可读存储介质、充电模块及其功率分配方法与流程

文档序号:22748299发布日期:2020-10-31 09:39阅读:80来源:国知局
可读存储介质、充电模块及其功率分配方法与流程

本发明涉及蓄电池充电领域,尤其涉及一种可读存储介质、具有多路输出的充电模块及其功率分配方法。



背景技术:

市场上具有共享充换电模式的充电模块应用的越来越广泛,例如为电动车(电动汽车、电动自行车、电动摩托车等)充电的充电模块、为手机充电的充电模块等。

目前,对于最大输出功率恒定且具备多路输出的充电模块,由于其最大输出功率恒定,所以,其功率分配方法一般为:将功率平均分配到每一路dc输出。但是,在实际应用场景中会出现:只有某一路或几路dc输出需要给电池快速充电,而剩下的一路或几路dc输出处于闲置或充电即将结束的状态,如果将功率平均分配到每一路dc输出,那就不能让正在充电的每一路以最大功率输出以实现快速充电,延长了电池充电时间。在这种情况下,如果让某一路和某几路充电时完全占用该充电模块的最大输出功率,当新用户来给电池充电时,将面临不能充电的境地;如果都按电池快速充电的最大功率配置充电模块,将会极大的增加设备投入成本,充电模块的功率利用率也会降低。



技术实现要素:

本发明要解决的技术问题在于,针对现有技术存在的要么充电时间长、要么功率利用率低的缺陷,提供一种可读存储介质、具有多路输出的充电模块及其功率分配方法。

本发明解决其技术问题所采用的技术方案是:构造一种具有多路输出的充电模块的功率分配方法,所述充电模块包括控制电路、一个pfc输入电路及多路直流电压输出电路,在所述控制电路中进行以下步骤:

实时计算当前每一路直流电压输出电路的实际输出功率,并计算充电模块所有总输出路数的总实际输出功率;

根据所述总实际输出功率、每一路的最大允许输出功率、总输出额定功率,动态调整每一路直流电压输出电路的最大输出功率。

优选地,根据所述当前每一路直流电压输出电路的实际输出功率、每一路的最大允许输出功率、总输出额定功率,动态调整当前每一路直流电压输出电路的最大输出功率,包括:

步骤s211.判断所述总实际输出功率是否小于等于所述总输出额定功率,若是,则执行步骤s212;若否,则执行步骤s213;

步骤s212.根据所述最大允许输出功率确定当前每一路直流电压输出电路的最大输出功率;

步骤s213.判断所述总实际输出功率是否大于等于所述最大允许输出功率与充电模块的总输出路数的乘积,若是,则执行步骤s214;若否,则执行步骤s215;

步骤s214.根据所述总输出额定功率与所述总输出路数,确定当前每一路直流电压输出电路的最大输出功率;

步骤s215.根据所述总输出额定功率、所述总实际输出功率及所述最大允许输出功率,确定当前每一路直流电压输出电路的最大输出功率。

优选地,所述步骤s212包括:

将所述最大允许输出功率作为当前每一路直流电压输出电路的最大输出功率。

优选地,所述步骤s214包括:

根据以下公式计算当前每一路直流电压输出电路的最大输出功率:

po=pn/n;

其中,po为当前每一路直流电压输出电路的最大输出功率;pn为所述总输出额定功率;n为充电模块的总输出路数。

优选地,所述步骤s215包括:

根据以下公式计算当前每一路直流电压输出电路的最大输出功率:

po=pmax*pn/psum;

其中,po为当前每一路直流电压输出电路的最大输出功率;pn为所述总输出额定功率;pmax为所述最大允许输出功率;psum为所述总实际输出功率。

优选地,根据所述当前每一路直流电压输出电路的实际输出功率、每一路的最大允许输出功率、总输出额定功率,动态调整当前每一路直流电压输出电路的最大输出功率,包括:

步骤s221.根据所述总输出额定功率、所述总实际输出功率及所述最大允许输出功率,计算当前每一路的最大功率参考值;

步骤s222.判断所述最大功率参考值是否大于等于所述最大允许输出功率,若是,则执行步骤s223;若否,则执行步骤s224;

步骤s223.将所述最大允许输出功率作为当前每一路直流电压输出电路的最大输出功率;

步骤s224.判断所述最大功率参考值是否小于等于所述总输出额定功率与充电模块的总输出路数相除后的值,若是,则执行步骤s225;若否,则执行步骤s226;

步骤s225.将所述总输出额定功率与充电模块的总输出路数相除后的值作为当前每一路直流电压输出电路的最大输出功率;

步骤s226.将所述最大功率参考值作为当前每一路直流电压输出电路的最大输出功率。

优选地,所述步骤s221包括:

根据以下公式计算当前每一路的最大功率参考值:

pr=pmax*pn/psum;

