一种分布式储能系统参与电网调频控制方法及装置与流程

文档序号:17176709发布日期:2019-03-22 20:34阅读:376来源:国知局
一种分布式储能系统参与电网调频控制方法及装置与流程

本申请属于储能技术领域,具体涉及一种分布式储能设备参与电网调频的控制方法。



背景技术:

当今环境污染问题和能源危机的日益严峻,新能源大量运用的趋势势不可挡。如光伏发电、风力发电等发展迅猛。但由于地理和环境因素,很多新能源分散在各地,分布不均而且光伏发电、风力发电会随着太阳照射和风速等环境的变化而使产生电能的电压和频率发生相应的改变。这些能源的大量接入也会给配电网系统的稳定性带来不良影响。传统电源的调频的容量以及响应速度已无法满足当前复杂的调频需求,这已成为严重制约电网采用分布式电源的重要因素之一。

针对当前新能源发电并网的不稳定而导致大量已有风电和光伏等新能源的闲置。这样会造成严重的资源浪费。分布式储能技术的应用为分布式可再生能源并网提供了重要技术支持。利用分布式储能技术可以对其进行平滑波动、跟踪调度、调峰调频等,使新能源发电可以在可控范围内平稳输出,从而达到新能源的大规模并网的安全性、稳定性要求。但是,分布式储能因为分布不规律,涉及的能源种类多,储能形式和储能规格不统一,分布式储能系统多以多点布局方式接入电网,想协调控制难度较大。因此开发一种多点布局的分布式储能系统的控制调频策略迫在眉睫。



技术实现要素:

本发明要解决的技术问题是:为解决现有技术中的不足,从而提供一种分布式储能设备参与电网调频的控制方法。

本发明解决其技术问题所采用的技术方案是:

一种分布式储能系统参与电网调频控制方法,包括以下步骤:

s1:对分布式储能中的各个储能电站进行分区,每个区定义为一个储能单元,每个储能单元中有数个储能机组;

s2:采集储能机组的功率p、soc状态s、响应时间t、已有充放电次数n、电池温度t,并对每个储能机组进行评估,评估得分a的计算公式为,

其中s最优在充电时为同一分区中储能机组的最小值、在放电时为同一分区中储能机组的最大值,pmax为同一分区中储能机组的功率的最大值;tmin、tmin、和nmin分别为同一分区中储能机组的响应时间、已有充放电次数和电池温度的最小值,k为根据a的总分选择的常数;

s3:选取得分a得分最大的前n个储能机组;

s4:将选取出的储能机组根据储能机组的soc状态将储能机组分为outa、outb、ina和inb四组,outa:sochigh<outa的soc值<socmax、outb:socmid<outb的soc值<sochigh、ina:socmin<ina的soc值<soclow、inb:soclow<inb的soc值<socmid,socmin、socmax分别为同一分区中所有储能机组中的soc值中的最小值和最大值,且socmin<soclow<socmid<sochigh<socmax;

s5:提取电网频率f和频率死区上下限进行比较,调频死区上下限的设置为上限fh=f标+δf和下限fl=f标-δf,f标为电网标准频率,δf为电网频率偏差;

s6:若fl≤f≤fh,则储能系统不进行动作;

若f<fl,由outa和outb两组储能机组在以下情况下进行如下动作:

情况a:δp<pbatteryouta,

其中,pbatteryouta为储能机组组outa在该情况下所提供的有功功率;

其中,ksoc为储能机组电荷状态和功率换算比例系数;为储能机组outa中第i个电池的soc值;

情况b:pbatteryouta<δp<(pbatteryouta+pbatteryoutb),

其中,pbatteryoutb为储能机组outb电池组在该情况下所提供的有功功率,

其中,socbj为储能机组outb中第j个电池的soc值,

情况c:(pbatteryouta+pbatteryoutb)<δp,

当发生情况a时,仅由储能机组outa对电网提供有功功率,储能机组outa中每个电池提供的有功功率为pouta1:

当发生情况b时,先由储能机组outa和outb同时出力,对电网提供有功功率,

此阶段两组电池组中每个电池提供的有功功率均为:

当outb电池组的平均socoutb值降至socmid时,outa池组的平均socouta值降至sochigh,储能机组outb停止出力,储能机组outa继续出力,此阶段储能机组outa中每个电池提供的有功功率为:

当发生情况c时,储能机组outa和outb同时以自身最大功率pmax出力,对系统供电,当两组自身soc都降到socmid时停止出力,由储能机组inb继续对系统出力,此时储能机组inb中每个电池提供的有功功率为:

m为储能机组inb的电池个数。

若fh<f,由ina和inb两组储能机组在以下情况下进行如下动作:

