优化dc/dc转换器稳定性的补偿方法

文档序号:7355500阅读:208来源:国知局
专利名称:优化dc/dc转换器稳定性的补偿方法
技术领域
本发明涉及DC/DC转换器的补偿方法,尤其涉及一种优化DC/DC 转换器稳定性的补偿方法,通过同时调整DC/DC转换器中误差放大器 的内补偿结构和DC/DC转换器最外环的补偿结构而优化DC/DC转换器 系统的稳定性。
背景技术
DC/DC转换器为转变DC输入电压后有效输出DC固定电压的电压 转换器。DC/DC转换器分为三类升压型DC/DC转换器、降压型DC/DC 转换器以及升降压型DC/DC转换器。每种转换器根据需求可采用三类 控制。PWM控制型,PFM控制型,PWM/PFM转换型。目前DC-DC转换 器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。 DC-DC转换器的外环一般是电压环。有内部电流环的转换器,常称为 电流型DC-DC转换器;没有的,简称为电压型转换器。
通常,在DC/DC转换器设计中,电路的稳定性是一个非常关键的 指标,它必须在负载变化,输入电压变化,以及系统受其他扰动的情 况下,尽量保持恒定输出,以用作其他应用电路的电源电压。同时, 电路的稳定性又影响电路的功率输出等其他重要指标。为了保证稳 定,最外电压环要有补偿电路(本文中称为外补偿)。对电流型DC-DC 转换器,其内电流环也要有斜坡补偿。本文所述方法已假设该斜坡补 偿在位。
如图1,图2和图3所示,显示了一种电流型P西DC/DC升压转 换器稳定性的实现方法。图1显示了此电流型P西DC/DC升压转换器 的控制部分结构框图(肖特基二极管和电感等外部元件在图中省 略),图2显示了误差放大器的补偿电路并且图3显示了外环路补偿 电路。如图l所示,电流型P西DC/DC升压转换器为双环路P西DC/DC 升压转换器。内环路为受控电流环路,外环路为电压反馈环路。在内 环路中,受控电流放大器将误差电流采样信号转变为电压信号并与来自斜坡补偿电路的斜坡电压叠加后加到PWM比较器的同相输入端。在 外环路中,经过电阻网络分压的输出电压反馈到误差放大器,与基准 电压比较后产生误差电压,后输入到PWM比较器。P西比较器的输出 信号和其它一些控制信号一起,在周期脉冲上控制功率管的开关状 态,从而使输出电压保持稳定。影响电流型DC/DC升压转换器的稳定 性的决定因素包括误差放大器增益变化、反馈环路起振以及噪声干 扰等,所以为了提高电路的稳定性,在此采用了如图2所示的误差放 大器和如图3所示的外环路补偿电路。
对误差放大器的设计而言,传统的方法是它必须保证自身稳定。 因此,如图2所示,在输出级Q30的输入和输出之间,加入C3和R44, 以构成密勒补偿电路。在已知文献中,C3和R44的选择和调整目标, 是使误差放大器本身的相位裕度为一期望值,例如60度。
如图3所示,外环路(电压反馈环路)通过合适的补偿可以避免 由电路不稳定引起的过大的电压波动和很低的效率。所述外环路的补 偿包括在COMP管脚和GND之间以串联方式连接一个电阻R4和电容 C5,即在外环路上增加一个环路补偿电路,以达到系统稳定性优化的 目的。
上述两种补偿方法在过去是孤立研究和实现的。例如,误差放大 器内部密勒补偿电路的调整是作为DC/DC电路的一个模块来考虑的, 从不考虑误差放大器自身稳定性对整个DC/DC转换器稳定性的影响。 甚至认为当误差放大器本身的相位余量最优的时候,对DC-DC系统的 稳定性自然就最好。这种设计,若用在降压型DC/DC转换器或升压型 DC/DC转换器中,影响还比较小。然而,当设计升降压型DC/DC转换 器时,误差放大器自身结构稳定特性的影响就将无法忽视。
