电路装置的制作方法

文档序号:12181849阅读:157来源:国知局
电路装置的制作方法

本发明涉及用于给电动机的电磁保持制动器供应用于将保持制动器松开的工作电压以及用于使打开的保持制动器保持的相对于工作电压减小的电压的电路装置。



背景技术:

电磁保持制动器用于,只要电动机已停止使用并且不允许移动(即使在从外面输送的转矩的情况下),就使所述电动机的轴保持。这样的保持制动器(Haltebremse)的安全的状态是以下状态:在所述状态下保持制动器停息(eingefallen)并且轴被夹住。因此,电磁保持制动器被如此设计,使得所述电磁保持制动器借助于电磁铁被松开,工作电压被施加到所述电磁铁上以便将制动块举起。如果将所述工作电压切断,或者所述工作电压由于其他的原因失效,那么制动块通过机械弹簧再次被压向轴。

电磁保持制动器也结合直线电动机得以应用。在那里,所述电磁保持制动器在无电流状态下将转子固定在定子处。

由US 3614565公知,为了将保持制动器松开,使用比用于将制动器保持在打开的状态更高的工作电压。由此,一方面制动器可以较快速地被打开,另一方面在电动机运行期间在电磁铁中形成的热显著地被减少。

在EP 2503682 B1中描述一种电路装置,其中不同的电压借助于脉冲宽度调制被调整用于将制动器打开或者使已经打开的制动器保持。在此,在保持制动器的电磁铁处的电压对应于所施加的电压脉冲的时间平均值。在该文献中公开了如果用于操控保持制动器的电路装置和传动调节器直接地布置在电动机中或者电动机处,那么这在分散式传动技术中是有利的。在所述配置中,传动调节器可以现场产生用于对保持制动器以脉冲宽度调制的方式进行供应的信号。但是在一些技术领域中,更可能要求中央传动调节,例如借助于在多轴机床处的数字控制装置。按照EP 2503682 B1,于是除了用于传输制动电压的供应线路之外还需要传感器线路,所述传感器线路直接地在保持制动器处测量电压或者电流并且传输到中央传动调节器。由此,例如在供应线路处的电压降可以被识别,并且在脉冲宽度调制时通过匹配的占空比被均衡。然而,这样的附加的传感器线路意味着在对传动解决方案铺设电缆时提高的耗费,并且也意味着附加的故障源。



技术实现要素:

本发明的任务是,说明用于给电动机的电磁保持制动器供应用于将保持制动器松开的工作电压以及用于使打开的保持制动器保持的相对于工作电压减小的电压的分散地布置的电路装置,所述保持制动器从中央控制装置出发仅仅必须被供应用于将保持制动器打开所需要的工作电压。

通过按照权利要求1所述的电路装置解决所述任务。所述电路装置的有利的细节由与权利要求1有关的权利要求得出。

公开一种电路装置,所述电路装置用于给电动机的电磁保持制动器供应用于将保持制动器松开的工作电压以及用于使打开的保持制动器保持的相对于工作电压减小的电压。所述电路装置相对于现有技术的特点在于:工作电压由上级的、与电动机和保持制动器分开地布置的控制装置输送,电路装置布置在电动机中或者电动机处,或者布置在保持制动器中或者保持制动器处,并且包含电压调节器,所述电压调节器被设立用于在将保持制动器松开后与工作电压无关地将减小的电压调节到固定值。

在此情况下,电动机和保持制动器构成一个单元,并且按照本发明的电路装置布置在所述单元处或者所述单元中。用于操作保持制动器的工作电压从外部由单独地和远程地布置的、上级或者中央控制装置输送。在此,单独的中央控制装置例如在机床处可以操控多个电动机和其保持制动器。

如果保持制动器应当被松开,那么布置在电动机处或者电动机中或者在保持制动器处或者保持制动器中的电路装置仅须由中央控制装置加载工作电压。如果所述工作电压再次被切断,那么保持制动器重新停息。中央控制装置既不必产生脉冲宽度调制的工作电压,也不必将用于保持制动器的工作电压的供应线路上的电压降以任意的形式通知给控制装置。按照本发明针对中央传动调节克服上面提及的背景技术的这些缺点。

按照本发明的电路装置以分散的方式负责将保持制动器快速地(也即利用全工作电压)松开,并且在进一步的进程中利用减小的电压(保持电压)使制动器保持打开,所述减小的电压与保持制动器的供应线路上的电压降无关,以便因此明显地减少能量消耗。此外,电路装置负责在切断工作电压后快速地使保持制动器停息。

