用于混合动力电动变速器的电动机支架的制作方法

文档序号:7466867阅读:161来源:国知局
专利名称:用于混合动力电动变速器的电动机支架的制作方法
技术领域
本发明涉及混合动力电动车辆的动力系统,尤其涉及支承电机的转子和定子以在其间产生和维持精确的气隙。
背景技术
混合动力电动车辆(HEVs)具有内燃发动机和电动机,它们可以交替地或以结合的方式用于推进车辆。多种不同的传动系使用在混合动力车辆中。本发明涉及并联配置,其中发动机通过分离式离合器连接至电动机,电动机驱动自动液力变速器的变矩器输入。液力变速器具有连接至与车辆的两个驱动轮耦接的差速器的输出。本领域已知这种并联混合动力电动车辆的传动链功率流布置。HEV设计者面临的问题是如何冷却分离式离合器以及电动机的转子和定子部分。已经提出了各种基于空气和液体的冷却系统;然而,大部分系统都是昂贵的并且当试图将非混合动力车辆转换成混合动力运行方式时造成组装问题。需要将分离式离合器、电动机、变矩器和自动变速器以紧凑方式包装,以便传统车辆可以以相对较低的成本以及很少的车辆车身变动或根本不存在车辆车身变动来重新配置为混合动力系统。

发明内容
—种用于支承车辆动力系统的电动机的总成,包括外壳、固定到外壳的定子、具有由外壳确定的径向位置的轴承、接触轴承的组件、以及固定到所述组件的转子,所述转子包括通过气隙与定子径向间隔的径向外表面,所述气隙由轴承和所述组件之间的接触确定。本发明涉及新颖的混合动力电动车辆以及多个新颖的部件和子部件,其特别适合重新定位自动变速器的湿侧内的分离式离合器和电动机。这在不改变发动机、分离式离合器、电动机、变矩器、变速器串联连接的传统功率流的情况下完成。本发明提供了将发动机连接至重新定位在自动变速器外壳中的分离式离合器的输入侧的传动壳,而并非如典型地在非混合动力车辆中的将变矩器直接连接至发动机。传动壳构成了大小足够自由容纳变矩器的环形腔。电动机也位于自动变速器的湿区中,该湿区优选地环轴围绕分离式离合器。电动机的转子连接至分离式离合器的输出。分离式离合器输出和转子都耦接至与变矩器的输入涡轮连接的转子轴。变矩器定子和输出涡轮分别连接至管状定子轴和变速器输入轴。变速器输入轴、定子轴、转子轴以及分离式离合器毂(hub)都彼此同心,并且可以通过自动变速器外壳前侧的环形开口加以利用。与传统变矩器类似,变矩器和传动壳可以可移除地安装在变速器外壳的前面。将传动壳连接至安装板,而不是将变矩器连接至发动机安装板。变矩器在传动壳腔内相对于传动壳自由旋转,形成紧凑且轴向较短的电动机/变速器总成。通过将分离式离合器和电动机同轴置于自动变速器的湿区的前部,变速器液压流体泵、相关的泵和管道系统可以以轴向长度上相对较小的增加来冷却分离式离合器和电动机的转子和定子部分。虽然总体上与传统变矩器类似,但是为了实施本发明对变矩器进行了独特的改造。由于变矩器不连接至发动机安装板,所以变矩器的壳上没有提供安装螺柱。而是提供中心轴向轴承组件,其与具备相应的轴承组件的发动机安装板协作以径向地支承变矩器并轴向地限制向前方向的移动。变矩器内是面向推力轴承组件的背部,其与变速器输入轴的自由端协作以限制变矩器在向后的方向上轴向移动。为了实施本发明,变速器外壳优选也进行独特的改造。变速器外壳包括部分定义封闭的湿区的湿外壳和和变矩器外壳,其改造为一侧固定在湿外壳上并且另一侧固定在发动机组上。变矩器外壳具有在湿腔与干燥腔之间形成边界的后壁,其中变矩器和传动壳被定向。后壁定义了环形孔,其与分离式离合器输入毂协作,与电动机的相关转子部分及分离式离合器输出毂一起,支承输入毂和转子轴。


