动力产生装置的制作方法

文档序号:18400190发布日期:2019-08-09 23:48阅读:261来源:国知局
动力产生装置的制作方法

本发明涉及一种被用作在一般家庭中使用的电动洗衣机、空调、冰箱等家用电器以及事务所、商业用途、交通工具等的动力源的动力产生装置。



背景技术:

以往,公开了一种设置第一速度估计部以及具备与第一速度估计部不同的估计方法的第二速度估计部来检测失步的动力产生装置(例如,参照专利文献1)。第一速度估计部以使使用永磁体的电动机的转子的轴误差δθ或δθm收敛为零的方式估计旋转速度,并输出第一估计旋转速度。第二速度估计部以使第一估计旋转速度追随速度指令的方式控制电动机,并且输出利用不同的估计方法估计出的第二估计旋转速度。

图13是专利文献1所记载的以往的动力产生装置的框图。

如图13所示,专利文献1的动力产生装置具有:具有永磁体的电动机1、pwm逆变器2、坐标变换器3、4、电流控制部5、速度控制部6、磁通控制部7、第一速度估计部8、积分器9、第二速度估计部10、失步判断部11。第一速度估计部8估计电动机1的转子的旋转速度,以使所得到的第一估计旋转速度ωe追随速度指令ω*的方式控制电动机1。第二速度估计部10使用与第一速度估计部8不同的估计方式来估计电动机1的转子的旋转速度。失步判断部11将由第二速度估计部10进行估计所得到的第二估计旋转速度ω2e与第一估计旋转速度ωe或速度指令ω*进行比较。然后,基于比较结果来检测电动机1的失步,控制电动机1的旋转。

另外,公开了如下的动力产生装置:在电动机启动时,基于从电流检测部输入的电流值的相关值以及施加于电动机的电压指令值来计算有效输入功率,在有效输入功率小于规定的阈值的情况下,探测出轴锁定(即失步)(例如,参照专利文献2)。

图14是专利文献2所记载的以往的动力产生装置的框图。

如图14所示,专利文献2的动力产生装置在电动机启动时,利用有效输入功率运算部12中对作为电动机的电流值的相关值的idc、iqc以及与施加于电动机的电压对应的电压指令值v*dc、v*qc进行运算。有效输入功率运算部12将所得到的有效输入功率值pi输出到轴锁定判定部13。轴锁定判定部13还被输入速度指令值ω1*。而且,在所输入的有效输入功率值pi比速度指令值ω1*的条件下的阈值小的情况下,轴锁定判定部13判断为了电动机发生了轴锁定,使电动机的驱动停止。由此,专利文献2的动力产生装置构成轴锁定检测部14。

也就是说,上述以往的动力产生装置的目的在于探测以下的情况下的失步,该情况是:在具有永磁体的电动机的速度相当高的状态下,在绕组中产生的感应电动势足够高,且绕组电阻、感应系数小到某种程度。因此,在不满足上述的条件的情况下,存在在失步探测中做出错误判断的担忧。例如,作为错误判断,存在尽管实际上处于未失步的正常的运转状态但是判断为失步的情况。另外,还包括尽管实际上处于失步的状态但是判断为正常的运转状态的相反的情况等。

然而,以往的动力产生装置不具备能够应对错误判断的失步探测的结构。

也就是说,在专利文献1的动力产生装置中,在通过电动机的低速旋转产生的感应电动势小的条件的情况下,有时即使计算出轴误差δθ或δθm变为接近零的微小值的状态,实际的轴误差也大。另外,在绕组电阻大、处于需要转矩的运转中(动力运转)的情况下,因绕组电阻而产生的压降大,且因绕组电阻的偏差、温度而产生的绕组电阻的变化所引起的变动也变大。因此,由第二速度估计部10估计的第二估计旋转速度的可靠性变低。具体地说,例如不能根据δ轴分量的电压进行判断。

也就是说,在低速且需要转矩的运转中(动力运转)的情况下,通过电动机的旋转而产生的感应电动势变小,因绕组电阻而产生的压降变大。并且,因绕组电阻的偏差或温度而产生的绕组电阻的变化所引起的变动也变大。由此,由第二速度估计部10估计的第二估计旋转速度的可靠性变低,因此例如难以根据δ轴分量的电压进行判断。

另外,在专利文献2的动力产生装置与上述同样地具有绕组电阻大的设计规格的情况下,轴锁定检测的可靠性下降。并且,在刚刚启动后所需的转矩大的情况下,无论有无轴锁定,绕组电阻所消耗的功率(铜损)都会变大。因此,难以基于有效输入功率运算部12的输出差来判断有无轴锁定。

另一方面,相反地,在所需的转矩小的情况下,向不处于轴锁定的状态下的电动机输入的输入功率也小。因此,难以基于比小的输入功率更小的阈值来判断轴锁定的状态。

另外,近年来,将绕组中原本使用的铜线替换为铝线的电动机也逐渐变多。因此,绕组电阻有进一步增大的趋势。由此,上述失步的判断变得更困难。

另外,还存在以下的动力产生装置:在电动机设置发光元件、受光元件、霍尔元件等,适当地利用与永磁体的速度及位置有关的信号。也就是说,上述动力产生装置对离散的速度、位置信息进行插值来进行估计。但是,在一边进行插值一边进行估计的情况下,有时会出现电动机的失步的检测延迟或难以检测电动机的失步。因此,在上述动力产生装置中也同样难以判断失步。

现有技术文献

专利文献

专利文献1:日本特开2007-282389号公报

专利文献2:日本特开2013-146162号公报



技术实现要素:

本发明提供一种能够适当地判断电动机的失步状态并在探测出失步状态的情况下尽早重新启动的动力产生装置。

本发明的动力产生装置具有电源电路,该电源电路用于向电动机的绕组提供电流,具有当电动势的大小不同时电流相对于永磁体的相位不同的特性,电源电路构成为:在失步时改变电流的频率,之后进行重新启动。

根据该结构,即使在具有电动机的绕组电阻大的规格、处于低速且感应电动势低的驱动条件等的情况下,也能够减少失步的误探测。另外,能够使电动机从失步状态适当且迅速地重新启动。由此,能够提供一种能够抑制电能和时间的浪费的动力产生装置。

附图说明

图1是本发明的实施方式1中的动力产生装置的框图。

图2是该实施方式中的动力产生装置的逆变器电路的电路图。

图3是该实施方式中的电动机和负载的结构图。

图4是该实施方式中的动力产生装置的矢量图。

图5a是该实施方式中的动力产生装置正常动作时的速度波形图。

图5b是在该实施方式中的动力产生装置动作时发生了失步的状态的速度波形图。

图6a是该实施方式中的动力产生装置正常动作时的相位波形图。

图6b是在该实施方式中的动力产生装置动作时发生了失步的状态的相位波形图。

图7是该实施方式中的动力产生装置的矢量图。

图8是本发明的实施方式2中的动力产生装置的矢量图。

图9a是该实施方式中的动力产生装置正常动作时的速度波形图。

图9b是在该实施方式中的动力产生装置动作时发生了失步的状态的速度波形图。

图10a是该实施方式中的动力产生装置正常动作时的相位波形图。

图10b是在该实施方式中的动力产生装置动作时发生了失步的状态的相位波形图。

图11是本发明的实施方式3中的动力产生装置的框图。

图12是该实施方式中的动力产生装置的矢量图。

图13是专利文献1所记载的以往的动力产生装置的框图。

图14是专利文献2所记载的以往的动力产生装置的框图。

具体实施方式

下面,参照附图来说明本发明的实施方式。此外,本发明不被该实施方式限定。

(实施方式1)