情况d:δp<pbatteryina,

其中,pbatteryina为储能机组ina在该情况下所吸收的有功功率,

其中,ksoc为储能机组电荷状态和功率换算比例系数;为储能机组ina中第n个电池的soc,

情况e:pbatteryina<δp<(pbatteryina+pbatteryinb),

其中,pbatteryinb为储能机组inb在该情况下所吸收的有功功率,

其中,socbm为储能机组outb中第m个电池的soc,

情况f:(pbatteryina+pbatteryinb)<δp,

当发生情况d时,仅由储能机组ina吸收电网有功功率,储能机组ina中每个电池吸收的有功功率为pina1:

当发生情况e时,先由储能机组ina和inb同时吸收电网的有功功率,此阶段储能机组ina中每个电池吸收的有功功率为:

当储能机组inb的平均soc值达到socmid时,储能机组ina的平均soc值达到soclow时,储能机组inb停止吸收有功功率,储能机组ina继续吸收,

当发生情况f时,储能机组ina和inb同时以自身最大功率pmax吸收电网的有功功率,当两组储能机组的soc的值都达到socmid时停止吸收,由储能机组outb继续吸收。此时储能机组outb中每个电池吸收的有功功率为:

优选地,本发明的分布式储能系统参与电网调频控制方法,s6步骤以后,将提取电网频率f和频率死区上下限进行比较,若fl≤f≤fh则调频结束,对电网频率f继续进行实施监控;

若f<fl则利用储能机组inb吸收电网的有功功率,直到fl≤f≤fh;

若fh<则利用储能机组outb进行出力,直到fl≤f≤fh。

优选地,本发明的分布式储能系统参与电网调频控制方法,对分布式储能中的各个储能电站进行分区时,将同一地区的同一类型的储能电站分成一个区。

优选地,本发明的分布式储能系统参与电网调频控制方法,soclow=0.2-0.3,socmid=0.45-0.55,sochigh=0.7-0.8。

优选地,本发明的分布式储能系统参与电网调频控制方法,s3步骤中,根据以下公式求解n的值,选出评估得分a最高的n的储能机组,

pinitial>δp,

δp=δfk,

pinitial=p1+p2+......+pn,

0≤|pn|≤pnmax,

其中,pinitial为储能出力初始值,k为储能系统调频系数,pn为第n个储能机组的额定功率,pnmax为第n个储能机组的最大功率。

本发明还一种分布式储能系统参与电网调频控制装置,包括:

分区模块:用于对分布式储能中的各个储能电站进行分区,每个区定义为一个储能单元,每个储能单元中有数个储能机组;

评分模块:用于采集储能机组的功率p、soc状态s、响应时间t、已有充放电次数n、电池温度t,并对每个储能机组进行评估,评估得分a的计算公式为,

其中s最优在充电时为同一分区中储能机组的最小值、在放电时为同一分区中储能机组的最大值,pmax为同一分区中储能机组的功率的最大值;tmin、tmin、和nmin分别为同一分区中储能机组的响应时间、已有充放电次数和电池温度的最小值,k为根据a的总分选择的常数;

筛选模块:用于选取得分a得分最大的前n个储能机组;

分组模块:用于将选取出的储能机组根据储能机组的soc状态将储能机组分为outa、outb、ina和inb四组,outa:sochigh<outa的soc值<socmax、outb:socmid<outb的soc值<sochigh、ina:socmin<ina的soc值<soclow、inb:soclow<inb的soc值<socmid,socmin、socmax分别为同一分区中所有储能机组中的soc值中的最小值和最大值,且socmin<soclow<socmid<sochigh<socmax;

电网频率比较模块:用于提取电网频率f和频率死区上下限进行比较,调频死区上下限的设置为上限fh=f标+δf和下限fl=f标-δf,f标为电网标准频率,δf为电网频率偏差;

充放电管理模块:用于根据电网频率比较模块比较结果执行以下动作,

若fl≤f≤fh,则储能系统不进行动作;

若f<fl,由outa和outb两组储能机组在以下情况下进行如下动作:

情况a:δp<pbatteryouta,

其中,pbatteryouta为储能机组组outa在该情况下所提供的有功功率;

其中,ksoc为储能机组电荷状态和功率换算比例系数;为储能机组outa中第i个电池的soc值;