图1是具有并联功率流设计的混合动力电动车辆的示意图;图2是本发明中重新定位的分离式离合器和电动机的简化示意图;图3是本发明的自动电动机/变速器总成的简化横截面视图;图4a是本发明的自动电动机/变速器总成更详细的横截面侧面立视图;图4b是图4a的电动机/变速器总成的符号图;图4c是六个前进挡和倒车挡各自的离合器应用表;图5是处于与分离式离合器和电动机协作中的变矩器的横截面的放大视图;图6是分离式离合器和电动机的放大视图;图7是安装板变矩器上的发动机输出和变速器输入轴的放大视图,其示出了它们的轴向方向;图8是用于实施本发明的安装板的透视图;图9是用于实施本发明的变矩器的透视图;图10是传动壳的透视图;图11是具有包载扭矩变换器的传动壳的可选的实施例的视图;图12是位于中轴线以上的车辆动力系统部分的侧面截面图;图13是端子座总成的俯视图;图14是位于中轴线以下的车辆动力系统部分的侧面截面图;图15是车辆动力系统的中轴线以上的侧面截面图,其示出了位于发动机与变矩器之间的扭转阻尼器。
具体实施例方式图1说明了混合动力电动车辆10,其以并联型混合动力电动传动系示意地表示。混合动力电动车辆具备具有连接至驱动电动机16的分离式离合器14的旋转输出的发动机
12。电动机的输出连接至变矩器18的输入,变矩器的输出连接至自动变速器20的输入轴。在传统方式中,自动变速器由差速器24连接至驱动轮22、22’。在示意图中,混合动力电动车辆10具备一对非驱动轮,然而,可选地,可以利用分动器和第二差速器来实际驱动车辆所有的车轮。发动机、分离式离合器、电动机、变矩器和自动变速器顺序地串联连接,如图1中所示。
在图2中示意地说明的混合电动车辆10’中的电动机/变速器总成26在保持与图1中所示相同功率流的同时重新装配传动部件。发动机12通过形成环形室(其足够大到围绕变矩器18延伸)的传动壳28机械地连接至分离式离合器14上面的输入侧。分离式离合器14的输出连接至电动机16,电动机进而连接至变矩器18的叶轮“I”。传动壳28的使用允许分离式离合器和电动机位于自动变速器外壳的湿侧内。涡轮“T”连接至变矩器18的输出,变矩器以传统方式连接至自动变速器的输入轴。本发明可以使用广泛多样的自动变速器来实施。这里所述的变速器的优选的实施例是六种挡速、三个行星齿轮组、五个离合器的设计;具有更少或更多速度以及不同的机械构造的可选的变速器结构同样可以受益于本发明。图3中示出了电动机/变速器总成26的更详细、但很简单的说明。发动机具备以传统方式用螺栓固定在安装板32上的曲轴输出凸缘30。安装板32固定在直径足够环绕变矩器并且连接至分离式离合器14的输入毂(hub) 34的传动壳28上,而不是连接至变矩器的壳。分离式离合器的输出固定在电动机16的转子“R”部分上,并进而连接至转子轴36。转子轴36同轴嵌套在分离式离合器输入毂34内,并且延伸至定义变速器的湿区域的变速器外壳的壁部上的环形开口。转子轴36连接至变矩器18的叶轮“I”,叶轮进而驱动连接至变速器输入轴38的涡轮T。在转子轴36的内径与变速器输入轴38的外周之间同轴隔开的是定子轴40,其相对于变速器外壳是固定的并且支承位于变矩器18内的定子元件S。优选地,电动机/变速器总成的壳体由部分地定义封闭的湿区腔的湿外壳42,以及改造成固定在湿外壳42和发动机组46上的变矩器外壳44组成。变矩器外壳44优选地具备在变速器中心线上具有环形轴向开口 50的后壁48。后壁48在变速器外壳中的湿区腔与干燥腔之间形成物理边界。变矩器18和传动壳28如图所示位于干燥区。后壁48与分离式离合器输入毂34协作,分离式离合器输入毂进而支承电动机转子轴36和相关的电动机16的转子部分R。电动机/变速器总成具备用于在变速器外壳的湿区内定向的液压流体的泵P,并且其由转子轴36驱动。泵P提供加压的液压流体来操纵变速器传动系内的离合器和制动器以及操纵分离式离合器并且为离合器和电动机16提供冷却。类似地,分离式离合器和电动机共享用于变速器流体的共用机油箱52并且共享共用泵滤网54。自动变速器20具备输出轴56。图4a是电动机/变速器总成26的横截面侧面立视图。再次强调,本发明可以使用多种不同的变速器齿轮系配置,并且不限于所公开的六种挡速、三个行星齿轮组变速器。参考图4b的符号图,图4a中所示的多级变速器的优选实施例更容易理解。