一种基于新型城镇化的低电压治理措施优选方法与流程

文档序号:11996159阅读:346来源:国知局
本发明涉及一种低电压治理方法,具体涉及一种基于新型城镇化的低电压治理措施优选方法。

背景技术:
近年来,随着经济的发展,城镇电网的负荷巨增,用户的用电需求不断提高,而我国农网线路过长、线径过细、升压、补偿设备不足,导致农网末端电压、功率因数过低,严重影响了农网用户的正常用电,所以必须采取一系列的电压调节措施,才能保证电压满足电网规定的要求。电网用户如果电压过低、功率因数过低,会出现设备无法启动,设备运行不正常,影响用户的正常用电。目前农网的低电压治理均是在一条线路上安装单台无功补偿设备,设备间无通讯,不能统一控制、成本高、电压治理效果不明显。

技术实现要素:
本发明的目的在于提供一种基于新型城镇化的低电压治理措施优选方法,该方法在不改变现有城镇电网结构的情况下,通过有载变压器、馈线自动调压器器和配电变压器的调压,实现低电压治理,提高末端电压满足供电需求。为实现上述目的,本发明采用了以下技术方案:包括一种基于新型城镇化的低电压治理措施优选方法,包括以下步骤:(1)获取配电网的系统参数,所述系统参数包括配电线路型号、配电线路长度、配变型号以及配变容量;(2)根据配变容量计算配变最大负荷其中η表示配变负载率,S表示配变容量,表示功率因数;(3)统计负载端当前用电负荷;(4)根据系统参数、配变最大负荷,判断低电压原因;(5)若当前用电负荷大于配变最大负荷P,则通过配电装置进行调压;(6)若当前用电负荷小于配变最大负荷P,且待测线路末端电压波动大于标准值时,则通过更换线径较大的导线进行调压。步骤(5)中所述的通过配电装置进行调压,包括以下步骤:(A)在主变、SVR馈线自动调压器、配变及负荷线路终端均安装智能检测装置及低压配电检测装置;(B)通过智能检测装置及低压配电检测装置获取主变、SVR馈线自动调压器、配变及负荷线路的数据参数,该数据参数包括电压、电流、有功功率和无功功率;(C)通过数据参数分析电网低压位置;(D)若SVR馈线自动调压器、配变及负荷线路终端处均出现电压偏低时,则通过调整主变分接头档位进行调压;(E)若配变及负荷线路终端处均出现电压偏低时,则通过调整SVR馈线自动调压器的分接开关位置以改变自耦变压器变比进行调压;(F)若只有负荷线路终端处出现电压偏低时,则通过调整配变的分接头位置和投切无功补偿电容器进行调压。步骤(D)、(E)和(F)中进行调压均是在无无功缺额情况下进行,若该步骤中存在有无功缺额的情况时,应先进行无功调节使无功得到平衡,后进行电压调制。步骤(D)包括以下步骤:(D1)若SVR馈线自动调压器、配变及负荷线路终端处的低压问题得以解决,则调压成功;(D2)若调整主变分接头档位已到极限,而SVR馈线自动调压器或配变处低压问题仍未解决时,则通过调整SVR馈线自动调压器的分接开关位置以改变自耦变压器变比进行调压;(D3)若SVR馈线自动调压器的分接开关位置已到极限,而负荷线路终端处低压问题仍未解决时,则通过调整配变的分接头位置和投切无功补偿电容器进行调压。步骤(E)包括以下步骤:(E1)若配变及负荷线路终端处低压问题均得以解决时,则调压成功;(E2)若SVR馈线自动调压器已经调压极限或配变处电压已经越限,而负荷线路终端处低压问题仍未解决时,则通过调整配变的分接头位置和投切无功补偿电容器进行调压。步骤(6)中,所述待测线路末端电压波动,通过以下步骤获得:(6a)检测待测线路的末端最小负荷电压值及最大负荷电压值;(6b)获取待测线路各节点接入的光伏容量信息;(6c)获取待测线路各线路段的长度以及单位长度电阻信息;(6d)获取待测线路的标称电压信息;(6e)构建电压波动模型:其中,△V表示负载接入前后线路末端电压波动范围,R表示各线路段的单位长度电阻,L表示各线路段的长度,U0表示线路标称电压,S′表示线路各节点接入的户均容量,节点N为线路末端节点,当N取值为1时,表示一户接入线路,U′待测线路的末端最大负荷电压值U表示测线路的末端最小负荷电压值。由上述技术方案可知,本发明所述的基于新型城镇化的低电压治理措施优选方法中,能够对城镇配电网中的低电压原因进行准确分析,从而针对于造成低电压的原因提出具有针对性的解决方案,保证治理后的电压质量满足城镇居民的生产和生活要求,本发明提升了城镇电网末端的电压,降低了线路无功电流流动,减少电能损耗,提高了农网供电电压质量。