驱动装置的制作方法

文档序号:15815511发布日期:2018-11-02 22:36阅读:201来源:国知局
驱动装置的制作方法

本发明涉及驱动装置。

背景技术

以往,作为这种驱动装置,提出如下驱动装置:该驱动装置具备马达、驱动马达的变换器、电池以及使电池的电力升压而将其向变换器供给的升压转换器,在升压转换器的温度为允许温度以上时限制电池的放电功率(例如参照专利文献1)。在该装置中,将基准值与限制系数的乘积设定为电池的放电功率上限值,在升压转换器的温度小于允许温度时将限制系数设为100%,在升压转换器的温度为允许温度以上时使限制系数低于100%。由此,能够实现升压转换器的过热保护,并且抑制动态特性的恶化。

现有技术文献

专利文献

ptl1:jp2013-67227a



技术实现要素:

发明要解决的问题

然而,在上述驱动装置中,在伴随升压转换器的元件故障而检测升压转换器的温度的元件发生故障,始终检测为升压转换器温度高的情况下,会发生如下情况:电池的放电功率上限值被大幅限制,无法进行所需的马达驱动。

本发明的驱动装置以即使在升压转换器故障时也能够进行所需的马达驱动为主要目的。

用于解决问题的技术方案

本发明的驱动装置为了达成上述的主要目的而采用以下的技术方案。

本发明的驱动装置具备:马达;变换器,其驱动所述马达;蓄电装置;升压转换器,其使所述蓄电装置侧的电力升压而将其向所述变换器侧供给;温度传感器,其检测所述升压转换器的温度;以及控制装置,其在由所述温度传感器检测出的温度小于预定温度时控制所述升压转换器和所述变换器,以在与所述蓄电装置的状态相应的放电功率上限值的范围内驱动所述马达,在由所述温度传感器检测出的温度为所述预定温度以上时控制所述升压转换器和所述变换器,以在以减小所述放电功率上限值的方式施加了限制的功率的范围内驱动所述马达,所述驱动装置的要旨在于:所述控制装置,在所述升压转换器发生了故障时控制所述升压转换器和所述变换器,以在使所述升压转换器停止的状态下驱动所述马达,此后,在判断为伴随所述升压转换器的故障而在所述温度传感器发生故障时控制所述变换器,以使得即使由所述温度传感器检测出的温度为所述预定温度以上,也不对所述放电功率上限值施加限制地驱动所述马达。

在本发明的驱动装置中,在由检测升压转换器的温度的温度传感器检测出的温度小于预定温度时控制升压转换器和变换器,以在与蓄电装置的状态相应的放电功率上限值的范围内驱动马达,在由温度传感器检测出的温度为预定温度以上时控制升压转换器和变换器,以在以减小放电功率上限值的方式施加了限制的功率的范围内驱动马达。在升压转换器发生了故障时控制升压转换器和变换器以在使升压转换器停止的状态下驱动马达,此后,在判断为伴随升压转换器的故障而在检测升压转换器的温度的温度传感器发生故障时控制变换器,以使得即使由温度传感器检测出的温度为预定温度以上,也不对放电功率上限值施加限制地驱动马达。由此,即使由被判断为发生故障的温度传感器检测出的温度为预定温度以上,也能够在蓄电装置的放电功率上限值的范围内驱动马达。即使在升压转换器故障时也能够进行所需的马达驱动。

在这样的本发明的驱动装置中,可以是,所述控制装置在所述升压转换器的故障是由于在所述升压转换器流通过电流而发生的故障时,判断为在所述温度传感器发生了故障。设想如下情况:由于在升压转换器流通过电流而过热,从而温度传感器发生故障。

另外,在本发明的驱动装置中,可以是,所述控制装置在所述升压转换器处于故障期间并且由所述温度传感器检测出的温度为所述预定温度以上时,判断为在所述温度传感器发生了故障。由此,在此后的驱动开始时也能够进行所需的马达驱动。

附图说明

图1是表示作为本发明的一实施例的搭载驱动装置的电动汽车20的大致构成的构成图。

图2是表示由实施例的电子控制单元50执行的放电功率上限值设定例程的一例的流程图。

图3是表示在升压转换器40的下臂的晶体管t32固定为导通时的升压转换器40的状态、来自温度传感器40a的检测值等的时间变化的一例的说明图。

具体实施方式

接着,使用实施例来说明本发明的实施方式。图1是表示作为本发明的一实施例的搭载驱动装置的电动汽车20的大致构成的构成图。如图所示,实施例的电动汽车20具备马达32、变换器34、电池36、升压转换器40以及电子控制单元50。