首先,参照图1来说明本发明的实施方式1中的动力产生装置的结构。

图1是本发明的实施方式1中的动力产生装置的框图。

如图1所示,本实施方式的动力产生装置由具有绕组15、16、17的电动机18、用于向绕组15、16、17提供电流的电源电路19等构成。

电源电路19包括对绕组15、16、17的电流进行控制的绕组电流控制部20、第一电动势计算部21、加法器22、第一规定值产生部23、速度信号产生部24、积分部25、速度指令部26、减法器27、电流指令值产生部28、重新启动信号产生部29等。绕组电流控制部20包括减法器30、31、电压信号输出部32、两相三相变换部33、电流信号输出部34、逆变器电路35等。

本实施方式的动力产生装置如以上那样构成。

接着,参照图2来说明本实施方式的动力产生装置的逆变器电路35。

图2是该实施方式的动力产生装置的逆变器电路35的电路图。

如图2所示,逆变器电路35包括直流电源37、开关元件38、39、40、41、42、43、驱动电路44、pwm调制部45a、电流探测部46等。直流电源37由对交流100v的商用电源进行倍压整流的电路等构成,例如向开关元件38、39、40、41、42、43输出280v左右的直流电压。开关元件38、39、40、41、42、43由在集电极端子-发射极端子之间连接二极管所得到的例如igbt(绝缘栅型双极晶体管)构成。开关元件38与41串联连接,开关元件39与42串联连接,开关元件40与43串联连接。并且,串联连接的一对开关元件38、41、串联连接的一对开关元件39、42以及串联连接的一对开关元件40、43相互并联连接。开关元件38、39、40各自的发射极端子与对应的开关元件41、42、43的集电极端子连接。而且,u、v、w这三相的电压vu、vv、vw从进行了连接的各个连接点输出到电动机18。

驱动电路44与开关元件38、39、40、41、42、43各自的栅极端子连接。驱动电路44基于来自微型计算机45所包括的pwm调制部45a的驱动信号up、un、vp、vn、wp、wn,按照规定的顺序驱动开关元件38、39、40、41、42、43使之接通和断开。

电流探测部46包括放大器50、与作为低电位侧的开关元件41、42、43各自的发射极端子连接的分流电阻47、48、49等。在驱动电路44使开关元件41、42、43接通的期间,电流探测部46探测在分流电阻47、48、49产生的电压。放大器50将探测出的电压放大。而且,将与流过三相中的各相的电流相当的、与模拟电压信号及其数字变换值对应的iu、iv、iw输出到微型计算机45。微型计算机45基于所输入的iu、iv、iw,从pwm调制部45a向驱动电路44输出驱动信号up、un、vp、vn、wp、wn。

此外,电流探测部46除了采用上述结构以外,也可以设为利用例如被称为dcct(dccurrenttransformer:直流电流互感器)的方法来进行探测的结构,在该方法中,利用芯和磁探测元件等从三相绕组中的两相以上的绕组探测源自直流的电流值。

另外,作为电流探测部46,也可以仅由一个上述的分流电阻构成。在该情况下,基于与各个相的低电位侧的开关元件的接通时间之间的对应关系,在接通期间个别地探测电流值。由此,能够仅利用一个分流电阻来探测三相的所有相的电流值。

本实施方式的动力产生装置的逆变器电路35如以上那样构成。

接着,参照图3来说明本实施方式的动力产生装置的电动机18和负载63的结构。

图3是该实施方式中的电动机18和负载63的结构图。

如图3所示,电动机18包括第一物体51、第二物体52等。第一物体51一般被称为定子(stator),由绕组15、16、17构成。第二物体52一般被称为转子(rotor),以相对于第一物体51旋转自如的方式被支承。第二物体52例如形成为在铁芯55的表面粘接有永磁体56、57、58、59的状态。在本实施方式中,第二物体52以永磁体56、58的外侧为n极、永磁体57、59的外侧为s极的方式被磁化,以极数为四个极的方式构成。

也就是说,电动机18构成为以下状态:第二物体52以相对于第一物体51旋转自如的方式配设,能够相对于第一物体51在旋转方向上进行相对运动。因此,通过第一物体与第二物体的相对运动(即旋转运动),来自永磁体56、57、58、59的磁通与绕组15、16、17交链的状态根据旋转的角度而发生变化。由此,在第一物体51的绕组15、16、17中产生电动势(或称为感应电动势)。

轴60与第二物体52构成为成一体,以旋转自如的方式设置。轴60经由具有离合器65、66的联轴器61及轴62而与负载63连接。此时,通过联轴器61的离合器65、66咬合,第二物体52的转矩被传递到负载63。

此外,在上述实施方式中,以第一物体51被固定、第二物体52进行相对运动(旋转运动)的结构为例进行了说明,但是不限于此。例如,也可以设为将第二物体52固定、第一物体51能够进行相对运动的结构。在该情况下,轴60优选设置于第一物体51。并且,也可以设为在相对运动中除了进行上述旋转运动以外还进行直线运动的结构。

另外,在上述实施方式中,以在第一物体51设置三相的绕组15、16、17且在第二物体52设置四个永磁体56、57、58、59的结构为例进行了说明,但是不限于此。例如,也可以设为在第一物体51和第二物体52中的任一方设置绕组和永磁体这两方的结构。在该情况下,另一方是既不设置绕组也不设置永磁体的结构。但是,只要设为具有例如构成磁路的爪极等的结构即可。根据该结构,能够实现通过第一物体51与第二物体52的相对运动来使从永磁体发出的磁通与绕组交链的程度发生变化的结构。也就是说,能够通过相对运动来产生电动势,因此上述结构也是有效的结构。

本实施方式的动力产生装置的电动机18和负载63如以上那样构成。

接着,参照图1来说明上述结构的动力产生装置的绕组电流控制部20的控制动作。

一般来说,电源电路19的绕组电流控制部20利用被称为矢量控制的方法进行控制。

也就是说,构成为通过电流信号输出部34对与向电动机18的绕组15、16、17提供的模拟电压信号及其数字变换值对应的iu、iv、iw进行三相两相变换来变换为估计d轴(γ轴)和估计q轴(δ轴)的正交坐标。而且,构成为通过两相三相变换部33对电压在γ轴和δ轴上的值进行变换来控制电动机18。

