统包括一个适配器检测电阻和一个用于电池源的电池检测电阻;图13所示为图3中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个直流/直流转换器,电池源包括多个电池,电源系统包括一个系统检测电阻和一个用于电池源的电池检测电阻;图14所示为图3中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个直流/直流转换器,电池源包括多个电池,电源系统包括一个位于直流/直流转换器输出端的直流/直流转换器检测电阻和一个用于电池源的检测电阻;图15所示为图3中电源拓扑结构的另一个实施例的详细框图,其中可控制直流电源为一个直流/直流转换器,电池源包括多个电池,电源系统包括一个位于固定适配器输出端的适配器检测电阻和一个用于每个电池的检测电阻。
具体实施例图1所示为电子装置100的一个简要框图,该电子装置100包括一个可由可控制直流电源104或一个电池105,或者由可控制直流电源104和电池105相并联供电的系统负载110。表格180所示开关SW1和SW2在各种电源模式下的位置。在一个实施例中,可控制直流电源104可以是在此进一步详述的可控制适配器,例如一个ACDC适配器,该适配器只需一步电源转换即可给系统负载110和电池105供电。如此,通常用于其它电源系统的额外的电源转换步骤(例如,一个直流/直流转换器提供一个精确的控制输出给电池来充电)在该实施例得以避免。
电子装置100可以是本领域所知的各种装置,例如笔记本电脑、手提电话、个人数据助理、电动工具、电力驱动车辆等等。可控制直流电源104提供一个动态的可控制直流输出,如下各个实施例将详述电源104可以为可控制适配器或直流/直流转换器。可控制直流电源104可以独立于或集成于电子装置100。电池105包括一个或多个电池。电池可以是各种类型的充电电池,例如,锂离子电池、镍镉电池、镍金属氢化物电池等。
可控制直流电源104可以经由开关SW1和路径114选择性的连接于节点116。电池105可以经由开关SW2和路径118选择性的连接于节点116。系统负载110也可以经由路径121连接于节点116。
通常,根据本实用新型,电源管理控制拓扑结构130在各个状态下监视、控制并引导电源104、105给系统负载110和其他(例如电池充电)供电。电源管理控制拓扑结构130可由路径141接收到各种输入信号。这些输入信号说明各种负载状态、供电状态和/或指令信号。电池105的供电状态可以为一个功率状态,例如电池105的输出电压或输出电流。同样,可控制直流电源104的供电状态可以为一个功率状态,例如电源104的输出电压或输出电流。系统负载110的负载状态可以为一个功率状态,例如在任何特定时刻系统负载需要的电压值或需要的电流值。本领域的技术人员将知道提供这些输入信号给电源管理控制拓扑结构130的各种方式。例如,可以用一个电流检测电阻与相应的电源路径114、118、121相串联来提供一个表示各个路径电流的信号。
通常电源管理控制拓扑结构130能通过经由路径133的输出控制信号动态的调节可控制直流电源104的输出参数,例如输出电压值,并能通过经由路径20的输出控制信号通过控制开关SW1和SW2的状态从而在多个供电模式中选取其一。
有利的是,在一个实施例中,电源管理控制拓扑结构130可以选择一种如表格180详述的供电模式185,使得可控制直流电源104和电池105相并联来给系统负载110供电。并联可控制直流电源104和电池105存在的问题是两者之间的电压值的不同导致高电压源到低电压源的不需要的内部电流。

表格180该不需要的内部电流可以通过单向和选择性单向开关允许电流流向一个方向而阻止其往另一个方向而被消除。例如,如表格180中的允许电流的箭头所示,在缓冲器电池供电模式185下,开关SW2可以为一个选择性单向开关,而开关SW1可以为一个单向开关。另外,开关SW2可以为一个双向放电开关,电池电压变化时,例如根据其充电状态而变化,可控制直流电源104和电池105之间不需要的内部电流可以通过保持可控制直流电源104的电压值在电池105的电压值的允许公差范围内来控制。并联供电模式185可以通过经由路径141接收到的指令信号来选择。该供电模式185还可以通过响应电源危险状况来选择。当系统负载110的负载需求超过可控制直流电源104的单独最大功率和超过电池105的单独最大功率时,就会产生电源危险状况。但是,在必要持续时间内,电源可以提供足够的电源来满足系统负载110的这种负载需求。因此,可控制直流电源104不需要加大尺寸来解决该问题。
