新能源并网有功高可靠性自动控制系统的制作方法

文档序号:14687620发布日期:2018-06-15 05:47阅读:259来源:国知局

本发明属于新能源并网控制技术领域,更准确地说,本发明涉及一种新能源并网有功高可靠性自动控制系统。



背景技术:

新能源发电具有间隙性和随机性特点,为了最大限度消纳新能源电力,需要根据新能源发电超短期预测,考虑电网的调峰、安全稳定、现货交易和经济环保等运行约束,对常规机组和新能源场站并网功率进行在线优化计算与控制。由于新能源场站技术装备和管理水平差异较大,相对于常规电站,不仅新能源场站出力的可控性能通常要差一些,并且可控性能稳定性也不足,因此,若按常规电站的控制方式进行新能源场站的控制,则难以综合保障新能源场站响应电网调控中心控制指令的精度、实时性和可靠性。

论文“大型集群风电有功智能控制系统设计”(电力系统自动化,Vol.34,No.17,2010年)提出在电网调控中心设置中心站,在变电站设置控制主站和控制子站,在风电场设置执行站,由中心站在线制定风电场有功控制策略,并将风电场有功控制策略,通过控制主站和控制子站,下发至执行站,由执行站发送至风电场监控系统执行,并监督风电场有功控制策略的执行效果及超时切风电馈线。相对于由电网调控中心直接将在线制定的风电场有功控制策略直接下发给风电场监控系统执行的技术方案(简称为系统控制方案),该设计方案(简称为装置控制方案)的主要优点在于:一、各站之间采用的是专用通道,实时性和可靠性比较高;二、若风电场监控系统没有将风电网有功降到位,执行站控制装置可以对风电场实施紧急控制,确保风电场有功降到位,有效避免电网安全风险。

但是,这两种控制方案存在相同的缺点,当中心站或电网调控中心不能生成风电场有功控制策略时,就丧失了对风电场的有功控制能力。此外,装置控制方案在任一控制主站、控制子站和执行站异常时,也会丧失对部分风电场的有功控制能力。当然,与装置控制方案相比,系统控制方案的投资少,调试及运行维护工作量也小。



技术实现要素:

本发明目的是:针对现有技术中的不足,提出一种新能源并网有功高可靠性自动控制系统。本发明综合了现有技术中系统控制方案和装置控制方案的优点,但针对其不足之处,引入应对中心站或电网调控中心不能生成风电场有功控制策略情况下控制子站和执行站的就地控制策略,综合考虑控制精度、实时性、可靠性、投资和调试及运行维护工作量等因素,针对控制系统通信异常、站点异常、控制策略生成及实施进行可靠性设计,构建了新能源并网有功高可靠性自动控制系统。

本发明的基本原理在于:在实时控制策略生成环节,引入离线控制策略与在线控制策略的自适应选择设计,可避免在线控制策略生成不及时或不适应可能造成的电网安全风险,提高实时控制策略的适应性。在信息上送、控制策略下发环节采用与两个站点交互的通信模式,可确保单个站点异常下仍然能够对新能源场站实施有效控制。

具体地说,本发明是采用以下技术方案实现的,控制系统包括调度端中心站和厂站端控制站,其中:

厂站端控制站分为非新能源场站的变电站端控制站和新能源场站内控制站,将非新能源场站的变电站端控制站简称为控制子站,将新能源场站内控制站简称为执行站;

控制子站包括控制子站的控制装置和站内监控系统,所述站内监控系统运行控制子站的实时信息采集与汇集模块、实时信息上送模块、新能源场站有功在线控制策略接收模块、新能源场站有功实时控制策略生成模块和新能源场站有功实时控制策略下发模块;

执行站包括执行站的控制装置和场站监控系统,所述场站监控系统运行执行站的实时信息采集模块、实时信息上送模块、新能源场站有功实时控制策略接收模块和新能源场站有功实时控制策略执行模块;

调度端中心站运行调度端中心站的厂站端控制站实时信息汇集模块、新能源场站有功在线控制策略计算模块、新能源场站有功在线控制策略下发模块和新能源场站有功在线控制策略计算控制模块;

所述调度端中心站的厂站端控制站实时信息汇集模块负责按照设定的调度端中心站汇集厂站端控制站实时信息的周期,接收控制子站及执行站上送的控制装置实时运行信息和实测信息,并根据汇集的实时信息生成用于判断新能源场站有功在线控制策略适应性的标识,并将该标识称之为“中心站方式字”,将设定的调度端中心站汇集厂站端控制站实时信息的周期记为T1;