具体地说,两相三相变换部33使用下面示出的式(1),基于估计d轴电压vγ(下面有时简记为vγ)、估计q轴电压vδ(下面有时简记为vδ)以及从后述的积分部25输出的作为估计相位的相位信号θ变换为vu、vv、vw。此外,vγ与绕组的电压的第一相位分量对应。另外,式(1)的vu、vv、vw与上述vu、vv、vw为相同含义。

电流信号输出部34使用式(2)来进行从iu、iv、iw和相位信号θ向估计d轴电流iγ(下面有时简记为iγ)、估计q轴电流iδ(下面有时简记为iδ)的变换,即,三相两相变换。此外,iγ与绕组的电流的第一相位分量对应,iδ与绕组的电流的第二相位分量对应。另外,式(2)的iu、iv、iw与上述iu、iv、iw为相同含义。

如上所述,在矢量控制中,首先将电流分为正交坐标的两个分量。然后,以使正交坐标的电压分量增加和减少的方式进行控制,以使两个电流分量分别成为规定的值。因此,本实施方式的电源电路19的绕组电流控制部20作为上述矢量控制结构的应用性高。由此,能够在将相位的偏移适当地抑制到接近零的同时使动力产生装置运转。

【数1】

【数2】

具体地说,绕组电流控制部20从电流指令值产生部28接收估计d轴电流指令值iγr(下面有时简记为iγr)和估计q轴电流指令值iδr(下面有时简记为iδr)。此外,iγr与第一电流指令值对应,iδr与第二电流指令值对应。

然后,绕组电流控制部20使vγ、vδ增加和减少,以使从电流信号输出部34输出的iγ及iδ与接收到的iγr及iδr之间的误差为零。也就是说,绕组电流控制部20作为误差放大器来动作。

此外,在本实施方式中,使估计d轴电流指令值iγr为零。由此,在例如在铁芯55的表面粘接永磁体56、57、58、59而构成的表面磁体电动机(spm)中,能够将不参与转矩产生(动力产生)的d轴电流控制为零(不流通)的状态。由此,能够以最小的电流值确保所需的转矩。因此,能够将绕组中的电流所引起的损耗、即铜损抑制为最小限度。其结果,表面磁体电动机能够高效地运转。此时,估计d轴电流iγ大致为零。其结果,能够以根据所需的转矩增加和减少后的估计q轴电流iδ的值来进行电动机18的运转控制。

也就是说,在本实施方式中,使vγ和vδ增加和减少,以使与相位信号θ同步地旋转的正交坐标γδ的两个分量即iγ及iδ分别与iγr及iδr相等。而且,最终使从逆变器电路35向构成电动机18的第一物体51的绕组15、16、17施加的三相的电压vu、vv、vw增加和减少。

动力产生装置的绕组电流控制部20如以上那样动作。

接着,说明电动机18的速度信号ω1、ω2和相位信号θ的生成动作。

首先,图1所示的第一电动势计算部21根据上述vγ、iγ、iδ,使用式(3)来计算与γ轴分量的电动势相当的第一电动势εγ(下面有时简记为εγ)。此外,εγ与电动势的第一相位分量对应。

【数3】

εγ=vγ-(ra+pl)·iγ+ω·l·iδ……(3)

在此,ra是绕组15、16、17的电阻值,l是绕组15、16、17的电感值(感应系数)。此时,电阻值ra和电感值l均为正交坐标上的值。

本实施方式的电动机18构成为在铁芯55的表面具有永磁体56、57、58、59。因此,电感值l能够表示为固定值。但是,在将永磁体埋入铁芯的深处的类型的电动机结构的情况下,电感值l根据dq坐标中的相位(角度)而变化。在该情况下,使用q轴上的电感值lq来计算γ轴分量的第一电动势εγ,以取代使用上述式(3)的电感值l来计算γ轴分量的第一电动势εγ。

此外,在式(3)中,在将iγ设定为零且以接近其指令值的值来控制电动机18的情况下,有时能够省略右边第二项。另外,如果不需要,则也可以省略表示时间微分的p。并且,在ω小的低速的条件的情况下,也可以省去式(3)的第三项。也就是说,在式(3)中,如果处于收敛于充分的相位偏移的范围,那么只要适当选择要素来进行计算从而求出第一电动势εγ即可。

在此,使用图4来说明动力产生装置动作时的电流和电压的相位关系。

图4是该实施方式的动力产生装置中的正常的运转状态下的矢量图。

在图4中,矢量a表示电动势大的情况下的电动势矢量,矢量b表示电动势小的情况下的电动势矢量,矢量i表示电流矢量。

在本实施方式中,在输入值μ为正的情况下,图1所示的速度信号产生部24使速度信号ω1及ω2减少。另一方面,在输入值μ为负的情况下,速度信号产生部24以使速度信号ω1及ω2增加的方式发挥功能。然后,积分部25对来自速度信号产生部24的速度信号ω1进行时间积分,来生成相位信号θ。相位信号θ被输入到两相三相变换部33和电流信号输出部34。其结果,在稳定状态下,速度信号产生部24以将输入值μ保持为大致接近零的微小值的方式动作。

此外,在本实施方式中,由于进行无传感器控制,因此速度信号ω1及ω2是估计的速度信号。具体地说,速度信号ω1是以进行速度控制为目的的值。另一方面,速度信号ω2是以稳定地保持积分部25的积分值即相位信号θ为目的的值。也就是说,速度信号ω1和速度信号ω2的目的彼此不同,因此设置有一些差异,以使将输入值μ作为输入的误差放大增益和响应性最佳化。此时,速度信号ω1及ω2的下限值被设定为零。

另外,上述输入值μ是利用加法器22将第一规定值产生部23的输出vb与第一电动势计算部21的输出值εγ(与式(3)的第一电动势相当)相加所得到的值。因此,在电动机18未失步而正常地运转的稳定状态下,处于进行反馈控制以使图4所示的矢量a和矢量b的γ分量(即输出值εγ)成为-vb的状态。

此外,在本实施方式中,作为第一规定值,设定为第一规定值产生部23的输出vb=+0.5v这样的正的值。因此,图4所示的矢量a和矢量b均成为向左倾斜的矢量。此时,电动势小的矢量b成为比电动势大的矢量a更向左倾斜的矢量。

在该情况下,通过电动机18的第一物体51与第二物体52的相对运动(旋转运动),永磁体56、57、58、59与绕组15、16、17之间的交链磁通随时间发生变化,由此产生电动势的矢量a和矢量b。也就是说,矢量a和矢量b始终产生在q轴上。

此时,与矢量a及矢量b相对应的q轴分别成为qa轴及qb轴。另一方面,与矢量a及矢量b相对应的d轴成为相对于q轴滞后90度的da轴及db轴。

如图4所示,矢量a和矢量b均处于比δ轴靠用箭头g表示的逆时针方向的位置。也就是说,q轴的相位比δ轴超前。换言之,δ轴处于相对于q轴而言相位向用箭头h表示的顺时针方向滞后的状态。因此,也能够表达为:估计出的相位信号θ滞后。并且,矢量b处于相比于矢量a更靠逆时针方向的位置。因此,矢量b的相位信号θ的滞后比矢量a的相位信号θ的滞后大。