其中,pr为当前每一路的最大功率参考值;pn为所述总输出额定功率;pmax为所述最大允许输出功率;psum为所述总实际输出功率。

本发明还构造一种具有多路输出的充电模块,包括处理器及存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以上所述的功率分配方法。

本发明还构造一种可读存储介质,存储有计算机程序,其特征在于,所述计算机程序在被处理器执行时实现以上所述的功率分配方法。

本发明还构造一种具有多路输出的充电模块,包括控制电路、一个pfc输入电路及多路直流电压输出电路,所述控制电路包括:

计算单元,用于实时计算当前每一路直流电压输出电路的实际输出功率,并计算充电模块所有总输出路数的总实际输出功率;

调整单元,用于根据所述总实际输出功率、每一路的最大允许输出功率、总输出额定功率,动态调整每一路直流电压输出电路的最大输出功率。

本发明所提供的技术方案,通过监控自身的每一路输出的功率状态,动态调整每一路直流电压输出电路的最大输出功率,大大提高了实际应用中充电模块的利用率,而且,在满足客户充电需求的同时争取缩短用户充电时间,降低了充电模块的成本,提高了产品竞争力。

附图说明

为了更清楚地说明本发明实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。附图中:

图1是本发明具有多路输出的充电模块的功率分配方法实施例一的流程图;

图2是本发明具有多路输出的充电模块实施例一的电路图;

图3是图1中步骤s20实施例一的流程图;

图4是图1中步骤s20实施例二的流程图;

图5是本发明具有多路输出的充电模块中控制电路实施例一的逻辑结构图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

图1是本发明具有多路输出的充电模块的功率分配方法实施例一的流程图,该实施例的功率分配方法应用在共用一个pfc输入但输出多路dc的充电模块中,即,充电模块包括控制电路、一个pfc输入电路及多路直流电压输出电路。

在一个具体例子中,如图2所示,充电模块包括控制电路16、一个pfc电路12、一个直流变换电路13及多路buck电路141、142、…、143。在该充电模块中,pfc电路12接入市电,对交流电进行功率因数校正及整流,直流变换电路13例如为llc电路、移相全桥电路、双管正激电路、双全桥电路,用于对整流后的电压进行电压变换后输出一个直流母线,多个buck电路141、142、…、143均连接在该直流母线上,且每个buck电路均在控制电路16的控制下对相应充电回路的充电电压、充电电流进行独立控制,再输出至相应蓄电池。

另外,充电模块还可包括设置在pfc电路前端的输入emc滤波器,及与多个充电回路一一对应的多个输出emc滤波器,且每个输出emc滤波器对相应直流电压输出电路的输出电压进行滤波后再输出至相应蓄电池。优选地,每个直流电压输出电路与其所对应的输出emc滤波器集成设置。

如图1所示,该实施例的功率分配方法具体包括:

步骤s10.实时计算当前每一路直流电压输出电路的实际输出功率,并计算充电模块所有总输出路数的总实际输出功率;

在该步骤中,在当前状态下,通过每一路直流电压输出电路的输出电压和电流和计算出实际输出功率,然后将每一路直流电压输出电路的实际输出功率进行累加便可获取总实际输出功率psum,即,其中,pi为每一路直流电压输出电路的实际输出功率,若某一路无接入用户蓄电池,则处于无输出状态,即,该路的实际输出功率为0。另外,还需说明的是,当有用户蓄电池新接入充电模块时,刚接入时将该用户蓄电池的需求功率作为该路的实际输出功率,而且,需求功率可通过与用户的bms模块通信获取。

步骤s20.根据所述总实际输出功率、每一路的最大允许输出功率、总输出额定功率,动态调整每一路直流电压输出电路的最大输出功率。

在该步骤中,总输出额定功率pn及每一路的最大允许输出功率pmax与充电模块的电路设计相关,且满足以下关系:pn/n≤pmax≤pn。其中,n为充电模块的总输出路数,即,该充电模块最多可为n个用户蓄电池充电。

在该实施例中,在充电模块所配置的总输出额定功率不变时,通过监控自身的每一路输出的功率状态,动态调整每一路直流电压输出电路的最大输出功率,大大提高了实际应用中充电模块的利用率,而且,在满足客户充电需求的同时争取缩短用户充电时间。

关于上述实施例的充电模块,还需说明的是,控制电路16与充电装置的充电监控单元通讯连接,优选通过can总线或rs485总线进行通讯连接。当需要为某个蓄电池进行充电时,首先将其与充电装置连接,这样,充电监控单元就可获取到该待充电的蓄电池的充电需求电压、充电需求电流,结合充电装置可输出的最大功率,来确定向该蓄电池提供的充电功率,并将该充电功率所对应的充电电压、充电电流发送至控制电路16。控制电路16在接收到指令后对pfc电路12、直流变换电路13以及多个buck电路141、142、…、143进行控制。