所述调度端中心站的新能源场站有功在线控制策略计算模块负责首先从电网调控系统获取最新的电网状态估计数据,若最新的电网状态估计数据所对应的电网运行时刻与当前时刻之间的时长大于设定的电网状态估计数据有效时长,则重新获取最新的电网状态估计数据,直至最新的电网状态估计数据所对应的电网运行时刻与当前时刻之间的时长小于等于设定的电网状态估计数据有效时长,然后,将“中心站方式字”作为在线策略的标识,将在线策略的标识称之为“在线策略方式字”,根据控制系统结构和执行站实时信息生成可控新能源场站及其可控量的集合,记为C,再基于所述厂站端控制站实时信息汇集模块汇集的控制子站、执行站上送的实测信息和最新的电网状态估计数据生成反映电网实时运行状态的潮流计算数据,最后,基于电网实时潮流计算数据和C中新能源场站有功出力预测数据,计及电网运行约束和现货交易约束,以C中新能源场站有功出力之和最大化为目标,通过优化计算得到新能源场站有功在线控制策略和相应的常规电站有功控制策略;

所述调度端中心站的新能源场站有功在线控制策略下发模块负责在所述新能源场站有功在线控制策略计算模块生成了新能源场站有功在线控制策略时,根据控制系统结构,将新能源场站有功在线控制策略及“在线策略方式字”按控制子站分解下发给相应的控制子站,若控制子站停运或异常,则根据控制系统结构将由该控制子站负责实施的新能源场站有功在线控制策略按执行站分解直接下发给相应的执行站,直至停运或异常的控制子站恢复正常运行为止;

所述调度端中心站的新能源场站有功在线控制策略计算控制模块负责在所述厂站端控制站实时信息汇集模块生成了“中心站方式字”时,进行以下处理:若“中心站方式字”与“在线策略方式字”不一致或当前时刻与上一轮新能源场站有功在线控制策略计算模块启动时刻之间的时长大于设定的新能源场站有功在线控制策略计算周期时,则启动新一轮新能源场站有功在线控制策略计算模块的运行,将设定的新能源场站有功在线控制策略计算周期记为T2,T2大于T1;

所述控制子站的实时信息采集与汇集模块负责采集本站的控制装置实时运行信息和实测信息,以及根据控制系统结构按照设定的厂站端控制站之间信息交互周期,汇集相关控制子站采集与汇集的实时信息和相关执行站采集的实时信息,并根据采集与汇集的实时信息生成控制子站的方式标识,将该标识称之为“控制子站方式字”,将设定的厂站端控制站之间信息交互周期记为T3,T3小于T1;

所述控制子站的实时信息上送模块负责根据控制系统结构按照T1为周期向调度端中心站上送本站采集与汇集的控制装置实时运行信息和实测信息,以及根据控制系统结构按照T3为周期向相应的控制子站发送本站采集与汇集的控制装置实时运行信息和实测信息;

所述控制子站的新能源场站有功在线控制策略接收模块负责接收调度端中心站根据控制系统结构按控制子站分解后下发的新能源场站有功在线控制策略及“在线策略方式字”;

所述控制子站的新能源场站有功实时控制策略生成模块负责在所述控制子站的新能源场站有功在线控制策略接收模块接收到调度端中心站下发的新能源场站有功在线控制策略及“在线策略方式字”时,若“在线策略方式字”与“控制子站方式字”一致,则将接收到的新能源场站有功在线控制策略作为新能源场站有功实时控制策略,若“在线策略方式字”与“控制子站方式字”不一致或在k1T2时间内没有接收到调度端中心站下发的新能源场站有功在线控制策略及“在线策略方式字”,则根据本站采集和汇集的实时信息,从离线策略表中搜索到当值控制策略,将当值控制策略作为新能源场站有功实时控制策略,其中k1为大于1的设定参数;

所述控制子站的新能源场站有功实时控制策略下发模块负责在所述控制子站的新能源场站有功实时控制策略生成模块生成了新能源场站有功实时控制策略时,根据控制系统结构,将新能源场站有功实时控制策略按执行站分解下发给相应的执行站,

所述执行站的实时信息采集模块负责采集本站的控制装置实时运行信息和实测信息;