情况b:pbatteryouta<δp<(pbatteryouta+pbatteryoutb),

其中,pbatteryoutb为储能机组outb电池组在该情况下所提供的有功功率,

其中,socbj为储能机组outb中第j个电池的soc值,

情况c:(pbatteryouta+pbatteryoutb)<δp,

当发生情况a时,仅由储能机组outa对电网提供有功功率,

当发生情况b时,先由储能机组outa和outb同时出力,对电网提供有功功率,当outb电池组的平均socoutb值降至socmid时,outa池组的平均socouta值降至sochigh,储能机组outb停止出力,储能机组outa继续出力,

当发生情况c时,储能机组outa和outb同时以自身最大功率pmax出力,对系统供电,当两组自身soc都降到socmid时停止出力,由储能机组inb继续对系统出力,

若fh<f,由ina和inb两组储能机组在以下情况下进行如下动作:

情况d:δp<pbatteryina,

其中,pbatteryina为储能机组ina在该情况下所吸收的有功功率,

其中,ksoc为储能机组电荷状态和功率换算比例系数;为储能机组ina中第n个电池的soc,

情况e:pbatteryina<δp<(pbatteryina+pbatteryinb),

其中,pbatteryinb为储能机组inb在该情况下所吸收的有功功率,

其中,socbm为储能机组outb中第m个电池的soc,

情况f:(pbatteryina+pbatteryinb)<δp,

当发生情况d时,仅由储能机组ina吸收电网有功功率,

当发生情况e时,先由储能机组ina和inb同时吸收电网的有功功率,当储能机组inb的平均soc值达到socmid时,储能机组ina的平均soc值达到soclow时,储能机组inb停止吸收有功功率,储能机组ina继续吸收,

当发生情况f时,储能机组ina和inb同时以自身最大功率pmax吸收电网的有功功率,当两组储能机组的soc的值都达到socmid时停止吸收,由储能机组outb继续吸收。

优选地,本发明的分布式储能系统参与电网调频控制装置,还包括,二次调频模块,将提取电网频率f和频率死区上下限进行比较,若fl≤f≤fh则调频结束,对电网频率f继续进行实施监控;

若f<fl则利用储能机组inb吸收电网的有功功率,直到fl≤f≤fh;

若fh<则利用储能机组outb进行出力,直到fl≤f≤fh。

优选地,本发明的分布式储能系统参与电网调频控制装置,所述分区模块中对分布式储能中的各个储能电站进行分区时,将同一地区的同一类型的储能电站分成一个区。

优选地,本发明的分布式储能系统参与电网调频控制装置,所述分组模块中soclow=0.2-0.3,socmid=0.45-0.55,sochigh=0.7-0.8。

优选地,本发明的分布式储能系统参与电网调频控制装置,所述筛选模块中,根据以下公式求解n的值,选出评估得分a最高的n的储能机组,

pinitial>δp,

δp=δfk,

pinitial=p1+p2+......+pn,

0≤|pn|≤pnmax,

其中,pinitial为储能出力初始值,k为储能系统调频系数,pn为第n个储能机组的额定功率,pnmax为第n个储能机组的最大功率。

本发明的有益效果是:

本专利发明的是一种分布式储能的调频控制策略,分布式储能储能机组较多较分散,多为多点布局,本专利针对多点布局的分布式储能系统制定了一种调频控制策略,有效的将储能机组根据soc状态进行分组,提高电池的利用效率,做到储能系统快速准确地响应,尽量减少了不必要的储能机组的充放电。延长了储能机组的使用寿命。本专利设计了二次调频环节,提高了系统的稳定性。

附图说明

下面结合附图和实施例对本申请的技术方案进一步说明。

图1是本申请实施例的分布式储能系统参与电网调频控制方法的流程图;

具体实施方式

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。

下面将参考附图并结合实施例来详细说明本申请的技术方案。

实施例

本实施例提供一种分布式储能系统参与电网调频控制方法,

包括以下步骤:

s1:对分布式储能中的各个储能电站进行分区,每个区定义为一个储能单元,每个储能单元中有数个储能机组;

s2:采集储能机组的功率p、soc状态s、响应时间t、已有充放电次数n、电池温度t,并对每个储能机组进行评估,评估得分a的计算公式为,

其中s最优在充电时为同一分区中储能机组的最小值、在放电时为同一分区中储能机组的最大值,pmax为同一分区中储能机组的功率的最大值;tmin、tmin、和nmin分别为同一分区中储能机组的响应时间、已有充放电次数和电池温度的最小值,k为根据a的总分选择的常数,比如可以综合考虑,想要a的总分为1分或者100时,可以通过选择k来确定总分值;

s3:选取得分a得分最大的前n个储能机组;

s4:将选取出的储能机组根据储能机组的soc状态将储能机组分为outa、outb、ina和inb四组,outa:sochigh<outa的soc值<socmax、outb:socmid<outb的soc值<sochigh、ina:socmin<ina的soc值<soclow、inb:soclow<inb的soc值<socmid,socmin、socmax分别为同一分区中所有储能机组中的soc值中的最小值和最大值,且socmin<soclow<socmid<sochigh<socmax;

s5:提取电网频率f和频率死区上下限进行比较,调频死区上下限的设置为上限fh=f标+δf和下限fl=f标-δf,f标为电网标准频率,δf为电网频率偏差;

s6:若fl≤f≤fh,则储能系统不进行动作;