在该并联电源供电模式185中,电源管理控制拓扑结构130通过控制开关SW1和SW2的状态有效的阻止可控制直流电源104和电池105之间的交叉传导。开关SW2可以是选择性单向开关,而开关SW1可以是一个单向开关。就是说,开关SW2可以根据选择的供电模式在其闭合时允许电流只流向一个方向,或者断开。当系统负载110仅由可控制直流电源供电(因此开关SW1为闭合)且没有任何充电时(供电模式181),开关SW2可以断开。
开关SW2有一个第一放电闭合状态,此时电流通常只允许从电池流出。例如,在该第一放电闭合状态,电流允许从电池105流向系统负载110,但不允许电流从可控制直流电源104流向电池105。另外,开关SW2还有一个第二充电闭合状态,此时电流只允许流向电池。例如,在该第二充电闭合状态,电流允许从可控制直流电源104流向电池105,且不允许从电池105流向系统负载110。开关SW1可以为一个单向开关,当开关SW1闭合时,电流只允许从可控制直流电源104流向节点116。
因此在控制直流电源104和电池105同时给系统负载110供电的并联供电模式185下,开关SW2可以闭合于第一放电状态,且开关SW1可以闭合。因此电池105可以供电给系统负载110,而从可控制直流电源104到电池105的不需要内部电流被开关SW2阻止。另外,从电池105到可控制直流电源104的不需要内部电流被单向开关SW1阻止。
本领域的技术人员将知道各种可以实现选择性单向开关方式。例如,可以采用相互串联的一对开关,和一对与每个开关向并联的二极管。一个特殊的二极管可以阻止电流流向一个方向,而一个闭合开关可以允许电流流向另一个方向。
有利的是,电源管理控制拓扑结构130可以选择另一种供电模式181或183,此时可控制直流电源104给系统负载110供电。在该例中电池105可以充电(在表格180的供电模式183下)或不充电(在表格180的供电模式181下)。在这些供电模式中,电源管理拓扑结构130的一个经由路径141的输入信号表示系统负载110的一个功率需求,例如,电压需求、电流需求等等。有利的是,电源管理拓扑结构130能响应信号来调节可控制直流电源104的输出参数,例如输出电压值、输出电流值等等来满足系统负载110的需要。在一个例子中,电源管理拓扑结构130调节可控制直流电源104的输出电压值,使其处在预先设定的系统负载110的电压需求范围内。因此,功率损耗就是有限的。
图2所示,图1中的可控制直流电源104可以为一个可控制适配器104a。在该实施例中有利的是,仅需要一步电源转换(例如,从控制器适配器的输入电压到可控制输出直流电压)就能给系统负载110供电和给电池105充电。如此,额外的电源转换步骤(例如,从直流/直流转换器到电池进行充电)会妨碍提高电源效率。图2所示的实施例中,之前所述的缓冲器电池供电模式可以根据想要的供电系统需求存在(如表格180)或不存在(如表格190)。

表格190除了可控制适配器104a以外,图2所示的供电系统的其它部件和图1中的相似且标号相同。因此,为清楚起见在此省略对这些部件重复的描述。可控制适配器104a可以进一步为一个可控制交流/直流适配器,该适配器接收常规交流电压,并响应来自电源管理控制拓扑结构130的经由路径133的控制信号将其转换为可控制直流电压。可以由电源管理控制拓扑结构控制的可控制适配器104a的参数包括,但不限于输出电压、最大输出功率、最大输出电流、启动时间、启动配置文件等等。可控制适配器104a的输出电压可以根据电源管理控制拓扑结构130的控制被动态调节。
如图3所示,图1中的可控制直流电源可以是一个与路径114相连的直流/直流转换器104b。与路径114相连的还有一个开关SW1和固定适配器302。如图所示,开关SW1与路径114相连且位于直流/直流转换器104b和节点116之间。另外,开关SW1也可以连在固定适配器302和直流/直流转换器104b之间的路径114,这在图9到图15的实施例中将进一步详述。