来自发动机的输入驱动固定在连接至分离式离合器14的输入毂34的传动壳28上的安装板32。分离式离合器14的输出侧连接至电动机16的转子部分,该转子部分进而连接至转子轴36。在转子轴36内同轴定向的是安装至变速器壳体的固定的定子轴40,以及变速器输入轴38。变矩器叶轮I驱动连接至变速器输入轴38的变矩器涡轮T。变矩器18还具备通过单向离合器56安装在定子轴40上的定子S。在优选的实施例中,变矩器18还具备以公知的方式将涡轮锁定至叶轮的锁止离合器58。行星自动变速器20的齿轮组由三个行星级组成:行星1、行星2和行星3,如图所示,它们同轴排列并且轴向隔开。每个行星齿轮组都具有太阳齿轮、齿轮环以及支承在行星架上的一系列行星齿轮。太阳齿轮、齿轮环和行星架组件可以通过一系列的五个离合器和制动器互连。例如,在第一挡位中,离合器A和制动器D如图4c离合器应用表所述接合。变速器输入轴38连接至行星齿轮组行星I的齿轮环。太阳齿轮是固定的并且行星架通过离合器A连接至行星齿轮组3的太阳齿轮。离合器D接合时,行星齿轮组3的行星架固定,导致行星齿轮组3的齿圈驱动变速器输出轴56。为了转换至第二挡位,松开制动器D并且同时接合制动器C以引起变速器齿数比的变化。每次转换,不论向上还是向下,都是通过松开一个离合器或制动器并接合另一个实现的。类似地,从第一倒挡的转换是通过松开单个离合器,同时接合另一个离合器来完成的。行星齿轮组2和3共享公用行星元件以及共用齿圈。行星齿轮组I和2是传统、简单的行星齿轮组,而行星齿轮组3是具有一对相互啮合的行星的复合行星齿轮组,该对相互啮合的行星中的一个接合太阳齿轮,一个接合齿轮环。在图4b中所述的实施例中,复合行星布置允许第三行星齿轮组使用较小的太阳齿轮,从而获得较高的齿轮减速比。此外,描述行星齿轮组仅仅是为了说明优选的实施例,然而,本发明还可以使用广泛多样的自动变速器结构来实施。图5是截面图,其表不为适应较小的直径安装板64而设计的可选的传动壳布置62。发动机曲柄轴的输出凸缘30由一系列穿过安装板中的一组与安装板中心隔开的孔的螺栓固定在安装板64上。安装板64的外围边缘具备齿圈66以与起动电动机的小齿轮协作。安装板的外围的车内一侧是一系列大小可以容纳螺纹紧固件的孔以将传动壳62连接至安装板64。在所示的实施例中,传动壳62具备双头螺栓108,其穿过安装板64中的一组孔来接收螺母以将传动壳牢固地固定在安装板上。螺母可选地可以焊接在安装板上以接收穿过安装板中的孔的螺栓。为了降低扭矩波动,安装板可选地还可以包括二重质量阻尼器(未示出)。与传统自动变速器车辆不同,变矩器18未用螺栓固定在发动机安装板上,而是在由传动壳62和安装板64定义的环形腔内自由旋转。传动壳的后端形成管状传动壳出口组件68,该组件连接至分离式离合器输入毂34。“后”指的是朝向变速器输出轴56的方向,该方向在传统后轮驱动前置发动机车辆中可以是车辆的后部,然而,使用术语“后”和“前”是出于简单和说明的目的。它们并非必定指的是车辆的前部和后部,因为如果是横向安装在前轮驱动车辆中就不是这种情况了。变矩器18的前侧没有典型地用于连接至安装板的螺栓。优选地,传动壳管状输出毂68具备内花键以与分离式离合器输入毂34上的互补的外花键轴向地协作。分离式离合器14具有一系列相互间隔的板,其可选地连接至输入毂34和输出毂70。分离式毂环形活塞72在分离式离合器输出毂70中形成的相应的腔内协作,并且其可在延伸的锁定位置与回缩位置之间轴向变换,其中,当接收到推进分离式离合器活塞72的液压信号时处于延伸的锁定位置,当不存在该信号时处于回缩位置。固定于分离式离合器输出毂70的外周的是转子R。分离式离合器输出毂70和转子R都安装并固定在转子轴36上。转子轴36具备与驱动叶轮I的变矩器输入毂74上的互补的内花键协作的大小的外花键。变矩器18还具备安装在定子毂76上的定子S,以及通过图5中所述的扭转阻尼器82连接至涡轮输出毂78的输出涡轮T。涡轮输出毂78具备与变速器输入轴38协作的内花键。定子毂76安装在定子轴40上,其固定在变速器外壳上并且延伸出变速器壳。在所示实施例中,以传统方式将定子安装在单向离合器中心。