所述执行站的实时信息上送模块负责根据控制系统结构按照T3为周期向相应的控制子站上送本站采集的控制装置实时运行信息和实测信息,按照T1为周期直接向调度端中心站上送本站采集的控制装置实时运行信息和实测信息;

所述执行站的新能源场站有功实时控制策略接收模块负责接收控制子站下发的新能源场站有功实时控制策略,若在k2T2时间内没有接收到控制子站下发的新能源场站有功实时控制策略,则将接收到的调度端中心站下发的新能源场站有功在线控制策略作为新能源场站有功实时控制策略,直至能够接收到控制子站下发的新能源场站有功实时控制策略为止,若在k2T2时间内既没有接收到控制子站下发的新能源场站有功实时控制策略信息,也没有接收到的调度端中心站下发的新能源场站有功在线控制策略信息,则将本站采集的新能源场站实时有功按设定比例下降后的值与该新能源场站设定的最小保留容量二者中的最大值作为新能源场站有功实时控制策略对应的有功控制指令值,直至能够接收到控制子站或调度端中心站下发的新能源场站有功实时控制策略为止,其中k2大于k1;

所述执行站的新能源场站有功实时控制策略执行模块负责在所述执行站的新能源场站有功实时控制策略接收模块生成了新能源场站有功实时控制策略时,将新能源场站有功实时控制策略对应的有功控制指令值发送给新能源场站监控系统,由监控系统对新能源场站实施控制,同时根据本执行站控制装置采集的实测信息监测有功控制指令执行效果,若新能源场站有功实时控制策略是降低新能源场站有功出力且在设定的时间结束后其有功出力仍大于有功控制指令值,则根据本执行站采集的控制装置实时运行信息和实测信息,将新能源场站实时有功与有功控制指令值的差值作为本执行站对新能源场站实施紧急控制的有功控制量,由本执行站控制装置对新能源场站实施紧急控制;

若新能源场站监控系统在k3T2时间内没有收到执行站控制装置的有功实时控制策略,则按调度端中心站下发的有功在线控制策略执行,其中k3大于k2,若新能源场站监控系统在k3T2时间内没有收到执行站控制装置的有功实时控制策略,也没有接收到调度端中心站下发的有功在线控制策略,则将本场站监控系统采集的新能源场站实时有功按设定比例下降后的值与该新能源场站设定的最小保留容量二者中的最大值作为新能源场站有功实时控制策略对应的有功控制指令值,对新能源场站实施控制,直至能够接收到执行站控制装置或调度端中心站下发的新能源场站有功在线控制策略为止。

上述技术方案的进一步特征在于,所述控制子站的控制装置安装在与新能源并网有功控制相关的安全稳定输电断面所接入的变电站。

上述技术方案的进一步特征在于,在所述调度端中心站的新能源场站有功在线控制策略计算模块生成了新能源场站有功在线控制策略和相应的常规电站有功控制策略时,通过电网调控系统按照其中常规电站的有功控制策略对常规电站实施控制。

通过采用上述技术方案,本发明取得了下述技术效果:本发明针对控制系统通信异常、站点异常、控制策略生成及实施多个环节进行多重后备措施的可靠性设计,实现了在中心站、控制子站和执行站控制装置分别异常时可对场站进行优化控制,在场站监控系统不能及时将场站有功降到指令值或场站监控系统异常时,能够对场站实施紧急控制,以及在中心站、控制子站和执行站控制装置都异常时,还可控制场站按当前有功缓慢下降运行。

附图说明

图1为本发明的控制站点布置图。

图2为本发明的控制系统结构图。

具体实施方式

下面参照附图对本发明作进一步详细描述。

本实施例为本发明的一种实施方式。

图1中两个控制子站分别布置在与新能源并网有功控制相关的安全稳定输电断面1和安全稳定输电断面2所接入的变电站,执行站分别部署在需要进行集中控制的各个风电场和光伏电站。

图2中新能源并网有功高可靠性自动控制系统由调度端中心站和厂站端控制站两部分组成,其中厂站端控制站分为非新能源场站的变电站端控制站和新能源场站内控制站,将非新能源场站的变电站端控制站简称为控制子站,将新能源场站内控制站简称为执行站,所述调度端中心站由新能源控制决策应用和电网调控系统构成,包括厂站端控制站实时信息汇集模块、新能源场站有功在线控制策略计算模块、新能源场站有功在线控制策略下发模块和新能源场站有功在线控制策略计算控制模块,所述控制子站由控制装置和变电站内监控系统构成,包括实时信息采集与汇集模块、实时信息上送模块、新能源场站有功在线控制策略接收模块、新能源场站有功实时控制策略生成模块和新能源场站有功实时控制策略下发模块,所述执行站由控制装置和场站监控系统构成,包括实时信息采集模块、实时信息上送模块、新能源场站有功实时控制策略接收模块和新能源场站有功实时控制策略执行模块。