图3所示的实施例中进行了两步电源转换,而不是图2所示的一步电源转换。即固定适配器302和直流/直流转换器104b的电源转换。图3所示的实施例仍然能使电源系统工作在缓冲器供电模式185,例如,如前所述使得电池105和可控制直流电源104b同时给系统负载110供电。除了直流/直流转换器104b和固定适配器302以外,图3所示的供电系统的其它部件和图1所示的相似且标号相同。因此,为清楚起见在此省略对这些部件重复的描述。
直流/直流转换器104b可以是由任何来自电源控制拓扑结构130、经由路径303的各种控制信号控制的各种转换器。在一个实施例中,直流/直流转换器104b可以为本领域公知的具有一个高端开关、一个低端开关和一个LC滤波器的降压型转换器。来自电源控制拓扑结构130的控制信号可以是一个脉宽调制(PWM)信号。PWM信号的脉宽控制“开关闭合”状态的持续时间(高端开关闭合且低端开关断开)和“开关断开”状态的持续时间(高端开关断开且低端开关闭合),从而控制直流/直流转换器104b的输出电压和电流。
如图4到图8所示,本实用新型的多个实施例中的供电系统都有一个类似可控制直流电源104的可控制适配器104a和两个电池(电池A和电池B)。如此,图4到图8所示的实施例中,由于可控制适配器104a给系统负载110和电池105供电而只有一步电源转换。该一步电源转换的实施例可以与如前所述的使电池和可控制直流电源同时给系统负载110供电的缓冲器供电模式独立使用,或一起使用。
相反,下面进一步详述的图9到图15的另外的实施例为具有一个类似可控制直流电源104的可控制直流/直流转换器104b和两个电池(电池A和电池B)。因此图9到图15的实施例由于一个固定适配器302和直流/直流转换器104b至少有两次电源转换。
图4所示的实施例具有如前所述的图1和图2实施例的所有功能。但是,图4所示的实施例可能有或可能没有如前所述的电池和可控制直流电源相并联来给系统负载110供电的缓冲器供电模式。例如,一个特定的供电系统可能只需要一步电源转换而不需要缓冲器供电模式。
图4的一些部件和图2的一些部件相似,且标号相同。因此,为清楚起见在此省略对重复部件和功能的重复描述。通常,可控制交流/直流104a、电池A、或电池B中的一个或组合可以通过电源管理控制拓扑结构130的控制在任何时间给系统负载110供电。系统负载110经由路径121在节点116接收电源。可控制适配器104a可以选择性的经由开关SW1和路径114连接于节点116。电池A可以选择性的经由开关SW2A和路径118a连接于节点116。同样,电池B可以选择性的经由开关SW2B和路径118b连接于节点116。开关SW1可以为一个独立外部开关。开关SW1还可以是一个如前所述的单向开关。开关SW2A和开关SW2B可以是独立开关或分别嵌入于电池包10a和11a,例如,用于延长电池使用寿命的方式。采用嵌入于电池包的电源开关能减小电源开关的数量和相关的消耗功率。开关SW2A和开关SW2B也可以是如前所述的单向开关。
如前所述,电源管理控制拓扑结构130可以接收经由各个路径的各个输入信号。图4所示的实施例中,在图4的实施例中,一个适配器检测电阻4、一个系统检测电阻3、一个电池A检测电阻7和一个电池B检测电阻5提供表示各自电源路径上的电流值的输入信号给电源管理控制拓扑结构130。例如,适配器检测电阻4提供一个表示来自可控制适配器104a的经由路径114的电流的数据信号。系统检测电阻3提供一个表示来自给系统负载110供电的任何电源组合的经由路径121电流的数据信号。电池A检测电阻7提供一个表示来自或流向电池A的经由路径118a的电流的数据信号。最后,电池B检测电阻5提供一个表示来自或流向电池B的经由路径118b的电流的数据信号。
另外,表示电池A电压值(VFB_A)、电池B电压值(VFB_B)和系统负载(VFB_SYS)电压值的输入信号也可以输入电源管理控制拓扑结构130。另外,输入信号,例如指令和数据信号也可以从一个主电源管理单元(PMU)12通过主机总线22输入电源管理控制拓扑结构130。PMU12可运行本领域公知的各种电源管理程序。这些来自PMU12的输入信号包括,但不限于充电电流、充电电压、适配器控制预置电压、适配器功率极限、适配器电流极限、适配器存在、电池存在、多个警告信号例如,过电压、过热、过电流充电、适配器104a或系统110超功率。主机总线22具有多条线,并能传送任何模拟和数字指令信号的组合。例如,主机总线可以是SMBus,如果PMU12用来运行SMBus协议程序。PMU12可以是一个独立的元件或可以嵌入电子装置100的更加复杂的处理器。