马达32构成为同步发电电动机,具备埋入有永磁体的转子和卷绕有三相线圈的定子。该马达32的转子连接于驱动轴26,所述驱动轴26经由差动齿轮24与驱动轮22a、22b连结。

变换器34用于马达32的驱动。该变换器34经由高电压侧电力线42连接于升压转换器40,具有6个晶体管t11~t16和分别并联地连接于6个晶体管t11~t16的6个二极管d11~d16。晶体管t11~t16以分别相对于高电压侧电力线42的正极侧线和负极侧线成为源极侧和漏极侧的方式每两个一对地配置。另外,晶体管t11~t16中的成对的晶体管彼此的连接点分别连接有马达32的各三相线圈(u相、v相、w相)。因此,在电压作用于变换器34时,通过电子控制单元50调节成对的晶体管t11~t16的导通时间的比例,由此在三相线圈形成旋转磁场,从而驱动马达32旋转。在高电压侧电力线42的正极侧线和负极侧线安装有平滑用的电容器46。

电池36例如构成为锂离子二次电池、镍氢二次电池,经由低电压侧电力线44连接于升压转换器40。在低电压侧电力线44的正极侧线和负极侧线安装有平滑用的电容器48。

升压转换器40连接于高电压侧电力线42和低电压侧电力线44,具有:2个晶体管t31、t32;2个二极管d31、d32,其分别并联地连接于2个晶体管t31、t32;以及电抗器l。晶体管t31连接于高电压侧电力线42的正极侧线。晶体管t32连接于晶体管t31、和高电压侧电力线42以及低电压侧电力线44的负极侧线。电抗器l连接于晶体管t31、t32彼此的连接点和低电压侧电力线44的正极侧线。升压转换器40通过电子控制单元50来调节晶体管t31、t32的导通时间的比例,由此使低电压侧电力线44的电力升压而将其向高电压侧电力线42供给、或者使高电压侧电力线42的电力降压而将其向低电压侧电力线44供给。

电子控制单元50构成为以cpu52为中心的微处理器,除cpu52之外还具备存储处理程序的rom54、暂时存储数据的ram56以及输入输出端口。经由输入接口向电子控制单元50输入来自各种传感器的信号。作为向电子控制单元50输入的信号,能够列举出例如来自检测马达32的转子的旋转位置的旋转位置检测传感器(例如旋转变压器)32a的旋转位置θm、来自检测在马达32的各相流通的电流的电流传感器32u、32v的相电流iu、iv。另外,也能够列举出来自安装在电池36的端子间的未图示的电压传感器的电压vb、来自安装在电池36的输出端子的未图示的电流传感器的电流ib。进而,也能够列举出来自安装在升压转换器40的温度传感器40a的转换器温度tc、来自安装在电容器46的端子间的电压传感器46a的电容器46(高电压侧电力线42)的电压vh、来自安装在电容器48的端子间的电压传感器48a的电容器48(低电压侧电力线44)的电压vl。除此以外,还能够列举出来自点火开关60的点火信号、来自检测变速杆61的操作位置的移动位置传感器62的移动位置sp。另外,也能够列举出来自检测加速器踏板63的踩踏量的加速器踏板位置传感器64的加速器开度acc、来自检测制动器踏板65的踩踏量的制动器踏板位置传感器66的制动器踏板位置bp、来自车速传感器68的车速v。从电子控制单元50经由输出端口输出各种控制信号。作为从电子控制单元50输出的信号,能够列举出例如针对变换器34的晶体管t11~t16的开关控制信号、针对升压转换器40的晶体管t31、t32的开关控制信号。电子控制单元50基于来自旋转位置检测传感器32a的马达32的转子的旋转位置θm来对马达32的电角θe、转速nm进行运算。另外,电子控制单元50基于来自未图示的电流传感器的电池36的电流ib的累计值来对电池36的蓄电比例soc进行运算。在此,蓄电比例soc为能够从电池36放出的电力的容量相对于电池36的全部容量的比例。另外,电子控制单元50基于蓄电比例soc、来自安装于电池36的未图示的温度传感器的电池温度来对电池36的输入输出限制win、wout进行运算。输入限制win为能够对电池36进行充电的最大充电功率,输出限制wout为能够从电池36放电的最大放电功率。