因为现有技术中,具固定补偿的误差放大器的升降压型DC/DC转 换器的结构,根据其输入电压和输出电压的不同,在任一时间将工作 在下列三种工作模式之一,即降压模式,升压模式以及升降压模式。 这三种模式,结构不同,控制模式自然应不同。如果将误差放大器设 计为具固定补偿结构,也就是,只考虑自身稳定性而具有的固定内补 偿结构,升降压型DC/DC转换器的整个环路补偿就很难得到最佳效 果,进而会影响电路的输出电压稳定性,甚至会降低电路功率。

发明内容
所以,需要提供一种优化DC/DC转换器稳定性的补偿方法,用于 解决至少一些上述现有技术中的不足。
为了达到上述目的,本发明提供了 一种优化DC/DC转换器稳定性 的补偿方法,该DC/DC转换器包括控制和驱动模块,误差放大器,内 环控制模块,外环补偿模块,其特征在于,通过将误差放大器的内部 补偿结构与DC/DC转换器中的外环路补偿一同调整选值,以优化 DC/DC转换器的稳定性。
通过将误差放大器中的内部补偿结构与DC/DC转换器的外环补 偿一起调整选值,以优化升降压型DC/DC转换器的稳定性。所述误差 放大器为外环模块中的放大器。
通过将误差放大器中的内部补偿结构与DC/DC转换器的内环补 偿一起调整选值,以优化DC/DC转换器的稳定性。所述误差放大器为 内环控制模块中的放大器。
同时通过将误差放大器中的内部补偿结构与升降压型DC/DC转 换器的外环补偿和内环补偿一起调整选值,以优化升降压型DC/DC转 换器的稳定性。所述误差放大器分别为外环模块中的放大器和内环控 制模块中的放大器。
所述DC/DC转换器为升降压型P西DC/DC转换器。所述DC/DC转 换器也可以是升降压型P西/PFM DC/DC转换器。
所述的PWM DC/DC转换器和P西/PFM转换器的功率开关包括功 率型双极型晶体管,功率型M0S, IGBT或者肖特基二极管。这些开关 可能是集成在集成电路芯片内,也可能是分离元件。
所述误差放大器中的内部补偿结构为内部补偿电容和电阻。该电 阻值可以是零。
所述外环为电压环。
所述内环为电流环。
所述内环控制模块为受控电流放大器,斜坡补偿等。 所述外环补偿模块为电压环的补偿电路。 本发明还提供了一种升降压型DC/DC转换器,包括 控制和驱动模块,用于控制升降压型DC/DC转换器的运行模式; 误差放大器,为运算放大器;
内环控制模块,其将来自于控制和驱动模块的采样信号与来自误 差放大器和外环模块的信号运算后输入到控制和驱动模块;
外环模块,其将控制和驱动模块输出的分压电压反馈到误差放大器,并与基准电压进行比较之后产生误差电压,接着输入到内环控制 模块。
所述升降压型DC/DC转换器为升降压型PWM DC/DC转换器。
所述内环控制模块为受控电流放大器。
所述外环补偿模块为电压环的补偿电路。
本发明的有益效果是通过将误差放大器的内部补偿结构与 DC/DC转换器中的环路补偿一同调整选值,使DC/DC转换器的整个环 路补偿达到最佳效果,优化了电路的输出电压稳定性,进而提高了电 路功率。
上述本发明的概要说明不意味着替代每一个实施例的内容,或者 本发明的各个方面。其他方面和其他实施例将参考图式并在下文中详 细说明。


本发明可以通过下面各个实施例并结合所附图式来进行详细描 述,从而可以充分理解本发明的内容,图式中
图1为电路框图,显示了现有技术中电流型PWM DC/DC升压转换 器的结构。
图2为电路图,显示了图1所示的电流型PWM DC/DC升压转换器 中的误差放大器的补偿电路。
图3为电路图,显示了图1所示的电流型PWM DC/DC升压转换器 中的外环路的补偿电路。
图4为电路框图,显示了本发明实施例中升降压型PWMDC/DC转 换器的结构。
图5为电路图,显示了本发明实施例中的误差放大器,通过对升 降压型PWM DC/DC转换器的误差放大器的内部补偿调节,实施优化升 降压型P西DC/DC转换器稳定性的补偿方法。
具体实施例方式