另外,电池A和电池B的电池总线24可以提供另外的信息给电源管理控制拓扑结构130。通过该总线24提供的信息可以表示各种参数,包括但不限于充电电流、充电电压、电池存在、多个警告信号例如过电压、过热或过电流。
电源管理控制拓扑结构130包括一个主机接口13,多个电流检测放大器14、15、17、18,相应的控制和数据路径和一个判定电路16。判定电路16还包括一个选择电路409,该选择电路409经由总线20提供第一组的输出信号来控制开关SW1、SW2和SW2B的状态。判定电路16还可以包括一个控制电路411,该控制电路411经由路径133提供第二组的输出信号来控制可控制适配器104a的输出参数。
主机接口13是一个普通接口,其用来接收来自PMU12的一系列输入信号、并经由内部信号总线23输出转换后的一系列信号传送给判定电路16。传送给判定电路16的信号可以包括对电池A、电池B、可控制适配器104a和系统负载110的电压和电流极限。主机接口13可接收来自PMU12的模拟和数字信号。
如果PMU12提供数字信号,主机接口可以是各种数字接口,例如SMBus或I2C接口。该例中,接口13还可以包括一个多路转换器(MUX)和数模转换器(DAC),来把数字信号转换为模拟信号且提供恰当数量的模拟信号给判定电路16。MUX可以有任何数量的信道,其数量部分取决于提供给判定电路16的信号数量。
因为检测电阻通常都很小,所以需要多个电流检测放大器14、15、17、18来放大各自的检测电阻3、4、5、7上的信号。例如,检测放大器14放大系统检测电阻3上的电压降,并提供表示经由路径121的电流的ISYS信号。检测放大器15放大适配器检测电阻4上的电压降,并提供表示经由路径114的电流的IDA信号。检测放大器17放大电池B检测电阻5上的电压降,并提供表示经由路径118b的电流的ICDB信号。最后,检测放大器18放大电池A检测电阻7上的电压降,并提供表示经由路径118a的电流的ICDA信号。
分别来自检测放大器14、15、17、18的ISYS、IDA、ICDB和ICDA信号接着提供给判定电路16,且更具体的是提供给判定电路16的控制电路411部分。另外,表示系统负载110电压值的VFB_SYS信号、表示电池B电压值的VFB_B信号和表示电池A电压值的VFB_A信号也可以提供给判定电路16,且更具体的是提供给判定电路16的控制电路411部分。
控制电路411接收这些输入信号ISYS、IAD、ICDB、ICDA、VFB_SYS、VFB_B和VFB_A,并把这些信号与例如由PMU12提供的各个门限值相比较。基于这些比较结果,控制电路411提供第一组的输出信号经由适配器控制总线133来控制适配器104a的输出参数,例如输出电压值。
第一组的输出信号控制可控制适配器104a的一个或多个输出参数,因此供电系统完成各种任务,包括如前图1和图2所述的各种任务。另外,这些任务还可以包括,但不限于下述任务中的至少一个提供所有需要的适配器电流至一个适配器的最大输出电流值,或至系统负载110的供电极限;如果需要,还可以提供充电电流给电池源105充电;在一个充电模式期间限制传送至电池105的总充电电流处于适配器104a的最大输出电流值和系统负载110所需的电流之间;提供最大充电电流给每个电池(电池A和电池B),只要任何一个电池未达到最大充电电压;提供高达最大充电电流给电压最低的电池,只要任何一个电池未达到最大充电电压;和当没有电池或没有接收到充电请求时,提供一个最大供电电压给系统负载110。
本领域的技术人员将知道判定电路16的控制电路411部分的功能可以通过纯硬件、纯软件或两者的组合实现的各种方式。例如,采用硬件,控制电路411可以包括多个误差放大器用来把信号ISYS、IAD、ICDB、ICDA、VFB_B和VFB_A和一个与每个被监测的参数相对应的最大门限值相比较。多个误差放大器可以为一个模拟“线或(wired-OR)”电路,使得误差放大器首先检测到超出相应最大值的状态,然后控制指令信号给可控制适配器104a。如果已达到最大门限值,一个相应的输出信号就被送到可控制适配器104a,例如,来减小适配器104a的一个输出功率参数。