另一方面,电流的矢量i(下面有时记载为电流i)如上所述那样被设为iγr=0。因此,电流的矢量i始终被控制在δ轴上。也就是说,相比于电动势大的矢量a的正交坐标(da、qa),电动势小的矢量b的正交坐标(db、qb)的电流的矢量i的相位更滞后。

在此,用式(4)表示通过永磁体的旋转而在绕组中产生的电动势e[v]的大小。也就是说,电动势e[v]同用电角速度ω[rad/s]表示电动机18的运转速度(旋转速度)所得到的值与永磁体56、57、58、59的磁通ψa[wb]之积成比例,该电动机18的运转速度是第一物体51与第二物体52的相对运动的速度。

【数4】

e=ω·ψa…(4)

因而,电源电路19具备以下特性:当电动势e不同时,电流相对于永磁体的相位不同。

在此,作为用于确认当电动势e不同时电源电路19中的电流的相位不同这一情况的方法,例示下述的三个确认方法。

在第一确认方法中,进行改变电角速度ω的试验来改变电动机18的运转速度。在该情况下,成为以下条件:即使永磁体的磁化状态是固定的,当使运转速度变高/变低时,电动势e也与电角速度ω成比例地变化。于是,确认电流i在dq平面上的相位、即电流i相对于永磁体的相位的变化。此时,当确认了电流的相位的变化时,能够判断为本实施方式的电源电路19的结构有效地发挥了功能。

第二确认方法是如下的确认方法:首先,准备永磁体的磁化强度不同、磁通ψa的值不同的两台电动机。然后,使电动机的速度相同、即电角速度ω相同且负载相同来进行试验。

第三确认方法是如下的确认方法:首先,与第二确认方法同样地准备磁通ψa的值不同的两台电动机。然后,使电动机的速度相同、即电角速度ω相同,另一方面,以使电流的大小固定的方式调整负载转矩,来进行试验。

也就是说,在第二确认方法和第三确认方法的情况下,均成为以下条件:即使电角速度ω相同,电动势e也根据磁通ψa的值的不同而不同。此时,只要能够确认电流i相对于永磁体的相位的变化,就能够判断为本实施方式的电源电路19的结构有效地发挥了功能。

另外,在第二确认方法和第三确认方法的情况下,如上所述,在速度(ω值)相同且电动势e的大小不同的条件下进行确认。因此,例如在进一步追加使电流i在估计坐标上的相位发生变化的要素来作为电角速度ω的函数所得到的结构的情况下,有时会难以确认是否处于本实施方式的电源电路19的结构要素有效地发挥功能的状态。但是,即使在追加使电流i的相位发生变化的要素所得到的结构的情况下,通过在电动势e的大小不同的条件下进行试验,对于确认本实施方式的电源电路19的结构发挥功能而言确实是有效的。

另外,在第二确认方法中,在永磁体的磁化强度的程度不同的情况下,会产生iq值发生变化的现象,即,会产生负载转矩在一定条件下呈现的、因磁通ψa与iq的反比例关系而产生的影响。也就是说,在第二确认方法中,使负载相同,因此,由于磁化强度的差异(相对于电流的转矩的大小、即转矩常数不同),电流i的大小(矢量的绝对值)为不同的值。因此,产生在第一电动势的计算中出现误差等影响。但是,根据第三确认方法,能够去除上述影响,因此能够进行适当的确认。

此外,在第二确认方法和第三确认方法中,能够通过以下的方法来确认永磁体的磁化强度。

首先,将驱动用的电动机和要进行试验的电动机的轴经由联轴器等进行连接。在进行了连接的状态下,使两个电动机分别以相同的速度旋转。此时,利用电压计、数字功率计、示波器等测量器来测定或观测被设为开放状态的输入端子之间的电压。由此,能够确认永磁体的磁化强度。

另外,在第一确认方法至第三确认方法中,能够通过以下的方法来确认电流i相对于永磁体的相位。

首先,在电动机的轴等安装例如光学式的abz旋转编码器。此时,使abz旋转编码器的原点与电气角θ=0一致,即,与以下相位一致,该相位的方向与因从n极和u相供给的磁动势而产生的磁通的方向相同。然后,对一个相的电流波形或者基于三相的电流值得到的电流的矢量i的相位进行分析。由此,能够确认电流i相对于永磁体的相位。

此外,在第一确认方法至第三确认方法中,能够利用示波器等确认电流的频率。所确认的电流的频率成为作为电源电路19内部的估计速度ω2的速度信号。

如以上那样,只要通过第一确认方法至第三确认方法中的任一种方法确认出因电动势e的差异引起的电流i的相位的差异,就能够确认为本实施方式的电源电路19的结构发挥了功能。

也就是说,在失步时电动机18的旋转减速为零的过程中,电流i相对于永磁体的相位相对于失步前发生变化。由此,电流的频率发生变动(即,估计速度下降或上升)。其结果,得到本发明的能够根据估计速度的变化来适当地探测电动机18的失步的效果。

另外,在本实施方式中,如图4所示的矢量b那样,永磁体的磁化较弱的电动机的dq轴呈超前的相位(箭头g)。因此,相对于dq坐标的电流i的相位表现出更为滞后的相位(箭头h)的趋势。

由此,能够如下所示那样适当地确认本实施方式的电源电路19的结构是否正常地成立。

具体地说,在永磁体56、57、58、59为标准的磁化状态的情况下,当使电动机18以例如35r/min的速度旋转时,产生例如5v的电动势e。在该情况下,电流i的相位相对于q轴的滞后为5.7度。另一方面,在例如使永磁体的磁化强度相对于标准的磁化状态减少了30%的状态下,当使电动机18以相同的条件旋转时,产生例如3.5v的电动势e。在该情况下,电流i的相位相对于q轴的滞后为8.2度。也就是说,由于电动势e下降30%,电流i的相位进一步滞后2.5度。由此,能够确认本实施方式的电源电路19的结构正常地成立。

接着,使用图5a和图5b来说明动力产生装置动作时的电动机18的速度控制。

图5a是该实施方式中的动力产生装置正常动作时的速度波形图。图5b是在该实施方式中的动力产生装置动作时发生了失步的状态的速度波形图。也就是说,图5a示出正常时、即未失步的稳定状态下的速度波形。另一方面,图5b示出例如因过载等导致电动机18的速度在动作中途被抑制为零从而失步的状态下的速度波形。此外,在图5a和图5b中,用点划线示出指令速度,用实线示出作为估计速度的速度信号ω2。

图5a所示的动力产生装置充分执行了速度控制。因此,可知速度信号ω2被保持为与指令速度大致一致的35r/min附近。

另一方面,图5b所示的动力产生装置在t=t1时间点被施加过载,电动机18的速度变为零。此时,速度信号ω2逐渐下降,在t=t2时间点下降至作为下限值的零。然后,在t=t2时间点的定时,电源电路19探测出电动机18处于失步状态。