由于作为滞后转换器使用的集成式比较器,分散地布置在电动机中或者电动机(例如其壳体)处并且因此布置在保持制动器附近的电路装置从而自给自足地被设计,使得仅用于保持制动器的用于举起制动器所需要的工作电压必须由中央控制装置提供。于是电路装置自动地负责:首先全工作电压被施加到保持制动器的电磁铁上,并且制动器因此快速地被举起。然后,借助于脉冲宽度调制减小的、用于使制动器保持在举起状态中的电压通过电路装置产生,其方式是工作电压以脉动的方式以合适的占空比被施加,使得保持制动器上的平均电压刚好对应于保持电压。

因为进行电压调节,所以不同类型的保持制动器、也即尤其具有不同的电流耗用的这样的保持制动器可以被连接到电路装置上。

在将保持制动器松开时的时间流程(Ablauf)、也即尤其第一阶段的持续时间通过设计电路装置的各个器件被预先给定,并且丝毫不需要通过上级控制装置干预,可以说所述时间流程已经在电路装置中被确定,其中在所述第一阶段期间,在被转换到保持电压之前,保持制动器利用全工作电压被举起。

附图说明

本发明的其他的优点和详情由实施例的以下说明根据图得出。

在此,

图1示出电路装置的第一部分,

图2示出电路装置的第二部分。

具体实施方式

图1和2以综述的方式得出按照第一实施例的按照本发明的电路装置的完整的电路图。所述电路图已经将本发明的全面的公开提供给尤其针对用于操控传动技术的组件的电子电路的传动技术领域的技术人员。以下这些细节中的很多以文本形式来解释,然而应明确地保留对在图中所公开的电路装置的其他细节的之后的补偿(Rückgriff)。

电动机M的保持制动器B与电路装置的接线柱+Vb、-Vb连接。只要足够的电压经由所述接线柱被施加,那么保持制动器B释放电动机M的轴。

因此,如果从外面将工作电压UB施加到电路装置的接线柱0V、24V上,那么保持制动器B经由开关元件M1和M4与所述工作电压连接。在图1中示意性地示出远离电动机M和保持制动器B布置的中央控制装置S,所述控制装置S可以接通供应电压UB,以便松开保持制动器B,并且可以关断,以便让保持制动器B停息。

一旦工作电压UB被施加,开关元件M4持久地被接通。而在打开制动器之后对开关元件M1进行时钟控制(getaktet),以便因此产生所期望的减小的保持电压。因为这样的开关元件M1作为n沟道MOSFET比具有P沟道的这样的开关元件更有益(n沟道能够实现在相同的导通(On)电阻的情况下更快速的切换),所以整个电路装置参考较高的正电势24V,并且不像往常常见的那样参考电势0V。

由开关元件Q3和Q4组成的互补驱动器用于操控开关元件M1,所述互补驱动器又由开关元件Q1操控。在此,开关元件Q1用作电平转移器(Level-Shifter),所述电平转移器将比较器U1的参考24V的开关脉冲v4传输到参考0V的开关元件Q3、Q4上。 因此,开关元件Q1必须被供应电压脉冲,根据所述电压脉冲,在保持制动器B之前的开关元件M1最终被断开和闭合,使得无论何时所需要的电压均被施加在保持制动器B上。

因此,在接通工作电压UB后的一定的时间内,必须将所述电压完全地施加在保持制动器B上,直到所述保持制动器B已经安全地被打开。为此大约一秒的时间区间得以证明。然后,保持制动器B上的电压应当被调整到较低的保持电压,所述保持电压可以对应于大约一半的工作电压UB。为此,开关元件M1必须利用例如50%的占空比以脉动的方式被运行。从而,脉冲模式因此必须在开关元件Q1的输入端处被提供。

比较器U1用于此,其中参考电压v2施加在所述比较器U1的一个输入端上。所述参考电压经由齐纳二极管D6和电阻R15由工作电压UB的高电势+24V导出。由于齐纳二极管D6,所述参考电压v2与工作电压UB的馈电线上的可能的电压降无关。这意味着:在电路装置的输入端处工作电压UB的轻微的下降也不导致减小的参考电压v2。