判定电路16经由选择器输出总线20提供的第二组的输出信号控制开关SW1、SW2和SW2B的状态,从而使得供电系统有各种供电模式。该第二组输出信号可由判定电路16的选择器电路409提供。因此,连接电源(适配器104a、电池A和电池B)和系统负载110或电源间(例如,充电期间)的各种电源路径根据实际供电状况、事件和PMU12的请求而产生。根据特定的处理算法,可以采用各种硬件和/或软件处理各种给判定电路16的选择器电路409的输入信号。该算法必须能判断相应的驱动信号来驱动开关SW1、SW2和SW2B处于闭合或者断开状态,从而来完成各种任务,包括但并不限于下述任务中的至少一个只要至少一个电源(交流/直流适配器104a、电池A和电池B)存在,就保证连续给系统负载110供电;根据PMU12请求,连接相应的电池(或多个)至充电路径;根据PMU12请求,连接相应的电池(或多个)至放电路径从而给系统负载110供电;消除电池间(当多个电池相并联时)和交流/直流适配器与电池之间的交叉传导;独立解决任何电源危险事件,例如电源连接/断开、短路等等其它相类似情况;和当主机PMU12不能发送相应的控制信号时,独立且安全的控制供电系统。
为了完成这些任务,尤其是需要使用两个或者两个以上的电池(例如,消除电池之间的交叉传导)的任务,就要参考2003年2月11提交的美国专利申请10/364,288,其教义在此引作参考,其披露的选择器电路可用作本实用新型的电源系统实用新型的一部分。
图5-8所示为本实用新型图1和图2的电源系统的另外几个实施例,其包括一个可控制适配器104a和两个电池(电池A和电池B)。总的说来,图5-8所示的实施例和如前所述的图4的实施例的主要差别在于用于各种电源路径的检测电阻的数量。另外,除了当采用较少的检测电阻时判定电路不能接收更多的输入信号之外,这些实施例的功能与图4所述的相同。图5所示的实施例具有一个适配器检测电阻4、一个电池A检测电阻7和一个电池B检测电阻5。图6所示的实施例具有一个系统检测电阻3、一个电池A检测电阻7和一个电池B检测电阻5。图7所示的实施例具有一个适配器检测电阻4和一个检测流经路径118的检测电流的电池检测电阻5。最后,图8的实施例具有一个系统检测电阻3和一个检测流经路径118的检测电流的电池检测电阻5。
图9-15所示为本实用新型图1和图3电源系统的另外几个实施例,其包括一个作为可控制直流电源104的直流/直流转换器104b、一个固定适配器302和作为电池源105的两个电池(电池A和电池B)。总的说来,图9-15所示的实施例和如前所述的图1和图3的主要差别在于用于各种电源路径的检测电阻的数量和位置。
图9所示的实施例具有一个适配器检测电阻2、一个系统检测电阻3、一个电池A检测电阻7和一个电池B检测电阻4。图10所示的实施例具有一个适配器检测电阻4、一个电池A检测电阻7和一个电池B检测电阻5。图11所示的实施例具有一个系统检测电阻3、一个电池A检测电阻7和一个电池B检测电阻5。图12所示的实施例具有一个适配器检测电阻4和一个检测流经路径118的电流的电池检测电阻5。图13所示的实施例具有一个系统检测电阻3和一个检测流经路径118的电流的电池检测电阻5。图14所示的实施例具有一个与直流/直流转换器104b的输出路径相串联的直流/直流转换器检测电阻3和一个电池检测电阻5。最后,图15所示的实施例具有一个与固定适配器302的输出和直流/直流转换器104b的输入相连接的适配器检测电阻4、一个电池A检测电阻7和一个电池B检测电阻5。
值得重视的是,本实用新型的电源管理控制拓扑结构的实施例所描述的功能可以采用软件,或硬件和软件的组合,和熟知的信号处理技术来完成。如果用软件来实现,则需要一个处理器和机读媒体。处理器可以是能提供本实用新型实施例所需要的速度和功能的任何类型的处理器。例如,该处理器可以是英特尔公司生产的Pentium处理器系列,或者摩托罗拉生产的处理器系列。机读媒体包括任何能够存储处理器执行的指令的媒体。这些媒体包括,但不限于只读存储器(ROM)、随机存取存储器(RAM)、可编程只读存储器(PROM)、可擦写可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、动态随机存取存储器(DRAM)、磁盘(例如软盘和硬盘)、光盘(例如CD-ROM)和其它可以存储数字信息的装置。在一个实施例中,指令以压缩和/或加密格式存储在媒体中。