当探测出失步状态时,图1所示的重新启动信号产生部29对速度指令部26暂时输出使速度为零的命令。之后,在t=t2时间点以后的规定时间内,重新启动信号产生部29对速度指令部26输出进行重新启动的命令。由此,原本处于失步状态的电动机18重新从速度零起进行启动动作,恢复为正常的速度。

在此,下面说明在电动机18的速度为零的失步时速度信号ω2下降的原因。

首先,当电动势为零时,不再存在将如图4的矢量a、矢量b所示那样的电动势e的γ分量(vb)保持为-0.5v的速度信号ω2的解。此外,不存在解是指以下状态:无论电动势e在γδ平面上处于什么样的相位,都不存在该电动势e的γ分量(第一电动势εγ)为-0.5v的相位。因此,图4所示的箭头g的方向、即相对于q轴的电流i的相位越来越滞后。由此,作为估计速度的速度信号ω2最终变为零。

另外,本实施方式的电动机18在实际的运转速度为4r/min时,电动势e为0.5v。因此,在因失步而运转速度从4r/min进一步下降了的阶段,可靠地成为上述的“不存在解”的状态。

此时,如上所述,从外部观测与速度信号ω2相当的估计速度来作为电流的频率。因此,作为用于判定发生失步的阈值,例如能够设定为3r/min以下的运转速度的状态持续了0.5秒的时间点等。

此外,阈值不限于上述阈值,能够任意地设定。例如,也可以将指令速度与估计速度ω2之差或者差的绝对值变大的时间点设定为阈值。也就是说,在变为以下状态的情况下探测出失步,该状态为:不论符号的正负,指令速度与估计速度ω2之差与零相差阈值量以上。另外,也可以将脱离指令速度与规定的比率相乘所得到的阈值速度的范围的时间点、或者这些状态的持续时间变为规定时间的时间点设定为阈值。并且,还可以将指令速度与估计速度之差的时间积分等设定为阈值。也就是说,能够根据所应用的动力产生装置的状态来设定各种阈值。

另外,在上述实施方式中,以使作为估计速度的速度信号ω2的下限为零、在变为零的时间点探测出失步的结构为例进行了说明,但是不限于此。例如也可以构成为:使估计速度的正负均为有效的值,能够根据旋转的方向来取正负的值。而且,在估计速度的符号的正负改变的时间点,探测出失步。在该情况下,也可以构成为设置禁止成为与估计速度的符号相反的符号这样的限制,来探测失步。并且,也可以设为以下结构:在成为与估计速度的符号相反的符号的时间点、或者该状态持续了规定时间的时间点,探测出失步。也就是说,即使是上述结构,作为本实施方式中的失步的探测也是有效的。

另外,在上述实施方式中,以从外部测定作为估计速度的速度信号ω2来作为电流的频率的结构为例进行了说明。具体地说,使用电流探头、示波器等测量器来测定例如三相的电动机18的线电流的至少一个。由此,能够将测定出的线电流的估计频率用作作为估计速度的速度信号ω2。

接着,使用图6a和图6b来说明动力产生装置动作时的电动机18的相位波形。

图6a是该实施方式中的动力产生装置正常动作时的相位波形图。图6b是在该实施方式中的动力产生装置动作时发生了失步的状态的相位波形图。也就是说,图6a示出正常时、即未失步的稳定状态下的相位波形。另一方面,图6b示出例如因过载等导致电动机18的速度在动作中途被抑制为零从而失步的状态下的相位波形。具体地说,图6a和图6b示出相对于q轴的电流i的相位的波形图。

如图6a所示,动力产生装置在稳定状态下为以下状态:电流i的相位的滞后具有大致5.7度的固定的滞后。

另一方面,如图6b所示,当在t=t1时间点发生失步时,在t=t1时间点以后,电流i的相位的滞后逐渐增大。然后,在速度信号ω2=0的t=t2时间点,如下所示,电流i的相位的滞后稳定为例如滞后85度的固定值的状态。如上所述,电流i的相位滞后是对实际速度与估计速度ω2之差(速度差)进行时间积分所得到的值。也就是说,当失步时,实际速度和估计速度ω2为零,因此上述速度差为零。由此,速度差的时间积分也为零。其结果,不发生相位随着时间而变化这样的现象,收敛为固定的相位差。

也就是说,本实施方式的动力产生装置无论在正常动作时还是在失步时,相对于q轴的电流i的相位的滞后都稳定为固定值。也就是说,在设置用于监视例如在图6b所示的t=t2以后速度信号ω2=0的状态是否持续的监视时间的情况下,监视期间的相对于q轴的电流i的相位的滞后也是固定的。因此,作为监视时间,例如能够设置0.2秒等充分的时间。由此,能够更可靠地探测出失步。另外,由于电流i的相位的滞后稳定为固定值,因此能够抑制噪音的产生。

此外,噪音例如由于以下原因而产生:在电流矢量持续旋转、即存在dq面上的旋转的情况下产生的正负的交变转矩作用于机构。因此,只要使相位的滞后为固定的状态,就不会产生交变转矩,只存在静止(直流)转矩。由此,能够消除产生噪音的要素之一。其结果,能够抑制噪音的产生。

下面,使用图7来说明本实施方式的动力产生装置的控制动作的另一例。

图7是该实施方式的动力产生装置中正常的运转状态下的矢量图。具体地说,是以相比于图4而言稍微改变了图1所示的电流指令值产生部28的设定的状态下的矢量图。

也就是说,如图7所示,电流指令值产生部28使电流i不与δ轴一致,而是设定到γδ坐标上的第二象限。具体地说,例如,将估计d轴电流指令值iγr值设定为-0.1a,且设定为估计q轴电流指令值iδr=+1.0a。也就是说,设定成电流i的相位比δ轴超前5.7度。由此,电流i的相位与q轴大致一致。即,电动势e的相位与电流i的相位一致。此时,成为电流i在γδ坐标中的相位相对于dq坐标具有5.7度的滞后。另一方面,电流i的相位与电动机18的电动势e的相位一致。在该情况下,电流i的大小(矢量的长度)最小,因此铜损等损耗最小。由此,能够高效率地驱动电动机18。

也就是说,与图4所示的矢量控制相比,能够抑制因电流i的相位的滞后引起的效率下降、失步耐受量的下降等。其结果,能够更加高效率地实现稳定性高的动力产生装置。

在该情况下也是,当对相同速度下的电动势设置差异时,如果相对于δ轴的电流i的相位的超前角相同,那么电动势越小则由永磁体56、57、58、59决定的相对于q轴的电流i的相位越滞后。也就是说,电动势的下降以及电流i的相位的滞后的变化是与图4的情况同等的。

另外,关于电动机18发生了失步的情况下的动作,也与图5a和图5b中说明的动作相同。也就是说,在速度信号ω2变为零的时间点探测出失步。然后,能够借助图1所示的重新启动信号产生部29等将电动机18重新启动。由此,能够减少噪音、不必要的电流或者不必要的时间的产生。