所述厂站端控制站实时信息汇集模块负责按照设定的调度端中心站汇集厂站端控制站实时信息的周期接收控制子站、执行站控制装置经由站内监控系统、电网监控系统上送的控制装置实时运行信息和实测信息,并根据汇集的实时信息生成用于判断新能源场站有功在线控制策略适应性的“中心站方式字”(“中心站方式字”即为一种标识),将设定的调度端中心站汇集厂站端控制站实时信息的周期记为T1,通常设置为5秒;

所述控制装置实时运行信息包括装置异常、通信状态、压板状态、定值等;所述控制装置实测信息包括设备投/退状态、设备潮流等;

所述新能源场站有功在线控制策略计算模块负责首先从电网调控系统获取最新的电网状态估计数据,若最新的电网状态估计数据所对应的电网运行时刻与当前时刻之间的时长大于设定的电网状态估计数据有效时长(通常设为2.5分钟),则重新获取最新的电网状态估计数据,直至最新的电网状态估计数据所对应的电网运行时刻与当前时刻之间的时长小于等于设定的电网状态估计数据有效时长,然后,将“中心站方式字”作为“在线策略方式字”(即在线策略方式的标识),根据控制系统结构和执行站实时信息生成可控新能源场站及其可控制量的集合,记为C,再基于所述厂站端控制站实时信息汇集模块汇集的控制子站、执行站上送的实测信息和最新的电网状态估计数据生成反映电网实时运行状态的潮流计算数据,最后,基于电网实时潮流计算数据和C中新能源场站有功出力预测数据,计及电网稳定断面限额、有功备用、对外联络线有功计划等运行约束和现货交易约束等,以C中新能源场站有功出力之和最大化为目标,通过优化计算得到新能源场站有功在线控制策略和相应的常规电站有功控制策略;

在所述新能源场站有功在线控制策略计算模块生成了新能源场站有功在线控制策略和相应的常规电站有功控制策略时,通过电网调控系统按照其中常规电站的有功控制策略对常规电站实施控制;

所述新能源场站有功在线控制策略下发模块负责在所述新能源场站有功在线控制策略计算模块生成了新能源场站有功在线控制策略时,根据控制系统结构,将新能源场站有功在线控制策略及“在线策略方式字”按控制子站分解经由电网监控系统、站内监控系统下发给相应的控制子站控制装置,若控制子站停运或异常,则根据控制系统结构将由该控制子站负责实施的新能源场站有功在线控制策略按执行站分解经由电网监控系统直接下发给相应的执行站所在的新能源场站监控系统,并由场站监控系统发送给执行站的控制装置,直至停运或异常的控制子站恢复正常运行为止;

所述新能源场站有功在线控制策略计算控制模块负责在所述厂站端控制站实时信息汇集模块生成了“中心站方式字”时,进行以下处理:若“中心站方式字”与“在线策略方式字”不一致或当前时刻与上一轮新能源场站有功在线控制策略计算模块启动时刻之间的时长大于设定的新能源场站有功在线控制策略计算周期时,则启动新一轮新能源场站有功在线控制策略计算模块的运行,将设定的新能源场站有功在线控制策略计算周期记为T2,T2大于T1,通常设置为5分钟;

所述控制子站的实时信息采集与汇集模块负责采集本站的控制装置实时运行信息和实测信息,以及根据控制系统结构按照设定的厂站端控制站之间信息交互周期汇集相关控制子站采集与汇集的实时信息和相关执行站采集的实时信息,并根据采集与汇集的实时信息生成“控制子站方式字”(即控制子站的方式的标识),将设定的厂站端控制站之间信息交互周期记为T3,T3小于T1,通常设置为0.1秒;

所述控制子站的实时信息上送模块负责根据控制系统结构按照T1为周期经由所在变电站监控系统、电网监控系统向调度端中心站新能源控制决策应用上送本站采集与汇集的控制装置实时运行信息和实测信息,以及根据控制系统结构按照T3为周期向相应的控制子站控制装置发送本站采集与汇集的控制装置实时运行信息和实测信息;