变矩器18和传动壳62 —起与变速器中的四个不同的同轴排列的组件紧密配合,并且在安装过程中像自动变速器中的传统变矩器一样滑开或关闭,简单地具有一个额外的同轴组件,即传动壳62的管状输出68。因此,使用传动壳占据电动机/变速器总成中很小的额外轴向空间。然而,为变速器增加分离式离合器14和电动机16却占据变速器外壳内的一些额外轴向空间。如图6中所示,电动机与安装在电动机转子R内的分离式离合器同轴定向。电动机定子S由穿过定子叠片的一系列环状隔开的螺栓牢固地固定在变速器外壳上。电动机转子R安装在支承在转子轴36上的分离式离合器输出毂70的外周。转子轴36由置于转子轴36与分离式输入离合器毂34之间的滚柱轴承80来径向地定位。分离式离合器输入毂的外径通过轴承84支承在变速器外壳中的壁48上。轴承84设计为具有轴向负载以及转子分离式离合器输出毂总成插入的径向负载。分离式离合器输出毂70还由推力轴承86和88轴向地限制。此外,环轴滚柱轴承90置于分离式离合器输出毂70与定子轴40之间以轴向地定位转子轴36以及相关的分离式离合器和转子。分离式离合器输出毂70具备使变速器流体经过分离式离合器输出毂流入转子R的内部冷却剂通道92。当流体通过并离开旋转的转子R时,其穿过定子S的线圈以将多余热量从定子线圈和相关的定子叠片上移除。如图6中所示,分离式离合器输出毂70还具备用于驱动泵P的输出花键94。因为变矩器18不再固定在发动机安装板上,所以必须轴向和径向地限制变矩器。变矩器18枢转地支承在图3和5中的发动机安装板32和64上。发动机安装板32、64具备轴向安装的第一轴承组件96,其与变矩器18上相配的第二轴承组件协作。如图7中所示,优选的实施例中的第一轴承组件由支承在轴承外圈98(其固定在变速器中心线上的安装板上)中的滚柱轴承96提供。相应的第二轴承组件由固定在变矩器18的壳上的短轴100提供。短轴为变矩器提供径向支承,而轴承96还为变矩器在向前的方向上提供轴向止动。为了限制变矩器向后移动,变矩器在壳内部的轴向中心线上具备面向后部的推力轴承102,以接合变速器输入轴38的端部区域。当然,可以使用可选的结构,如将短轴置于安装板上并且将滚柱轴承置于变矩器壳上。电动机/变速器总成26,如前文所述,使用了多个独立新颖的子部件。图8是由圆盘构成的安装板64的透视图,该安装板具备中心轴向排列的第一轴承组件,即安装在轴承外圈98中的滚柱轴承96。盘具备两个圆形阵列的安装孔,一个阵列邻近中心以连接至发动机的曲轴,另一个阵列邻近外周以连接至传动壳28。图9中所述的变矩器18同样是新颖的。该变矩器外壳不具备传统安装螺柱,而具备中心轴向第二轴承组件,在这种情况下其由短轴100提供。也可以可选地使用其他轴向中心轴承组件,只要它们与安装板上相应的轴承结构协作以承受径向负载并提供确定的用于变矩器移动的向前的止动。变矩器具有面向连接至转子轴36的管状出口毂68的环形后部,以及面向如图7中所示的壳内的中心线上的推力轴承102的后部以紧靠变速器输入轴38的末端。图10说明了传动壳28的透视图。传动壳是具有大到足够自由环绕变矩器的外周结构的环形组件。传动壳28的前缘具备一系列间隔分开的紧固件104以与安装板32协作。传动壳的后端形成管状输出68,其优选地具有开有花键的内径以接合分离式离合器输入毂34上相应的花键。所述间隔分开的紧固件104是一系列焊接螺柱,然而,焊接螺柱还可以用于与穿过安装板中相应的孔的螺栓协作。图11说明了如前文所述的图5中的可选的传动壳实施例62。为了容纳较小直径的安装板和相对较大的变矩器,传动壳具备一系列向内伸出的径向组件106以支承紧固件。所示紧固件由位于安装板上的阵列孔的直径(其明显小于变矩器的直径)的螺柱108提供。