此外,在上述实施方式中,以在将εγ与vb相加的基础上进行反馈控制以使输入值μ=0的结构为例进行了说明,但是不限于此。例如,也可以设为以下结构:将εγ与-0.5v之差设为误差电压,进行反馈控制以使误差电压为0v。在该情况下也是,能够以与上述实施方式同等的动作进行控制。因此,这些结构作为反馈控制的结构均是有效的。

如以上所说明的那样,本实施方式的动力产生装置具有构成第一物体51的绕组15、16、17以及构成第二物体52的永磁体56、57、58、59。并且,动力产生装置具有:电动机18,其通过第一物体51与第二物体52的相对运动来在绕组中产生电动势;以及电源电路19,其用于向绕组提供电流,具有当电动势的大小不同时相对于永磁体的电流的相位不同的特性。而且,电源电路19构成为:在失步时使电流的频率(估计速度ω2)相对于失步前发生变化,之后进行电动机18的重新启动。由此,在绕组电阻大、速度为低速的条件下,也能够以短时间适当地判断失步状态的产生。而且,在探测为失步状态的情况下,能够尽早进行重新启动来恢复动力产生装置原本的功能。

另一方面,在低速的条件下失步状态的探测耗费时间的情况下,动力产生装置的停止时间变长。因此,动力产生装置的动作完成根据停止时间而滞后,到重新启动为止的时间进一步变长。其结果,产生电能、时间的损耗。

也就是说,根据本实施方式的结构,即使在低速的条件下,也能够以短时间判断失步状态的产生来重新启动,因此能够抑制电能、时间的损耗。

(实施方式2)

下面,参照图1,使用图8来说明本发明的实施方式2中的动力产生装置。

图8是本发明的实施方式2中的动力产生装置的正常的运转状态下的矢量图。

本实施方式的动力产生装置与实施方式1不同之处在于:使第一规定值产生部23的输出vb=-0.5v(相当于第一规定值),即为负的值。其它部分与实施方式1的结构要素是同等的。

在图8中,矢量a表示电动势大的情况下的电动势矢量,矢量b表示电动势小的情况下的电动势矢量,矢量i表示电流矢量。

在本实施方式中,图1所示的速度信号产生部24具有以下功能:在输入值μ为正的情况下,使速度信号ω1及ω2减少。另一方面,在输入值μ为负的情况下,速度信号产生部24使速度信号ω1及ω2增加。而且,图1所示的积分部25对来自速度信号产生部24的速度信号ω1进行时间积分,来生成相位信号θ。相位信号θ被输入到两相三相变换部33和电流信号输出部34。其结果,在稳定状态下,速度信号产生部24以将输入值μ保持为大致接近零的微小值的方式动作。

此外,在本实施方式中,作为第一规定值,设定为第一规定值产生部23的输出vb=-0.5v这样的负的值。此时,-vb=+0.5v。因此,图8所示的矢量a和矢量b均成为向右倾斜的矢量。此时,电动势小的矢量b成为比电动势大的矢量a更向右倾斜的矢量。也就是说,矢量b处于比矢量a更靠箭头h方向的滞后侧的位置。因此,矢量b的相位信号θ的超前比矢量a的相位信号θ的超前大。

另一方面,关于电流的矢量i(下面有时记载为电流i),在本实施方式中也与实施方式1同样地设为iγr=0。因此,电流的矢量i始终被控制在δ轴上。也就是说,相比于电动势大的矢量a的正交坐标(da、qa),电动势小的矢量b的正交坐标(db、qb)的电流的矢量i的相位更超前。

此外,关于本实施方式的矢量控制的结构正确与否的确认,能够利用实施方式1中说明的、使用永磁体的磁化强度不同的电动机18进行的试验来同样地进行确认,因此省略说明。

接着,使用图9a和图9b来说明动力产生装置动作时的电动机18的速度控制。

图9a是该实施方式中的动力产生装置的正常动作时的速度波形图。图9b是在该实施方式中的动力产生装置动作时发生了失步的状态的速度波形图。也就是说,图9a示出正常时、即未失步的稳定状态下的速度波形。另一方面,图9b示出因过载等导致电动机18的速度在动作中途被抑制为零从而失步的状态下的速度波形。此外,在图9a和图9b中,用点划线示出指令速度,用实线示出作为估计速度的速度信号ω2。

图9a所示的动力产生装置充分执行了速度控制。因此,可知估计速度ω2被保持为与指令速度大致一致的35r/min附近。

另一方面,图9b所示的动力产生装置在t=t1时间点被施加过载,电动机18的速度变为零。此时,速度信号ω2逐渐上升,在t=t2时间点达到失步探测的阈值,例如150r/min。然后,在t=t2时间点的定时,电源电路19探测出电动机18处于失步状态。

当探测出失步状态时,图1所示的重新启动信号产生部29对速度指令部26暂时输出使速度为零的命令。之后,在t=t2时间点以后的规定时间内,重新启动信号产生部29对速度指令部26输出进行重新启动的命令。由此,原本处于失步状态的电动机18重新从速度零起进行启动动作,恢复为正常的速度。

在此,下面说明在电动机18的速度为零的失步时速度信号ω2上升的原因。

首先,当电动势e为零时,不再存在将如图8的矢量a、矢量b所示那样的电动势的γ分量(vb)保持为+0.5v的速度信号ω2的解。此外,不存在解是指以下状态:无论电动势在γδ平面上处于什么样的相位,都不存在该电动势的γ分量(第一电动势εγ)为+0.5v的相位。因此,图8所示的箭头h的方向、即相比于q轴的电流i的相位越来越超前。由此,作为估计速度的速度信号ω2持续上升。然后,最终,速度信号ω2会上升至用于判断是否失步的阈值(150r/min)。

接着,使用图10a和图10b来说明动力产生装置动作时的电动机18的相位波形。

图10a是该实施方式中的动力产生装置正常动作时的相位波形图。图10b是在该实施方式中的动力产生装置动作时发生了失步的状态的相位波形图。也就是说,图10a示出正常时、即未失步的稳定状态下的相位波形。另一方面,图10b示出因过载等导致电动机18的速度在动作中途被抑制为零从而失步的状态下的相位波形。具体地说,图10a和图10b示出相对于q轴的电流i的相位的波形图。

如图10a所示,动力产生装置在稳定状态下为以下状态:电流i的相位具有大致5.7度的固定的超前。

另一方面,如图10b所示,当在t=t1时间点发生失步时,在t=t1时间点以后,电流i的相位的超前逐渐增大。

此外,本实施方式的功率产生装置当发生失步时,相对于q轴的电流i的相位超前无限地增大。因此,在作为估计速度的速度信号ω2或者ω1超过规定值(例如,与阈值相当的150r/min)的时间点,判断为失步。

此时,估计速度>指令速度,因此处于电流i的绝对值被抑制的状态。因此,在电流i的相位的方面,即使如图10b的t2以后的虚线所示那样相位的变动变得剧烈,噪音成为问题的情况也少。也就是说,能够在电流值小的期间内探测出失步。在本实施方式的情况下,与实施方式1不同的是,虽然处于相位差发散的状态,但是作为与噪音有关的另一个要素的电流矢量i的绝对值(长度)收敛于零附近。因此,噪音变小。