由保持制动器B所量取的电压v3处于比较器U1的第二输入端处。因为电路装置参考高电势24V,所以所述电压v3从负端子-Vb量取,并且经由由电阻R4和R12组成的分压器与参考电压v2相配地被调整。矩形信号直接在接线柱-Vb处被量取,然而所述矩形信号在比较器U1的输入端处借助于平滑电容器C1被转换成三角形电压。

如果在保持制动器B处量取和平滑(geglättete)的电压v3现在下降到参考电压v2之下,那么比较器U1发出使开关元件Q1截止的电压v4。于是经由互补驱动器Q3、Q4使开关器件M1截止,保持制动器B上的电压升高。此外,比较器U1的输出信号v4经由电阻R2被反馈到参考电压v2上。由此,阈值被向上移动一些,使得形成切换滞后,在所述阈值时比较器U1在升高的电压v3的情况下再次切断。可以通过选择R2影响所述滞后的数值以及因此比较器U1的切换频率。这里1-10kHz的范围内的切换频率得以证明。通过开关元件M1的以这种方式脉动的运行并且由于参考电压v2与在输送工作电压UB时的线路损耗的无关性,可以在保持制动器B处非常限定地并且接近最有益的点地调整保持电压,其中保持制动器还安全地保持打开,但是其中不实施制动器B的电磁铁中的不必要的损耗功率。此外,如果从更低的保持电压出发切断工作电压,那么制动器B也更快速地再次停息。

但是,因为电路装置也必须负责:为了打开保持制动器B首先将全工作电压UB施加在保持制动器B上,所以起动电容器C8负责在施加工作电压UB之后在短的时间段期间仍不发生开关元件M1的脉冲运行。也即紧接在施加工作电压后,v3仍低于v2。因此比较器U1接通,并且经由开关元件M1给保持制动器B供应全工作电压UB。因此在保持制动器B处在-Vb情况下所量取的电势也升高。于是,电流朝着起动电容器C8的方向流动,所述电流对所述电容充电。v3保持低于参考电压v2,直至所述充电在大约一秒之后结束为止——因此仍然不发生脉冲运行,开关元件M1持久地保持闭合,保持制动器B被加载全工作电压UB,并且因此尽可能快速地被打开。

只有当起动电容器C8在所述第一秒之后完全地被充电,v3才升高超过v2,并且上面描述的脉冲运行开始。现在,保持制动器B上的电压被减少到保持电压。

如提及的,一旦施加工作电压UB,开关元件M4始终是导通的。保持制动器B的上面的接线柱+Vb经由所述开关元件M4与高电势24V连接。利用开关元件M1强制脉冲运行,所述开关元件M1将保持制动器B的下面的接线柱-Vb 与低电势0V连接。在每次切断M1之后,通过空转二极管进行空转。

在切断工作电压UB后,保持制动器B应当尽可能快速地、在几毫秒之内停息。由于在保持制动器B中的电磁铁的线圈的适当高的电感,为此主动地切断空转路径是有利的。这通过开关元件M4实现,所述开关元件M4确实仅仅在施加的工作电压UB的情况下是导通的,并且所述开关元件M4因此在取消工作电压UB时切断。于是,在保持制动器B中存储的能量以热的方式在与开关元件M4并联的抑制二极管D4中被消灭。因此,所述开关元件也可以被称作空转开关元件M4。

此外在通过切断工作电压UB来切断保持制动器B的情况下,使用放电二极管D2。所述放电二极管将电容C1并且特别是C8放电,以便在重新松开保持制动器B时在短时间之后,电路装置的完全功能性再次可供使用。为此如上面描述的,用于在将工作电压UB接通后对起动电容器C8充电的时间需求是决定性的。起动电容器C8的剩余电荷能够缩短所述时间,以及因此缩短以下时间,在所述时间期间全工作电压U仍施加在保持制动器B上。

在电路装置的输入端处,压敏电阻R21提高相对干扰脉冲的耐压强度。所述压敏电阻R21与电容器C4一起稳定输入电压。由于以时钟控制方式运行电路装置,对于C4尽可能高的电容会是值得期望的,然而,由于电解电容器的太小的耐热性,在该位置处(在电动机附近)可能不使用电解电容器。代替地,使用陶瓷电容器。

作为尽可能稳健地构成电路装置的其他措施,会注意的是,从24V到0V的低欧姆的连接不影响比较器U1。在快速升高的供应电压的情况下,R23和R16阻挡高的电流。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1