在此所描述的实施例是一些利用本实用新型的具体例子,在此以这种方式来描述,但不仅限于此。显然,令本领域技术人员显而易见的许多其它的实施例都不脱离本实用新型的精神和权利要求的范围。
权利要求1.一种电源管理拓扑结构,其特征在于,所述电源管理拓扑结构包括一个与一个可控制直流电源相连的第一路径;一个与一个电池相连的第二路径;一个与一个系统负载相连的第三路径,其中所述第一、第二和第三路径连接于一个公共节点;一个与所述第一路径相连的第一开关,所述第一开关允许所述可控制直流电源经由所述公共节点与所述系统负载选择性相连;和一个与所述第二路径相连的第二开关,所述第二开关允许所述电池与所述公共节点选择性相连。
2.根据权利要求1所述的电源管理拓扑结构,其特征在于所述第一开关闭合且所述第二开关断开时为第一供电模式,此时由所述可控制直流电源给所述系统供电。
3.根据权利要求1所述的电源管理拓扑结构,其特征在于所述第二开关包括一个具有一个选择性单向开关,所属选择性单向开关的第一放电闭合位置构造来允许电流沿所述第二路径朝第一方向从所述电池流向所述系统负载,并阻止电流朝与所述第一方向相反的第二方向沿所述第二路径流动。
4.根据权利要求3所述的电源管理拓扑结构,其特征在于所述第一开关闭合且所述第二开关闭合于所述第一放电位置时为并联供电模式,此时允许所述可控制直流电源和所述电池相并联给所述系统负载供电。
5.根据权利要求3所述的电源管理拓扑结构,其特征在于所述第二开关还包括一个允许电流沿所述第二路径朝所述第二方向流动并阻止电流沿所述第二路径朝所述第一方向流动的第二充电闭合位置,所述第一开关闭合且所述第二开关闭合于所述第二充电闭合位置时为充电模式,此时允许所述可控制直流电源给所述系统负载和所述电池供电。
6.一种电源管理拓扑结构,其特征在于,所述电源管理拓扑结构包括一个可控制直流电源;一个与所述可控制直流电源相连的第一路径;一个与一个电池相连的第二路径;一个与一个系统负载相连的第三路径,其中所述第一、第二和第三路径连接于一个公共节点;一个与所述第一路径相连的第一开关,所述第一开关允许所述可控制直流电源经由所述公共节点与所述系统负载选择性相连;和一个与所述第二路径相连的第二开关,所述第二开关允许所述电池与所述公共节点选择性相连。
7.根据权利要求6所述的电源管理拓扑结构,其特征在于所述可控制直流电源包括一个直流/直流转换器。
8.根据权利要求7所述的电源管理拓扑结构,其特征在于还包括一个通过所述第一路径与所述直流/直流转换器相连的固定直流电源;其中,通过所述固定直流电源接收一个输入电压并把所述输入电压转换为一个固定直流输出电压完成第一步电源转换,再通过所述直流/直流转换器接收所述固定直流输出电压并把所述固定直流输出电压转换为一个直流输出电压完成第二次电源转换。
9.根据权利要求8所述的电源管理拓扑结构,其特征在于所述第一开关连接在所述固定直流电源和所述直流/直流转换器之间。
10.根据权利要求8所述的电源管理拓扑结构,其特征在于所述第一开关连接在所述直流/直流转换器和所述公共节点之间。
11.根据权利要求6所述的电源管理拓扑结构,其特征在于所述可控制直流电源包括一个可控制适配器。
12.根据权利要求11所述的电源管理拓扑结构,其特征在于通过所述可控制适配器接收一个输入电压并把所述输入电压转换为一个输出直流电压完成第一步电源转换,从而在所述第一供电模式下给所述系统负载供电。
13.根据权利要求11所述的电源管理拓扑结构,其特征在于所述可控制适配器包括一个交流/直流适配器。
14.一种电子装置,其特征在于所述电子装置包括一个给其各种元件供电的电源管理拓扑结构,所述电源管理拓扑结构包括一个与一个可控制直流电源相连的第一路径;一个与一个电池相连的第二路径;一个与一个系统负载相连的第三路径,其中所述第一、第二和第三路径连接于一个公共节点;一个与所述第一路径相连的第一开关,所述第一开关允许所述可控制直流电源经由所述公共节点与所述系统负载选择性相连;和一个与所述第二路径相连的第二开关,所述第二开关允许所述电池与所述公共节点选择性相连。