此外,在上述实施方式中,以将150r/min设定为作为估计速度的速度信号ω2或ω1的阈值的规定值并在超过规定值的时间点立即判断为失步的结构为例进行了说明,但是不限于此。例如也可以构成为:计算式(5)所示的电动势e的第二相位分量εδ,在其值为第二规定值以下的情况下,探测出失步。

【数5】

εδ=vδ-(ra+pl)·iδ-ω·l·iγ……(5)

也就是说,在估计速度变为某种程度的高速的状态下,利用电动势的第二相位分量εδ来判断是否失步。由此,能够充分高精度地判断失步。其结果,能够实现可靠性非常高的失步探测。此外,上述某种程度的估计速度是指即使式(5)的右边的各要素存在误差(探测误差、参数的设定误差、偏差)也能够可靠地探测出电动势e的速度。具体地说,例如是使e=10v的速度。

此外,关于式(5),也可以如实施方式1的式(3)中说明的那样省略表示时间微分的p的项。并且,在低速旋转时,在ω项的比率低的情况下,也可以省略式(5)的第三项来简化计算式。

(实施方式3)

下面,使用图11来说明本发明的实施方式3中的动力产生装置的结构。

图11是本发明的实施方式3中的动力产生装置的框图。

如图11所示,本实施方式的动力产生装置与实施方式1不同之处主要在于:在电源电路69中,设为电压信号输出部74和电流信号输出部75不包含于绕组电流控制部70的结构。其它结构要素与实施方式1的结构要素同等,因此标注相同的标记来进行说明。

也就是说,本实施方式的动力产生装置由与实施方式1同等的电动机18、用于向电动机18提供电流的电源电路69等构成。

电源电路69包括绕组电流控制部70等,绕组电流控制部70包括电流误差放大器71和三相两相变换部72。此外,电流误差放大器71与实施方式1的电压信号输出部32同等。另外,三相两相变换部72与实施方式1的电流信号输出部34同等。

也就是说,如上所述,本实施方式的电源电路69将电压信号输出部74和电流信号输出部75设置在与绕组电流控制部70不同的场所。因此,将电流误差放大器71和三相两相变换部72变更为不同的名称,标注新的标记。

电源电路69的电压信号输出部74使用与实施方式1中说明的式(2)大致同等的计算式来进行三相一相变换。与式(2)的不同之处在于,将电压信号vu、vv、vw作为输入,以取代将电流iu、iv、iw作为输入。由此,左边的计算结果为vγ和vδ来取代iγ和iδ。此时,电压信号输出部74进行三相一相变换,因此作为左边的计算结果,不需要计算不利用的vδ,仅计算vγ。

此外,电源电路69的电流信号输出部75的结构与实施方式1的电流信号输出部34及三相两相变换部72是同等的。

另外,本实施方式的电源电路69包括加法器76和相位值源77。

而且,从上述加法器76和相位值源77向电流误差放大器71和三相两相变换部72输入积分部25的输出值、即相位信号θ1与δθ(=+5.7度)相加所得到的相位信号θ2。

此外,除上述说明的结构要素以外的结构要素与实施方式1同样地发挥功能。

本实施方式的动力产生装置如以上那样构成。

下面,使用图12来说明动力产生装置进行动作时的电流与电压的相位关系以及控制动作。

图12是该实施方式的动力产生装置中正常的运转状态下的矢量图。

此外,在本实施方式的动力产生装置中,作为成为电源电路69内的估计相位的值,存在作为第一估计相位的相位信号θ1以及作为第二估计相位的相位信号θ2这两个值。相位信号θ2的值是对相位信号θ1的值加上与相位值源77的输出值δθ相当的5.7度后变大的值。因此,相位信号θ2是比相位信号θ1超前的值。

因此,在图12的矢量图中,将相位信号θ1处的正交坐标设为γ1、δ1,将相位信号θ2处的正交坐标设为γ2、δ2。

在该情况下,关于相位信号θ1,进行实施方式1中说明的动作。因此,在设为vb=+0.5v的情况下,具备标准的磁化强度的永磁体56、57、58、59的电动势的矢量a的、35r/min时的γ1、δ1的坐标轴为与实施方式1中的γ、δ轴完全同等的状态。也就是说,作为估计相位的相位信号θ1与实施方式1同样地为具有5.7度的相位滞后的状态。

另一方面,利用加法器76对作为第二估计相位的相位信号θ2加上相位值源77的输出值δθ即+5.7度。因此,相位信号θ2使相位信号θ1所具有的5.7度的相位滞后消除。

由此,如图12所示,γ2变得与真的d轴即da轴相等,δ2变得与真的q轴即qa轴相等。

此外,在本实施方式中也与实施方式1同样地构成为:使电流指令值产生部28的输出即估计d轴电流指令值iγr为零,输出估计q轴电流指令值iδr来作为与转矩成比例的电流设定值。因此,电流i在δ2轴上并且同时在qa轴上。

由此,在从电动机18观察的情况下,不受电源电路69内存在的滞后的相位信号θ1所影响,能够保持磁通与电流的正交性。在该情况下,电流i的大小(矢量的长度)最小。因此,铜损等损耗最小。其结果,能够实现能够高效率地驱动电动机18的动力产生装置。

也就是说,根据本实施方式,在电源电路69的内部设置两个估计相位。由此,作为估计d轴的γ2轴上的电流分量为零。其结果,能够不受具有相位的滞后的相位信号θ1的影响地进行电流i的控制。

本实施方式的电源电路69的矢量控制在下面的情况下尤其有效。

例如,在能够有效地使用磁阻转矩的永磁体嵌入型的电动机的情况下,有时特意进行控制以形成使电流i的相位超前的状态。在该情况下,无论在电动势大的条件下还是电动势小的条件下,都可能发生电流i的相位相对于永磁体而言超前的情况,该情况被称为电流超前角β等。

此时,能够利用电流i的相位,通过以下的方法来判别电动势小的电动机和电动势大的电动机。

首先,针对电动势不同的电动机的电流i的相位分别测定相对于永磁体的相位后进行比较。此时,能够将观测到电流超前角β的变化的电动机判定为“具有当电动势的大小不同时相对于永磁体的电流的相位不同的特性的电动机”。

此外,在上述实施方式中,以大多使用三相两相变换和两相三相变换的结构为例来进行了说明,但是不限于此。在使用两个估计相位的结构的情况下,变换是从两相(γ1、δ1)向两相(γ2、δ2)的变换。因此,也可以构成为例如两行两列的更简单的一阶变换。由此,能够利用简单的变换结构得到充分的功能。