若f<fl,由outa和outb两组储能机组在以下情况下进行如下动作:

情况a:δp<pbatteryouta,

其中,pbatteryouta为储能机组组outa在该情况下所提供的有功功率;

其中,ksoc为储能机组电荷状态和功率换算比例系数;为储能机组outa中第i个电池的soc值;

情况b:pbatteryouta<δp<(pbatteryouta+pbatteryoutb),

其中,pbatteryoutb为储能机组outb电池组在该情况下所提供的有功功率,

其中,为储能机组outb中第j个电池的soc值,

情况c:(pbatteryouta+pbatteryoutb)<δp,

当发生情况a时,仅由储能机组outa对电网提供有功功率,

当发生情况b时,先由储能机组outa和outb同时出力,对电网提供有功功率,当outb电池组的平均socoutb值降至socmid时,outa池组的平均socouta值降至sochigh,储能机组outb停止出力,储能机组outa继续出力,

当发生情况c时,储能机组outa和outb同时以自身最大功率pmax出力,对系统供电,当两组自身soc都降到socmid时停止出力,由储能机组inb继续对系统出力,

若fh<f,由ina和inb两组储能机组在以下情况下进行如下动作:

情况d:δp<pbatteryina,

其中,pbatteryina为储能机组ina在该情况下所吸收的有功功率,

其中,ksoc为储能机组电荷状态和功率换算比例系数;为储能机组ina中第n个电池的soc,

情况e:pbatteryina<δp<(pbatteryina+pbatteryinb),

其中,pbatteryinb为储能机组inb在该情况下所吸收的有功功率,

其中,socbm为储能机组outb中第m个电池的soc,

情况f:(pbatteryina+pbatteryinb)<δp,

当发生情况d时,仅由储能机组ina吸收电网有功功率,

当发生情况e时,先由储能机组ina和inb同时吸收电网的有功功率,当储能机组inb的平均soc值达到socmid时,储能机组ina的平均soc值达到soclow时,储能机组inb停止吸收有功功率,储能机组ina继续吸收,

当发生情况f时,储能机组ina和inb同时以自身最大功率pmax吸收电网的有功功率,当两组储能机组的soc的值都达到socmid时停止吸收,由储能机组outb继续吸收。

优选地,s6步骤以后,将提取电网频率f和频率死区上下限进行比较,若fl≤f≤fh则调频结束,对电网频率f继续进行实施监控;

若f<fl则利用储能机组inb吸收电网的有功功率,直到fl≤f≤fh;

若fh<则利用储能机组outb进行出力,直到fl≤f≤fh。

优选地,对分布式储能中的各个储能电站进行分区时,将同一地区的同一类型的储能电站分成一个区。

优选地,soclow=0.2-0.3,socmid=0.45-0.55,sochigh=0.7-0.8。

优选地,s3步骤中,根据以下公式求解n的值,选出评估得分a最高的n的储能机组,

pinitial>δp,

δp=δfk,

pinitial=p1+p2+......+pn,

0≤|pn|≤pnmax,

其中,pinitial为储能出力初始值,k为储能系统调频系数,pn为第n个储能机组的额定功率,pnmax为第n个储能机组的最大功率。

本实施例还提供一种分布式储能系统参与电网调频控制装置,包括:

分区模块:用于对分布式储能中的各个储能电站进行分区,每个区定义为一个储能单元,每个储能单元中有数个储能机组;

评分模块:用于采集储能机组的功率p、soc状态s、响应时间t、已有充放电次数n、电池温度t,并对每个储能机组进行评估,评估得分a的计算公式为,

其中s最优在充电时为同一分区中储能机组的最小值、在放电时为同一分区中储能机组的最大值,pmax为同一分区中储能机组的功率的最大值;tmin、tmin、和nmin分别为同一分区中储能机组的响应时间、已有充放电次数和电池温度的最小值,k为根据a的总分选择的常数;

筛选模块:用于选取得分a得分最大的前n个储能机组;