因此,向内伸出的组件106在传动壳62内形成的较大环形腔内包载变矩器18以产生所述的传动壳变矩器子总成。参考图12,分离式离合器14还包括:阻隔环110,其固定不相对于输出毂70轴向位移;平衡隔断112,其也固定不相对于输出毂70轴向位移;回位弹簧114,其在弹簧的另一端接触活塞72和平衡隔断112 ;以及密封的液压缸116,其中活塞受制于弹簧114的力和压力而移动。液压通道118将驱动压力从泵外壳122的出口 120经过轴向通道123传递至位于活塞72后面的气缸部分116。当通道118中的压力较高时,活塞72抵抗弹簧114的力轴向地向左移动,以推动离合器14的摩擦板和隔板相互摩擦接触,从而接合离合器14。轴向液压通道124将流体从泵外壳122经过通道126传递至位于活塞72与平衡隔断112之间的气缸部分116。液压通道124还将流体从泵外壳122经过径向通道92传递至电动机16的转子R和定子S。通道92与通道128连通,其指引流体穿过电动机16的宽度并到达转子R的表面上。由于离心力,离开转子的流体在相反的轴向两侧向外径向流动并且到达定子S的表面上。将热量带出电动机16的此流体,经过外壳42中的开口 129 (图14中所示)向下流至机油箱52。填充变矩器18的液压流体从泵P经过径向通道130和位于定子轴40与变速器输入轴38之间的环形空间中的轴向通道132传递。通道132的前端与变矩器的环形室通过径向通道134连通,其中变矩器由护罩136环绕并且包含叶轮1、涡轮T以及定子S。离开变矩器18的液压流体经过在变速器输入轴38中形成的轴向通道138传递,并且沿轴140延伸。如图12所不,电动机的定子S由一系列螺栓150固定至变速器壳体42,其由开口152组成。每个螺栓150都穿过在定子S中形成的孔,并且每个螺栓的螺纹柄都接合形成于壳体42中的螺纹孔。精密的尺寸公差在定子S的下表面153、通过定子S中的孔和螺栓150的中心线,以及轴140的位置之间确定。用这种方法,轴140与定子S的下表面153之间的距离在精密的尺寸公差内确定,以确定并保持电动机的定子S与转子R之间的较窄的气隙。端子总成154,位于围绕开口 152的安装表面156上,包括含电端子158的座157,该电端子包括至少一个电连接至电动机的定子S的层压片材160内的线圈的高压端子。每个端子158都由螺栓162连接,螺栓的柄穿过由螺栓166固定至变速器壳体42的板164。每个螺栓162还将端子158电连接并固定至插孔168,其接合连接至定子S的导体170。插孔168和导体都在弯曲状态下弹性地可弯曲,以便完成并保持它们至定子S的连接,而不用实质上改变表面153与轴140之间的距离。端子座总成154优选位于相对于轴140成角度的位置,其将端子158置于变速器壳体42的侧边,而不是位于图12中所示的较高的仰角。优选地,端子158沿轴140 (尽管不必平行于轴)以及端子面后部的插孔定向,如图13所示。电动机16的转子R固定至输出毂70,以便确定位于定子的参考面153与转子的径向外表面176之间的气隙。如图14不出了外壳44由一系列螺栓177固定至变速器外壳42。泵的定心板P被引导进入其正确位置,不论是径向还是轴向,这是由于泵的定心板P上的表面178与变速器外壳42上的导向表面180之间的接触。类似地,泵外壳122被引导进入其正确位置,这是由于泵定心板P上的表面182与泵外壳122上的表面184之间的接触。在后端,定子轴40的外表面接触泵定心板P的径向内表面,并且在前端,定子轴40的外表面接触变矩器输入毂74的径向内表面。轴承84的轴向和径向位置由其与外壳44的后壁48的接触确定。离合器输入毂34的轴向和径向位置由其与轴承84的接触确定。转子轴36的前端的位置由其与滚柱轴承80的接触确定,并且转子轴36的后端的位置由其与泵外壳122的内表面的接触确定。输出毂70和转子R的前端的位置由转子轴36的外表面与输出毂70的内表面之间的接触确定。