如以上那样,根据实施方式1至实施方式3的结构,电源电路在内部具有与电动机18内的实际的相位不同的估计相位。而且,电源电路进行控制,以使估计相位下的第一电动势的分量变为偏离于零的规定值。此时,在电动机18失步而停止的情况下,无法再将第一电动势保持为规定值。也就是说,成为估计速度下降至零或者反之上升的动作。由此,能够使用估计速度来探测电动机18的失步。其结果,能够适当地重新启动电动机18。

然而,在各实施方式中,不是必须在电源电路内设置估计相位。例如,首先在相同速度下进行使电动势大和小的试验。此时,在具有电流的相位发生变化的特性的电源电路的情况下,当因失步导致电动势大致为零时,在试验中,电流的相位向与电动势变小的方向相同的方向变化。如果该变化是滞后方向,则估计速度为零。另一方面,如果变化是超前方向,则可能进行估计速度猛涨到高速的动作。

另外,根据实施方式1至实施方式3,在电源电路内具备逆变器电路35。因此,能够以例如15.625khz等足够高的载波频率使逆变器电路35的半导体元件开关(on和off)。由此,能够高效率地从逆变器电路35向电动机18供给电力。然而,不是必须利用逆变器电路来实现开关动作。例如,也可以由使晶体管以主动状态工作的a类放大器或b类(推挽)放大器等构成。由此,关于失步的探测的性能得到同等的效果。

另外,根据实施方式1~实施方式3,以三相结构的电动机18为例进行了说明,但是不限于此。例如,只要是能够确认电流i的相位的结构的电动机即可,也可以是两相以上的具有任意相的结构的电动机。因此,无论相数如何,都能够得到本发明的效果。

另外,根据实施方式1至实施方式3,以具有如图3所示的联轴器61那样具备间隙的传动路径的结构为例进行了说明,但是不限于此。在上述传动路径的情况下,即使在失步状态下,也存在发生间隙移动时会在电动机产生微小的电动势的情况。并且,当传动路径的弹性要素发生机械共振时,同样存在电动机产生微小的电动势的情况。因此,在各实施方式中,例如将作为第一规定值的vb值的绝对值设定为比因上述现象而产生的微小的电动势大。由此,能够将因间隙等引起的动力产生装置的误动作防止于未然。

另外,根据实施方式1至实施方式3,如上所述那样准确地探测电动机的失步状态。而且,能够通过从重新启动信号产生部输出的重新启动信号使电动机再次重新启动。此时,重新启动信号以使动力产生装置恢复为能够工作的正常的运转状态的方式起作用。由此,能够尽早恢复动力产生装置的正常动作。

此外,在实施方式1~实施方式3中,没有特别提及基于重新启动信号的动力产生装置的动作,但是能够通过下面的结构来使动力产生装置进行动作。

具体地说,例如也可以使用与电动机18的相位无关地提供固定的电流和相位的函数的、被称为强制同步或同步运转的结构。

另外,还存在以下结构等:基于对于高频状的电流的响应,根据电感的差异来进行相位探测,从而进行动作。在该情况下,更适于电感存在差异的电动机,如永磁体为嵌入构造的电动机等。

也就是说,无论上述哪种结构,都能够使电动机重新启动,在电动势的值变为充分的值的阶段恢复为上述实施方式中说明的动力运行运转。而且,关于其后发生的失步,同样能够进行适当的探测来执行重新启动。

如以上所说明的那样,本发明的动力产生装置具有:电动机,其具有第一物体、第二物体、永磁体以及绕组,通过第一物体与第二物体的相对运动来在绕组中产生电动势;以及电源电路,其用于向绕组提供电流,具有当电动势的大小不同时相对于永磁体的电流的相位不同的特性。电源电路构成为:使失步时的电流的频率相对于失步前发生变化,之后进行电动机的重新启动。

另外,本发明的动力产生装置的电源电路也可以构成为:具有在电动势的大小较小的情况下相对于永磁体的电流相位超前的特性,在电动机的速度为零的失步时,在绕组的电流的频率超过规定值之后进行电动机的重新启动。

另外,本发明的动力产生装置的电源电路也可以构成为:具有在电动势的大小较小的情况下相对于永磁体的电流相位滞后的特性,在电动机的速度为零的失步时,在绕组的电流的频率变为规定值以下之后进行电动机的重新启动。

另外,本发明的动力产生装置的电源电路也可以构成为,具有:速度信号产生部,其输出速度信号;积分部,其输出对速度信号进行时间积分所得到的相位信号;电压信号输出部;电流信号输出部;以及第一电动势计算部。当相位信号被输入到电压信号输出部时,电压信号输出部输出绕组的电压的第一相位分量。当相位信号被输入到电流信号输出部时,电流信号输出部输出绕组的电流的第一相位分量以及与绕组的电流的第一相位分量正交的、绕组的电流的第二相位分量。第一电动势计算部基于电压信号输出部和电流信号输出部的输出,来计算并输出电动势的第一相位分量。并且,速度信号产生部使速度信号增大或减小,以使第一电动势计算部的输出成为第一规定值。由此,能够容易地应用于将电流分为正交坐标上的两个分量来进行控制的结构,该结构一般被称为矢量控制等。由此,能够响应性良好地控制绕组的电流。

另外,本发明的动力产生装置的电源电路具有绕组电流控制部。绕组电流控制部也可以构成为:使绕组的电压增大和减小,以使第一电流指令值与第二电流指令值相等,第一电流指令值和第二电流指令值是与绕组的电流的相位信号同步地旋转的正交坐标的两个分量。

根据这些动力产生装置的结构,即使在电动机的绕组电阻大、速度低的条件的情况下,也能够适当地判断失步状态。而且,电源电路在探测出失步状态的情况下,能够尽早进行重新启动来恢复动力产生装置原本的功能。据此,能够抑制到功能恢复为止的电能和时间的损耗。

产业上的可利用性

本发明的动力产生装置能够适当地探测失步状态,在失步时使电流的频率相对于失步前发生变化,之后进行电动机的重新启动。因此,能够应用于被用作要求抑制电能和时间的浪费等优异性能的动力源的动力产生装置。

附图标记说明

1、18:电动机;2:pwm逆变器;3、4:坐标变换器;5:电流控制部;6:速度控制部;7:磁通控制部;8:第一速度估计部;9:积分器;10:第二速度估计部;11:失步判断部;12:有效输入功率运算部;13:轴锁定判定部;14:轴锁定检测部;15、16、17:绕组;19、69:电源电路;20、70:绕组电流控制部;21:第一电动势计算部;22、76:加法器;23:第一规定值产生部;24:速度信号产生部;25:积分部;26:速度指令部;27、30、31:减法器;28:电流指令值产生部;32、74:电压信号输出部;33:两相三相变换部;34、75:电流信号输出部;35:逆变器电路;37:直流电源;38、39、40、41、42、43:开关元件;44:驱动电路;45:微型计算机;45a:pwm调制部;46:电流探测部;47、48、49:分流电阻;50:放大器;51:第一物体;52:第二物体;55:铁芯;56、57、58、59:永磁体;60、62:轴;61:联轴器;63:负载;65、66:离合器;71:电流误差放大器;72:三相两相变换部;77:相位值源。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1