在一个可选实施例中,如图3所示,该实施例的步骤s20具体包括:

步骤s211.判断所述总实际输出功率是否小于等于所述总输出额定功率,若是,则执行步骤s212;若否,则执行步骤s213;

步骤s212.根据所述最大允许输出功率确定当前每一路直流电压输出电路的最大输出功率,优选地,将所述最大允许输出功率作为当前每一路直流电压输出电路的最大输出功率po,即,po=pmax;

在该步骤中,需说明的是,所确定的每一路直流电压输出电路的最大输出功率与为每一路实际提供的功率并不相同,在实际运行中,所有路的总实际输出功率不会超过总输出额定功率,所以,在将最大允许输出功率pmax作为当前每一路直流电压输出电路的最大输出功率po时,若出现pmax*m>pn,其中,m为实际有输出的路数,m≤n,则为每一路实际分配的功率为pn/m。

步骤s213.判断所述总实际输出功率是否大于等于所述最大允许输出功率与充电模块的总输出路数的乘积,若是,则执行步骤s214;若否,则执行步骤s215;

步骤s214.根据所述总输出额定功率与所述总输出路数,确定当前每一路直流电压输出电路的最大输出功率;

在该步骤中,需说明的是,psum≥pmax*n通常发生在充电模块的所有直流电压输出电路都工作时,所以可根据以下公式计算当前每一路直流电压输出电路的最大输出功率po:

po=pn/n。

步骤s215.根据所述总输出额定功率、所述总实际输出功率及所述最大允许输出功率,确定当前每一路直流电压输出电路的最大输出功率。

在该步骤中,可根据以下公式计算当前每一路直流电压输出电路的最大输出功率po:

po=pmax*pn/psum。

在一个可选实施例中,如图4所示,该实施例的步骤s20具体包括:

步骤s221.根据所述总输出额定功率、所述总实际输出功率及所述最大允许输出功率,计算当前每一路的最大功率参考值;

在该步骤中,可根据以下公式计算当前每一路的最大功率参考值pr:

pr=pmax*pn/psum。

步骤s222.判断所述最大功率参考值是否大于等于所述最大允许输出功率,若是,则执行步骤s223;若否,则执行步骤s224;

步骤s223.将所述最大允许输出功率作为当前每一路直流电压输出电路的最大输出功率po,即,po=pmax;

在该步骤中,需说明的是,所确定的每一路直流电压输出电路的最大输出功率po与为每一路实际分配的功率并不相同,在实际运行中,所有路的总实际输出功率不会超过总输出额定功率,所以,在将最大允许输出功率pmax作为当前每一路直流电压输出电路的最大输出功率po时,若出现pmax*m>pn,其中,m为实际有输出的路数,m≤n,则为每一路实际分配的功率为pn/m。

步骤s224.判断所述最大功率参考值是否小于等于所述总输出额定功率与充电模块的总输出路数相除后的值,若是,则执行步骤s225;若否,则执行步骤s226;

步骤s225.将所述总输出额定功率与充电模块的总输出路数相除后的值作为当前每一路直流电压输出电路的最大输出功率po,即,po=pn/n,在该步骤中,需说明的是,pr≤pn/n通常发生在充电模块的所有输出都被占用时;

步骤s226.将所述最大功率参考值作为当前每一路直流电压输出电路的最大输出功率。

通过以上实施例的技术方案,对于总输出额定功率恒定且具备多路输出的充电模块,当其它路输出处于关闭或处于充电即将结束状态,而剩下的某一路或某几路输出正需要以最大功率给动力电池用户快速充电时,可以将最大允许输出功率分配到这一路或几路,加快充电速度。而当该充电模块的所有路输出同时处于工作状态时,可将总输出额定功率平均的分配到所有路输出,提高了充电模块的输出利用率,最终实现功率智能分配的效果。

本发明还构造一种可读存储介质,存储有计算机程序,该计算机程序在被处理器执行时实现以上所述的功率分配方法。

本发明还构造一种具有多路输出的充电模块,该充电模块包括处理器及存储有计算机程序的存储器,且处理器在执行该计算机程序时实现以上所述的功率分配方法。

图5是本发明具有多路输出的充电模块的控制电路实施例一的逻辑结构图,首先说明的是,充电模块包括控制电路、一个pfc输入电路及多路直流电压输出电路。而且,如图5所示,控制电路包括相连接的计算单元10和调整单元20,其中,计算单元10用于实时计算当前每一路直流电压输出电路的实际输出功率,并计算充电模块所有总输出路数的总实际输出功率;调整单元20用于根据所述总实际输出功率、每一路的最大允许输出功率、总输出额定功率,动态调整每一路直流电压输出电路的最大输出功率。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何纂改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1