升降压型P西DC/DC转换器10,是一种输出电压既可低于输入 电压,也可高于输入电压的单管非隔离式PWMDC/DC转换器。它的主 电路与升压型PWM DC/DC转换器和降压型PWM DC/DC转换器的元器件 相同,也是由开关管、二极管、电感和电容等构成的。不同之处是,其输出电压极性与输入电压极性正好相反,所以也将这种转换器叫做
反相型转换器。在本发明实施例中开关管采用的是PWM控制方式。
如图4所示,升降压型PWM DC/DC转换器10主要包括控制和 驱动模块1,误差放大器2,内环控制模块3,外环补偿模块4等模 块。如图所示,控制和驱动模块1用于控制升降压型P西DC/DC转换 器10的运行模式,即降压模式,降压升压模式或升压模式。内环控 制模块3是一个受控电流放大器,其将来自于控制和驱动模块1的采 样信号与来自误差放大器2和外环模块4的信号运算后输入到控制和 驱动模块l。外环补偿模块4是电压环补偿电路,其将控制和驱动模 块1输出的分压和不分压的电压反馈到误差放大器2,并与基准电压 进行比较之后产生误差电压,接着输入到内环控制模块3。
可以了解到地是,整个升降压型PWM DC/DC转换器10的最优稳 定性不会与外环中的误差放大器2的最佳稳定性吻合。换句话说,当 整个升降压型P西DC/DC转换器10具最佳的相位裕度的时候,外环 中的误差放大器2不一定会具有在其稳定状态下自身最佳的相位裕 度。同样地,对于内环控制模块3中的误差放大器2,(图中未示)也 存在类似的情况。尽管内环控制模块3中的误差放大器2,不会对整个 升降压型P西DC/DC转换器的稳定性造成很大的影响,因为这种内环 控制模块3中的误差放大器2,的带宽通常都比外环模块4中的误差放 大器2的带宽要大很多,但为了更好地提高整个升降压型P西DC/DC 转换器10的稳定性,也可以与外环模块4中的误差放大器2 —样, 通过调节误差放大器2,内补偿电容和电阻,来使整个升降压型P西 DC/DC转换器10的稳定性最优。
图5为电路图,显示了本发明实施例中的误差放大器的例子2, 通过对升降压型P西DC/DC转换器10的误差放大器2的内部补偿调 节,实施优化升降压型PWM DC/DC转换器IO稳定性的补偿方法。
如图所示,在误差放大器的设计过程中,主要包括设计放大器和使 放大器稳定两个步骤。其中,误差放大器中的电容Cc为内部补偿电容也 叫密勒电容,Rc是一补偿电阻。 一般情况下,电容Cc和补偿电阻Rc是 按照误差放大器的稳定性来选择数值。具体地,在现有技术中,运算放 大器的高速性能主要靠两个重要的参数来衡量,即大信号响应时间和小信号响应时间。大信号响应时间由摆率决定,小信号响应则由建立时间
或单位增益带宽来决定。运算放大器在密勒电容Cc和补偿电阻Rc的调 节下工作稳定、有较大的开环增益。密勒电容Cc和补偿电阻Rc为了使 运算放大器有较好的相位裕度,防止电路自激。Cc的数值和偏置电流决 定了运放的摆率。所以为了稳定运算放大器的时候,Cc的选值是根据运 算放大器稳定性进行固定选值的。
但在本发明实施例中的升降压型P西DC/DC转换器10的设计中,电 容Cc和补偿电阻Rc仅仅如上面所述的目的选值,无法满足整个升降压 型P西DC/DC转换器10的稳定性的要求。所以,为了优化本发明实施例 中的升降压型PWM DC/DC转换器10的稳定性,就要将电容Cc和补偿电 阻Rc的数值与升降压型PWM DC/DC转换器10的外环(电压环)模块4 的补偿一起调整选值,才可以实现整个升降压型PWM DC/DC转换器10 的稳定性最优。
除此之外,在整个升降压型P西DC/DC转换器10的内环控制模块3 中,误差放大器的电容Cc和补偿电阻Rc的选值也要根据内环(受控电 流环)控制模块3的补偿一起调整选值,以现整个升降压型P丽DC/DC 转换器的稳定性最优。