15.根据权利要求14所述的电子装置,其特征在于所述第一开关闭合且所述第二开关断开时为第一供电模式,此时由所述可控制直流电源给所述系统供电。
16.根据权利要求14所述的电子装置,其特征在于所述第二开关包括一个具有一个选择性单向开关,所属选择性单向开关的第一放电闭合位置构造来允许电流沿所述第二路径朝第一方向从所述电池流向所述系统负载,并阻止电流沿朝与所述第一方向相反的第二方向沿所述第二路径流动。
17.根据权利要求16所述的电子装置,其特征在于所述第一开关闭合且所述第二开关闭合于所述第一放电位置时为并联供电模式,此时允许所述可控制直流电源和所述电池相并联给所述系统负载供电。
18.根据权利要求16所述的电子装置,其特征在于所述第二开关还包括一个允许电流沿所述第二路径朝所述第二方向流动、并阻止电流沿所述第二路径朝所述第一方向流动的第二充电闭合位置,所述第一开关闭合且所述第二开关闭合于所述第二充电闭合位置时为充电模式,此时允许所述可控制直流电源给所述系统负载和所述电池供电。
19.一种电子装置,其特征在于所述电子装置包括一个可控制直流电源;一个与所述可控制直流电源相连的第一路径;一个与一个电池相连的第二路径;一个与一个系统负载相连的第三路径,其中所述第一、第二和第三路径连接于一个公共节点;一个与所述第一路径相连的第一开关,所述第一开关允许所述可控制直流电源通过所述公共节点与所述系统负载选择性相连;和一个与所述第二路径相连的第二开关,所述第二开关允许所述电池与所述公共节点选择性相连,所述第一开关和所述第二开关具有一个响应来自一个电源管理控制拓扑结构的控制信号的导通状态。
20.根据权利要求19所述的电子装置,其特征在于所述可控制直流电源包括一个直流/直流转换器。
21.根据权利要求20所述的电子装置,其特征在于还包括一个通过所述第一路径与所述直流/直流转换器相连的固定直流电源;其中,通过所述固定直流电源接收一个输入电压、并把所述输入电压转换为一个固定直流输出电压完成第一步电源转换,通过所述直流/直流转换器接收所述固定直流输出电压、并把所述固定直流输出电压转换为一个直流输出电压完成第二次电源转换。
22.根据权利要求21所述的电子装置,其特征在于所述第一开关连接在所述固定直流电源和所述直流/直流转换器之间。
23.根据权利要求21所述的电子装置,其特征在于所述第一开关连接在所述直流/直流转换器和所述公共节点之间。
24.根据权利要求19所述的电子装置,其特征在于所述可控制直流电源包括一个可控制适配器。
25.根据权利要求24所述的电子装置,其特征在于通过所述可控制适配器接收一个输入电压,并把所述输入电压转换为一个输出直流电压完成第一步电源转换,从而在所述第一供电模式下给所述系统负载供电。
26.根据权利要求24所述的电子装置,其特征在于所述可控制适配器包括一个交流直流适配器。
27.一种供电系统,其特征在于所述供电系统包括一个具有动态可控制输出电源参数的可控制直流电源;和一个电源管理控制拓扑结构,所述控制电路用于控制所述输出电源参数、并选择一个由所述可控制直流电源供电给系统负载的第一供电模式。
28.根据权利要求27所述的供电系统,其特征在于所述电源管理控制拓扑结构用于选择一个所述可控制直流电源和电池同时给系统负载供电的第二供电模式。
专利摘要一种供电拓扑结构包括一个与一个可控制直流电源相连的第一路径;一个与一个电池相连的第二路径;一个与一个系统负载相连的第三路径,其中该第一、第二和第三路径连接于一个公共节点;一个第一开关与第一路径相连,该第一开关允许该可控制直流电源通过公共节点与系统负载选择性相连;一个第二开关与第二路径相连,该第二开关允许电池与公共节点选择性相连。该供电拓扑结构可以和现有的适配器或可控制适配器一起使用,从而提供一种一步电源转换。该供电拓扑结构还可以用于使可控制直流电源和电池相并联给系统负载供电。
文档编号H02J7/02GK2702508SQ200320128530
公开日2005年5月25日 申请日期2003年12月17日 优先权日2003年2月11日
发明者康斯坦丁·布克, 法拉·坡贝斯库-斯塔内斯缇, 玛利安·尼古拉, 戴诺·尼斯 申请人:美国凹凸微系有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1