附图说明图1是本发明的方法流程图。具体实施方式下面结合附图对本发明做进一步说明:目前,变电站不具备对负荷点电压的监测功能,当负荷点电压越限时也不能及时作出调整,因而影响电压质量。在实现低电压调节的过程中,在主变、SVR馈线自动调压器、配变及代表用户端均装设智能监测装置和低压配电监测装置,该监测装置集检测电压、电流和功率因数为一体,实现对各处的实时电压信息监测及对信号指令的传输。对于10kV母线电压允许偏差为0%~+7%。用户受电端10kV电压允许偏差为-7%~+7%,0.38kV电压允许偏差为-7%~+7%,0.22kV电压允许偏差为-10%~+7%。当电压质量不满足要求时,进行以下方法进行调节。本实施的基于新型城镇化的低电压治理措施优选方法,具体包括以下步骤:S1:获取配电网的系统参数,所述系统参数包括配电线路型号、配电线路长度、配变型号以及配变容量;S2:根据配变容量计算配变最大负荷其中η表示配变负载率,S表示配变容量,表示功率因数;S3:统计负载端当前用电负荷;S4:根据系统参数、配变最大负荷,判断低电压原因;S5:若当前用电负荷大于配变最大负荷P,则通过配电装置进行调压,该步骤具体包括以下步骤:S51:在主变、SVR馈线自动调压器、配变及负荷线路终端均安装智能检测装置及低压配电检测装置;S52:通过智能检测装置及低压配电检测装置获取主变、SVR馈线自动调压器、配变及负荷线路的数据参数,该数据参数包括电压、电流、有功功率和无功功率;S53:通过数据参数分析电网低压原因和低压位置;S54:若SVR馈线自动调压器、配变及负荷线路终端处均出现电压偏低且无无功缺额时,则通过GSM自动无线发送数据到变电站生产调度部门后台计算机监测中心,则通过自动或手动调节主变档位进行调压,若存在无功缺额时,应先进行无功调节使无功得到平衡,后进行电压调制。若SVR馈线自动调压器、配变及负荷线路终端处的低压问题得以解决,则调压成功;当调整主变分接头档位已到极限,而SVR馈线自动调压器或配变处低压问题仍未解决时,则通过调整SVR馈线自动调压器的分接开关位置以改变自耦变压器变比进行调压;当SVR馈线自动调压器的分接开关位置已到极限,而负荷线路终端处低压问题仍未解决时,则通过调整配变的分接头位置和投切无功补偿电容器进行调压。S55:若配变及负荷线路终端处均出现电压偏低且无无功缺额时,则通过GSM自动无线发送数据到变电站生产调度部门后台计算机监测中心,经分析发送指令通过调整SVR馈线自动调压器的分接开关位置以改变自耦变压器变比进行调压,若存在无功缺额时,应先进行无功调节使无功得到平衡,后进行电压调制;若配变及负荷线路终端处低压问题均得以解决时,则调压成功;若SVR馈线自动调压器已经调压极限或配变处电压已经越限,而负荷线路终端处低压问题仍未解决时,则通过调整配变的分接头位置和投切无功补偿电容器进行调压。S56:若只有负荷线路终端处出现电压偏低时,低压配电监测装置通过GSM自动无线发送数据到变电站生产调度部门后台计算机监测中心,后台计算机监测中心经分析发送指令到配变进行调压,该调压通过调整配变的分接头位置和投切无功补偿电容器进行调压。S6:若当前用电负荷小于配变最大负荷P,且待测线路末端电压波动大于标准值时,则通过更换线径较大的导线进行调压。该步骤中所述待测线路末端电压波动,通过以下步骤获得:a:检测待测线路的末端最小负荷电压值及最大负荷电压值;b:获取待测线路各节点接入的光伏容量信息;c:获取待测线路各线路段的长度以及单位长度电阻信息;d:获取待测线路的标称电压信息;e构建电压波动模型:其中,△V表示负载接入前后线路末端电压波动范围,R表示各线路段的单位长度电阻,L表示各线路段的长度,U0表示线路标称电压,S′表示线路各节点接入的户均容量,节点N为线路末端节点,当N取值为1时,表示一户接入线路,U′待测线路的末端最大负荷电压值U表示测线路的末端最小负荷电压值。若△V大于电网规定的标准值时,则通过更换线径较大的导线进行调压。本发明所述的基于新型城镇化的低电压治理措施优选方法中,能够对城镇配电网中的低电压原因进行准确分析,从而针对于造成低电压的原因提出具有针对性的解决方案,保证治理后的电压质量满足城镇居民的生产和生活要求,本发明提升了城镇电网末端的电压,降低了线路无功电流流动,减少电能损耗,提高农网供电电压质量,减少电能损耗。以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1