本发明已经参照各种实施例进行描述,对于熟悉本领域的技术人 员,在不脱离本发明的精神和范围所作的修改将认为包括在本发明权 利要求所要保护的范围内。
权利要求
1. 一种优化DC/DC转换器稳定性的补偿方法,该DC/DC转换器包括控制和驱动模块,误差放大器,内环控制模块,外环补偿模块,其特征在于,通过将误差放大器的内部补偿结构与DC/DC转换器中的环路补偿一同调整选值,以优化DC/DC转换器的稳定性。
2. 如权利要求l所述的方法,其特征在于,通过将误差放大器 中的内部补偿结构与DC/DC转换器的外环补偿一起调整选值,以优化 升降压型DC/DC转换器的稳定性。
3. 如权利要求l所述的方法,其特征在于,通过将误差放大器 中的内部补偿结构与DC/DC转换器的内环补偿一起调整选值,以优化 DC/DC转换器的稳定性。
4. 如权利要求l所述的方法,其特征在于,同时通过将误差放 大器中的内部补偿结构与升降压型DC/DC转换器的外环补偿和内环 补偿一起调整选值,以优化升降压型DC/DC转换器的稳定性。
5. 如权利要求2所述的方法,其特征在于,所述误差放大器为外环模块中的放大器。
6. 如权利要求3所述的方法,其特征在于,所述误差放大器为内环控制模块中的放大器。
7. 如权利要求4所述的方法,其特征在于,所述误差放大器分别为外环模块中的放大器和内环控制模块中的放大器。
8. 如权利要求l所述的方法,其特征在于,所述DC/DC转换器 为升降压型PWM DC/DC转换器。
9. 如权利要求l, 2, 3或4中任意一项所述的方法,其特征在 于,所述误差放大器中的内部补偿结构为内部补偿电容和补偿电阻 Rc。
10. 如权利要求9所述的方法,其特征在于,所述补偿电阻的阻 值为零。
11. 如权利要求l, 2, 3或4中任意一项所述的方法,其特征在 于,所述外环为电压环。
12. 如权利要求l, 2, 3或4中任意一项所述的方法,其特征在 于,所述内环为电流环。
13. 如权利要求l所述的方法,其特征在于,所述内环控制模块 为受控电流放大器。
14. 如权利要求l所述的方法,其特征在于,所述外环模块为电 压环。
15. —种升降压型DC/DC转换器,其特征在于,包括 控制和驱动模块,用于控制升降压型DC/DC转换器的运行模式; 误差放大器,为运算放大器;内环控制模块,其将来自于控制和驱动模块的采样信号与来自误 差放大器和外环模块的信号运算后输入到控制和驱动模块;外环模块,其将控制和驱动模块输出的分压电压反馈到误差放大 器,并与基准电压进行比较之后产生误差电压,接着输入到内环控制 模块。
16. 如权利要求15所述的转换器,其特征在于,所述升降压型 DC/DC转换器为升降压型P聰DC/DC转换器。
17. 如权利要求15所述的转换器,其特征在于,所述内环控制 模块为受控电流放大器。
18. 如权利要求15所述的转换器,其特征在于,所述外环模块 为电压环。
全文摘要
本发明的实施例揭露了一种优化DC/DC转换器稳定性的补偿方法,该DC/DC转换器包括控制和驱动模块,用于控制升降压型DC/DC转换器的运行模式;误差放大器,为运算放大器;内环控制模块,其将来自于控制和驱动模块的采样信号与来自误差放大器和外环补偿模块的信号运算后输入到控制和驱动模块;外环补偿模块,其将控制和驱动模块输出的分压不分压的电压反馈到误差放大器,并与基准电压进行比较之后产生误差电压,接着输入到内环控制模块。通过将误差放大器的内部补偿结构与DC/DC转换器中的环路补偿一同调整选值,以优化DC/DC转换器的稳定性。
文档编号H02M3/156GK101478237SQ200810180558
公开日2009年7月8日 申请日期2008年12月2日 优先权日2008年12月2日
发明者坦 杜 申请人:苏州市华芯微电子有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1