分组模块:用于将选取出的储能机组根据储能机组的soc状态将储能机组分为outa、outb、ina和inb四组,outa:sochigh<outa的soc值<socmax、outb:socmid<outb的soc值<sochigh、ina:socmin<ina的soc值<soclow、inb:soclow<inb的soc值<socmid,socmin、socmax分别为同一分区中所有储能机组中的soc值中的最小值和最大值,且socmin<soclow<socmid<sochigh<socmax;

电网频率比较模块:用于提取电网频率f和频率死区上下限进行比较,调频死区上下限的设置为上限fh=f标+δf和下限fl=f标-δf,f标为电网标准频率,δf为电网频率偏差;

充放电管理模块:用于根据电网频率比较模块比较结果执行以下动作,

若fl≤f≤fh,则储能系统不进行动作;

若f<fl,由outa和outb两组储能机组在以下情况下进行如下动作:

情况a:δp<pbatteryouta,

其中,pbatteryouta为储能机组组outa在该情况下所提供的有功功率;

其中,ksoc为储能机组电荷状态和功率换算比例系数;为储能机组outa中第i个电池的soc值;

情况b:pbatteryouta<δp<(pbatteryouta+pbatteryoutb),

其中,pbatteryoutb为储能机组outb电池组在该情况下所提供的有功功率,

其中,socbj为储能机组outb中第j个电池的soc值,

情况c:(pbatteryouta+pbatteryoutb)<δp,

当发生情况a时,仅由储能机组outa对电网提供有功功率,

当发生情况b时,先由储能机组outa和outb同时出力,对电网提供有功功率,当outb电池组的平均socoutb值降至socmid时,outa池组的平均socouta值降至sochigh,储能机组outb停止出力,储能机组outa继续出力,

当发生情况c时,储能机组outa和outb同时以自身最大功率pmax出力,对系统供电,当两组自身soc都降到socmid时停止出力,由储能机组inb继续对系统出力,

若fh<f,由ina和inb两组储能机组在以下情况下进行如下动作:

情况d:δp<pbatteryina,

其中,pbatteryina为储能机组ina在该情况下所吸收的有功功率,

其中,ksoc为储能机组电荷状态和功率换算比例系数;为储能机组ina中第n个电池的soc,

情况e:pbatteryina<δp<(pbatteryina+pbatteryinb),

其中,pbatteryinb为储能机组inb在该情况下所吸收的有功功率,

其中,socbm为储能机组outb中第m个电池的soc,

情况f:(pbatteryina+pbatteryinb)<δp,

当发生情况d时,仅由储能机组ina吸收电网有功功率,

当发生情况e时,先由储能机组ina和inb同时吸收电网的有功功率,当储能机组inb的平均soc值达到socmid时,储能机组ina的平均soc值达到soclow时,储能机组inb停止吸收有功功率,储能机组ina继续吸收,

当发生情况f时,储能机组ina和inb同时以自身最大功率pmax吸收电网的有功功率,当两组储能机组的soc的值都达到socmid时停止吸收,由储能机组outb继续吸收。

优选地,还包括,二次调频模块,将提取电网频率f和频率死区上下限进行比较,若fl≤f≤fh则调频结束,对电网频率f继续进行实施监控;

若f<fl则利用储能机组inb吸收电网的有功功率,直到fl≤f≤fh;

若fh<则利用储能机组outb进行出力,直到fl≤f≤fh。

优选地,所述分区模块中对分布式储能中的各个储能电站进行分区时,将同一地区的同一类型的储能电站分成一个区。

优选地,所述分组模块中soclow=0.2-0.3,socmid=0.45-0.55,sochigh=0.7-0.8。

优选地,所述筛选模块中,根据以下公式求解n的值,选出评估得分a最高的n的储能机组,

pinitial>δp,

δp=δfk,

pinitial=p1+p2+......+pn,

0≤|pn|≤pnmax,

其中,pinitial为储能出力初始值,k为储能系统调频系数,pn为第n个储能机组的额定功率,pnmax为第n个储能机组的最大功率。

本实施例提供的是一种分布式储能的调频控制策略,分布式储能储能机组较多较分散,多为多点布局,本专利针对多点布局的分布式储能系统制定了一种调频控制策略,有效的将储能机组根据soc状态进行分组,通过提取电网频率f和频率死区上下限进行比较,再根据比较结果控制储能机组的工作状态,提高电池的利用效率,做到储能系统快速准确地响应,尽量减少了不必要的储能机组的充放电,延长了储能机组的使用寿命。作为进一步改进,还本专利设计了二次调频环节,提高了系统的稳定性。

以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1