轴承190的轴向和径向位置由其与泵外壳122的接触确定。输出毂70和转子R的后端的位置由轴承190与输出毂70之间的接触确定。用这种方法,电动机16的转子R的径向外表面176的径向位置被定位成使得气隙平行于自轴140延伸并且位于定子的参考面153与转子的径向外表面176之间优选地为约122mm的半径。图15示出了位于发动机12与传动壳28、62之间的功率路径中的扭转阻尼器196。发动机12通过曲轴凸缘30连接至阻尼器196的输入,并且围绕轴140相互隔开的一系列螺栓108将阻尼器196的输出连接至传动壳28、62。阻尼器196减弱由发动机产生的扭转振动。阻尼器196的外围边缘具备齿圈66,其由起动电动机转动驱动的小齿轮接合。图15示出了和发动机12与变速器输入轴38之间的阻尼器82串联排列的阻尼器196。动力系统中的阻尼器196的存在可以消除对扭转阻尼器82的需要,该扭转阻尼器位于叶轮护罩136与涡轮毂78之间的变矩器18的扭矩传递路径中。当消除阻尼器82时,可以减小变矩器18和传动壳28、62的轴向尺寸。按照要求,此处公开了本发明详细的实施例;然而,应当理解,所公开的实施例仅仅是本发明的示例,这些示例可以以各种不同的和选择性的方式实现。附图不一定是按照比例的;一些特征可能被放大或缩小以显示具体部件的细节。因此,此处公开的具体结构性和功能性的细节不应视为对本发明的限制,而仅仅是为了教导本领域技术人员从多方面使用本发明而作为具有代表性的基础。尽管上文说明了示例性实施例,但这并不意味着这些实施例说明了本发明所有可能的形式。然而,说明书中使用的语句是不受限制的说明的语句,并且应当理解,在不背离本发明的内容和范围的情况下,可以做出各种变化。此外,可以结合各种执行的实施例的特征来形成本发明另外的实施例。
权利要求
1.一种用于支承车辆动力系统的电动机的总成,其特征在于,包含: 夕卜壳; 固定到外壳的定子; 具有由外壳确定的径向位置的轴承; 接触所述轴承的组件; 固定到所述组件的转子,所述转子包括通过气隙与定子径向间隔的径向外表面,所述气隙由轴承和所述组件之间的接触确定。
2.如权利要求1所述的总成,其特征在于,进一步包含: 具有通过与外壳接触确定的径向位置的第一主体; 具有通过与第一主体接触确定的径向位置并接触轴承的第二主体。
3.如权利要求1所述的总成,其特征在于,进一步包含: 具有通过与外壳接触确定的轴向和径向位置的第二轴承; 具有通过与第二轴承接触确定的轴向和径向位置的第二组件; 位于组件和第二组件之间的推力轴承,用于限制转子和组件在第一轴向方向的位移。
4.如权利要求1所述的总成,其特征在于,所述轴承具有由所述外壳确定的轴向位置,用以限制所述转子和组件在第一轴向方向的位移,进一步包含: 具有通过与外壳接触确定的轴向和径向位置的第二轴承; 具有通过与第二轴承接触确定的轴向和径向位置的第二组件; 位于组件和第二组件之间的推力轴承,用于限制转子和组件在第二轴向方向位移。
5.如权利要求1所述的总成,其特征在于,进一步包含: 具有通过与外壳接触确定的径向位置的第一主体; 接触轴承并具有通过与第一主体接触确定的径向位置的第二主体,所述轴承限制转子和组件在第一径向方向的位移。
全文摘要
一种用于支承车辆动力系统的电动机的总成,包括外壳、固定到所述外壳的定子、具有由外壳确定的径向位置的轴承、接触轴承的组件、以及固定到所述组件的转子,所述转子包括通过气隙与定子径向间隔的径向外表面,所述气隙由轴承和所述组件之间的接触确定。
文档编号H02K5/16GK103166360SQ201210397708
公开日2013年6月19日 申请日期2012年10月18日 优先权日2011年12月14日
发明者史蒂文·阿纳托尔·福莱特, 史蒂文·杰拉尔德·托马斯 申请人:福特全球技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1