在这样构成的实施例的电动汽车20中,电子控制单元50进行以下的行驶控制。在行驶控制中,基于加速器开度acc和车速v来设定对驱动轴26要求的要求转矩td*,并且将马达32的转速nm乘以要求转矩td*来设定行驶要求功率pd*。接着,按照将限制系数kin、kout乘以电池36的输入输出限制win、wout而得到的充放电功率上限值winlim、woutlim来限制行驶要求功率pd*,从而设定执行用功率p*,将它除以马达32的转速nm来设定执行用转矩t*。在此,限制系数kin为限制输入限制win的系数,在从值0到值1的范围内进行设定。限制系数kout为限制输出限制wout的系数,在从值0到值1的范围内进行设定。之后,将执行用转矩t*设定为马达32的转矩指令tm*,进行变换器34的晶体管t11~t16的开关控制以使得按转矩指令tm*驱动马达32。另外,在行驶控制中,设定高电压侧电力线42的目标电压vh*以使得能够按转矩指令tm*驱动马达32,进行升压转换器40的晶体管t31、t32的开关控制以使得高电压侧电力线42的电压vh成为目标电压vh*。

接着,对这样构成的实施例的电动汽车20的动作,尤其是在升压转换器40发生了故障时的动作进行说明。图2是表示由实施例的电子控制单元50执行的放电功率上限值设定例程的一例的流程图。反复执行该例程。

当执行放电功率上限值设定例程时,首先,电子控制单元50的cpu52判定在升压转换器40中是否发生了故障(步骤s100),在判定为在升压转换器40发生了故障时使升压转换器40停止(选通(gate)断开)(步骤s110)。在升压转换器40中是否发生了故障的判定能够通过读入ram56的预定地址的值(结果)来进行,所述ram56存储有未图示的故障诊断处理的结果(是否发生了故障的结果)。作为升压转换器40的故障,能够列举出由在升压转换器40流通过电流这一异常引起的故障、由过电压作用于升压转换器40这一异常引起的故障、由无法进行升压转换器40的晶体管t31、t32的开关这一异常引起的故障等。此外,在使升压转换器40停止(选通断开)时,只是无法利用升压转换器40进行升压,仍能够将来自电池36的电力按其电压原样地地向变换器34供给,所以能够进行马达32的驱动。

接着,输入来自温度传感器40a的升压转换器40的温度(以下称为转换器温度)tc(步骤s120),对升压转换器40的故障是否为由过电流异常引起的故障、或者是否升压转换器40故障并且转换器温度tc为阈值tref以上进行判定,由此来判定在温度传感器40a中是否发生了故障(步骤s130)。在升压转换器40流通过电流这一异常是由于构成升压转换器40的下臂的晶体管t32固定为导通而发生的异常。在该情况下,晶体管t32由于过电流而过热,结果,使得晶体管t32和配置于晶体管t32的附近的温度传感器40a损坏。此时,晶体管t32多为无法进行开关这一损坏,温度传感器40a多为持续输出损坏时的温度这一损坏。因此,在升压转换器40的故障为由于过电流异常而发生的故障时,能够判定为在温度传感器40a发生了故障。另外,也存在如下情况:升压转换器40在故障的状态下系统停止(off),之后在系统启动时存储有升压转换器40的故障,但并不确定是否为由于过电流异常而发生的故障。在该情况下,升压转换器40由于故障而停止(选通断开),所以升压转换器40的温度应该变得相对较低。因此,在虽然升压转换器40故障,但来自温度传感器40a的转换器温度tc为阈值tref以上时,能够判定为在温度传感器40a发生了故障。此外,阈值tref为升压转换器40的工作温度范围中较高的温度,被预先设定为对电池36的放电功率上限值woutlim施加限制的下限温度。

当在步骤s130中判定为在温度传感器40a发生了故障时,将被预先设定为升压转换器40的通常的工作温度的温度tset设定为判定用温度tcj(步骤s140),在判定为在温度传感器40a中没有发生故障时,将来自温度传感器40a的转换器温度tc设定为判定用温度tcj(步骤s150)。