所述控制子站的新能源场站有功在线控制策略接收模块负责经由电网监控系统、所在变电站监控系统接收调度端中心站新能源控制决策应用根据控制系统结构按控制子站分解后下发的新能源场站有功在线控制策略及“在线策略方式字”;

所述控制子站的新能源场站有功实时控制策略生成模块负责在所述新能源场站有功在线控制策略接收模块接收到调度端中心站下发的新能源场站有功在线控制策略及“在线策略方式字”时,若“在线策略方式字”与“控制子站方式字”一致,则将接收到的新能源场站有功在线控制策略作为新能源场站有功实时控制策略,若“在线策略方式字”与“控制子站方式字”不一致或在k1T2时间内没有接收到调度端中心站下发的新能源场站有功在线控制策略及“在线策略方式字”,则根据本站采集和汇集的实时信息,从离线策略表中搜索到当值控制策略,将当值控制策略作为新能源场站有功实时控制策略,其中k1为大于1的设定参数,通常设置为1.5;

所述控制子站的新能源场站有功实时控制策略下发模块负责在所述新能源场站有功实时控制策略生成模块生成了新能源场站有功实时控制策略时,根据控制系统结构,将新能源场站有功实时控制策略按执行站分解下发给相应的执行站控制装置;

所述执行站的实时信息采集模块负责采集本站的控制装置实时运行信息和实测信息;

所述执行站的实时信息上送模块负责根据控制系统结构按照T3为周期向相应的控制子站上送本站采集的控制装置实时运行信息和实测信息,按照T1为周期经由所在场站监控系统、电网监控系统直接向调度端中心站新能源控制决策应用上送本站采集的控制装置实时运行信息和实测信息;

所述执行站的新能源场站有功实时控制策略接收模块负责接收控制子站控制装置下发的新能源场站有功实时控制策略,若在k2T2时间内没有接收到控制子站控制装置下发的新能源场站有功实时控制策略,则将接收到的调度端中心站下发的新能源场站有功在线控制策略作为新能源场站有功实时控制策略,直至能够接收到控制子站控制装置下发的新能源场站有功实时控制策略为止,若在k2T2时间内既没有接收到控制子站控制装置下发的新能源场站有功实时控制策略信息,也没有接收到的调度端中心站下发的新能源场站有功在线控制策略信息,则将本站采集的新能源场站实时有功按设定比例(通常设置为5%)下降后的值与该新能源场站设定的最小保留容量二者中的最大值作为新能源场站有功实时控制策略对应的有功控制指令值,直至能够接收到控制子站控制装置或调度端中心站下发的新能源场站有功实时控制策略为止,其中k2大于k1,通常设置为1.8;

所述执行站的新能源场站有功实时控制策略执行模块负责在所述新能源场站有功实时控制策略接收模块生成了新能源场站有功实时控制策略时,将新能源场站有功实时控制策略对应的有功控制指令值发送给新能源场站监控系统,由监控系统对新能源场站实施控制,同时根据本执行站控制装置采集的实测信息监测有功控制指令执行效果,若新能源场站有功实时控制策略是降低新能源场站有功出力且在设定的时间结束后其有功出力仍大于有功控制指令值,则根据本执行站采集的控制装置实时运行信息和实测信息,将新能源场站实时有功与有功控制指令值的差值作为本执行站对新能源场站实施紧急控制的有功控制量,由本执行站控制装置对新能源场站实施紧急控制;

若新能源场站监控系统在k3T2时间内没有收到执行站控制装置的有功实时控制策略,则按调度端中心站下发的有功在线控制策略执行,其中k3大于k2,通常设置为2,若新能源场站监控系统在k3T2时间内没有收到执行站控制装置的有功实时控制策略,也没有接收到调度端中心站下发的有功在线控制策略,则将本场站监控系统采集的新能源场站实时有功按设定比例(通常设置为5%)下降后的值与该新能源场站设定的最小保留容量二者中的最大值作为新能源场站有功实时控制策略对应的有功控制指令值,对新能源场站实施控制,直至能够接收到执行站控制装置或调度端中心站下发的新能源场站有功在线控制策略为止。

虽然本发明已以较佳实施例公开如上,但实施例并不是用来限定本发明的。在不脱离本发明之精神和范围内,所做的任何等效变化或润饰,同样属于本发明之保护范围。因此本发明的保护范围应当以本申请的权利要求所界定的内容为标准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1