接着,比较判定用温度tcj和阈值tref(步骤s160),在判定用温度tcj为阈值tref以上时,以判定用温度tcj越大则使限制系数kout越小的方式将在值0~值1的范围内预先确定的值设定为限制系数kout(步骤s170)。另一方面,在判定用温度tcj小于阈值tref时,将值1设定为限制系数kout(步骤s180)。而且,将限制系数kout乘以电池36的输出限制wout来设定放电功率上限值woutlim(步骤s190),结束本例程。

图3是表示在升压转换器40的下臂的晶体管t32固定为导通时的升压转换器40的状态、来自温度传感器40a的检测值等的时间变化的一例的说明图。图中,从上依次表示升压转换器40的选通的状态、升压转换器40的上臂的晶体管t31的导通截止状态、升压转换器40的下臂的晶体管t32的导通截止状态、在升压转换器40流通的电流的电流值、温度传感器40a的检测值(转换器温度tc)以及放电功率上限值woutlim。图3中,放电功率上限值woutlim中的点划线表示比较例。比较例使用了根据来自温度传感器40a的转换器温度tc来限制放电功率上限值woutlim的构成。当在时间t1发生升压转换器40的下臂的晶体管t32固定为导通这一异常时,在升压转换器40流通过电流,所以检测到过电流流通而在时间t2使升压转换器40停止(选通断开)。但是,因为晶体管t32是固定为导通的状态,所以在升压转换器40继续流通过电流,因此晶体管t32过热,在时间t4晶体管t32、温度传感器40a损坏,晶体管t32成为截止的状态,温度传感器40a继续输出损坏时的温度。在比较例中,由于来自温度传感器40a的转换器温度tc的上升,从时间t3开始限制放电功率上限值woutlim,在晶体管t32、温度传感器40a损坏的时间t4之前就大幅限制放电功率上限值woutlim。因此,来自电池36的放电功率被大幅限制,马达32的转矩也被大幅限制。另一方面,在实施例中,因为升压转换器40的故障是由过电流引起的故障,所以判定为在温度传感器40a发生了故障,将作为升压转换器40的通常的工作温度的温度tset设定为判定用温度tcj,因此在时间t3以后也不限制放电功率上限值woutlim。因此,不限制来自电池36的放电功率,也不限制马达32的转矩。

在以上说明的实施例的电动汽车20所搭载的驱动装置中,在升压转换器40发生了故障时使升压转换器40停止(选通断开),将电池36的电压向变换器34供给来驱动马达32。此后,对升压转换器40的故障是否为由过电流异常引起的故障、或者是否升压转换器40故障并且转换器温度tc为阈值tref以上进行判定,由此来判定在温度传感器40a中是否发生了故障。在判定为在温度传感器40a发生了故障时,将作为升压转换器40的通常的工作温度的温度tset设定为判定用温度tcj,由此使得放电功率上限值woutlim不被限制。由此,不限制来自电池36的放电功率,所以也不限制马达32的转矩。结果,即使在升压转换器40故障时也能够进行所需的马达32的驱动。

虽然在实施例的电动汽车20中使用电池36作为蓄电装置,但只要是电容器等能够储存电力的装置即可,可以使用任意装置。

在实施例中为搭载于电动汽车20的驱动装置的构成。但是,只要是具备马达、变换器、蓄电装置以及升压转换器的装置即可,也可以是搭载于混合动力汽车的驱动装置的构成、搭载于建设设备等不移动的设备的驱动装置的构成。

对实施例的主要的要素与在用于解决问题的技术方案一栏中记载的发明的主要的要素之间的对应关系进行说明。在实施例中,马达32相当于“马达”,变换器34相当于“变换器”,电池36相当于“蓄电装置”,升压转换器40相当于“升压转换器”,温度传感器40a相当于“温度传感器”,电子控制单元50相当于“控制装置”。

此外,在实施例的主要的要素与在用于解决问题的技术方案一栏中记载的发明的主要的要素之间的对应关系中,实施例为用于对在用于解决问题的技术方案一栏中记载的发明的实施方式进行具体说明的一个例子,所以并非对在用于解决问题的技术方案一栏中记载的发明的要素进行限定。即,对于在用于解决问题的技术方案一栏中记载的发明的解释应该基于该栏的记载来进行,实施例不过是在用于解决问题的技术方案一栏中记载的发明的一个具体的例子。

以上,使用实施例对本发明的实施方式进行了说明,但本发明毫不限定于这样的实施例,当然可以在不脱离本发明的主旨的范围内以各种形态来实施。

产业上的可利用性

本发明能够用于驱动装置的制造产业等。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1