振荡电路的制作方法

文档序号:7507788阅读:119来源:国知局
专利名称:振荡电路的制作方法
技术领域
本发明涉及振荡电路。特别涉及振荡规定的频率的振荡电路。
背景技术
电压控制型的振荡电路例如使用在光拾取器和PLL(Phase Locked Loop)中,一般根据施加的控制电压而使振荡频率变化来设定,振荡输出该振荡频率的信号。现有技术的一例电压控制振荡器如将反转放大器、第一充放电电路、第二充放电电路转一圈地连接。在该结构中,来自反转放大器的反转电压信号的相位在第一充放电电路和第二充放电电路分段延迟,进而第二充放电电路的输出再次被输入到反转放大器。转过一圈后的反转电压信号的相位与最初的相位再次相同,所以可以通过重复以上的处理进行持续振荡。而且,电压控制振荡器的振荡频率主要根据第一充放电电路和第二充放电电路中的充放电电流的大小来决定,而且,充放电电流的大小由大于充放电电流的电流值级别并且容易控制的控制电流来控制(例如参照专利文献1)。
专利文献1特开平6-37599号公报在以往的技术中,即使充放电电流非常小,由于通过控制电流完成控制,所以通过用于控制的电流值级别的稳定,即使在低振荡频率中也可以稳定地振荡。另一方面,一般为了振荡高振荡频率,进一步需要研究以下课题。在振荡高振荡频率的振荡信号,进而将该振荡信号通过场效应晶体管(FETFieldeffect transistor)变换为电流信号(以下将该FET称为“变换用FET”)的情况下,一般容易产生因变换造成的振荡信号的失真。而且,在由于该失真,高次谐波分量影响至高次的情况下,产生电磁干扰(EMIElectromagneticInterferance)特性恶化的倾向。而且,在提高最终从振荡电路输出的振荡信号的振荡频率,并且增大该振荡信号的振幅的情况下,一般消耗电力升高。在将振荡电路组装到电池驱动的装置等情况下,期望消耗电力低,但是,为了降低消耗电力,需要改善从电压信号到电流信号的变换效率。
另一方面,作为将振荡电路内置在LSI(Large-Scale Intergrated circuit)等中提供的LSI销售商,为了得到量产效果,期望该LSI可以通用地使用。而且,将LSI组装在装置等中的设备制造商希望可以根据装置中的要求条件可变地设定输出信号的振幅的大小,可以以低消耗电力动作的振荡电路。为此,振荡电路对于输出的信号的振幅、消耗电力等要求合适的特性。进而,在设备制造商将振荡电路应用于规定的装置内,将输出信号的振幅设定得较大的情况下,需要波形的失真或者EMI特性满足规定的必要条件。

发明内容
本发明人认识到这样的状况,完成了本发明,其目的是提供一种可以可变输出振荡信号的振幅,并且改善了波形的失真特性的振荡电路。
本发明的方式是振荡电路。该振荡电路包括振荡信号生成电路,将振荡信号作为差动信号输出;差动放大器,放大从所述振荡信号生成电路输出的差动信号;变换电路,将由所述差动放大器放大的差动信号从电压信号变换为电流信号;以及驱动电路,以对应于从外部输入的设定信号的大小,可变地输出使所述变换电路动作的驱动电流。
“差动放大器”中的放大率根据电路适当地设定就可以,例如,假设放大率大于“1”的情况,放大率为“1”的情况,放大器小于“1”的情况。
在通过输入到所述驱动电路的设定信号,增大了所述驱动电流的情况下,所述变换电路也可以增大所述变换的电流信号的振幅。
由于通过以上的振荡电路,将差动信号作为处理对象,所以信号中包含的失真分量被抵消,可以降低信号波形的失真分量。而且,由于最终可以改变用于从电压信号变换为电流信号的驱动电流的大小,调节变换后的电流信号的振幅的大小,所以可以提高变换效率,降低消耗电力。
本发明的另一个方式也是振荡电路。该振荡电路包括振荡信号生成电路,将振荡信号作为差动信号输出;差动放大器,放大从所述振荡信号生成电路生成的差动信号;变换电路,将由所述差动放大器放大的差动信号从电压信号变换为电流信号;以及驱动电路,以对应于从外部输入的设定信号的大小,可变地输出使所述差动放大器动作的驱动电流。
在通过输入到所述驱动电路的设定信号,增大了所述驱动电流的情况下,所述差动放大器也可以提高动作速度。
通过以上的振荡电路,根据对变换后的电流消耗的振幅的大小的要求,调节流过差动放大器的驱动电流的大小,由此可以减小不需要流过的电流,所以可以提高变换效率。而且,在被要求的电流信号的振幅小的情况下,通过驱动电流的调节,减小从差动放大器输出的差动信号的振幅,所以在差动放大器的电源和地之间产生并且附加到差动信号的噪声变小,可以输出噪声的影响小的电流信号。
按照本发明,可以可变地输出振荡信号的振幅,并且可以改善波形的失真特性。


图1是表示实施方式1的高频振荡电路的图。
图2是表示图1的可变电流源的结构的图。
图3是表示对于高频振荡电路的比较对象的高频振荡电路的结构的图。
图4(a)-图4(b)是表示图1和图3的高频振荡电路的输出波形的图。
图5是表示实施方式2的高频振荡电路的图。
图6(a)-图6(c)是表示实施方式3的高频振荡电路的应用例的图。
标号说明10 振荡信号生成电路 12 差动放大器14 变换电路16 驱动电路20 可变电流源22 第一逆变器24 第二逆变器26 第三逆变器28 第四逆变器30 恒流源32 可变电流源40 参照电压源42 运算放大器44 可变电阻50 差动放大器52 驱动电路54 变换电路56 可变电流源58 恒流源100 高频振荡电路具体实施方式
(实施方式1)实施方式1涉及以下述情况为前提的高频振荡电路,即LSI销售商以通用性为目的,使振荡信号的振幅的大小可变地振荡地制造,而设备制造商设定规定的振幅而组装到规定的装置内。本实施方式中的高频振荡电路,使与被施加的控制信号对应的振荡频率的振荡信号振荡。而且,振荡信号的电压的振幅通过FET被放大至可开关后级的变换用FET的程度(以下,将用于放大的FET称为“放大用FET”),进而,被放大的振荡信号通过变换用FET被从电压信号变换为电流信号。特别是在本实施方式中,振荡信号的振荡和放大用于基于差动信号,所以仅抵消信号的失真,可以降低信号波形的失真分量。进而,由于在变换为电流的振荡信号的振幅的调节中,直接调节变换用FET流过的驱动电流的大小,所以可以改善变换效率,降低消耗电力。
图1表示实施方式1的高频振荡电路100。高频振荡电路100包含振荡信号生成电路10、差动放大器12、变换电路14、驱动电路16。振荡信号生成电路10包含可变电流源20、第一逆变器22、第二逆变器24、第三逆变器26、第四逆变器28、晶体管Tr1至晶体管Tr13,差动放大器12包含恒流源30、晶体管Tr变换电路14至晶体管Tr19,变换电路14包含晶体管Tr20至晶体管Tr27,驱动电路16包含可变电流源32。而且作为信号,包含振荡器驱动电流200、第一生成振荡信号202、第二生成振荡信号204、第一放大振荡信号206、第二放大振荡信号208、第一电流振荡信号210、第二电流振荡信号212、输出电流振荡信号214、放大器驱动电流216、变换用驱动电流218。
作为振荡信号,振荡信号生成电路10生成差动信号的第一生成振荡信号202和第二生成振荡信号204。可变电流源20流过根据施加的控制电压而改变大小的电流。由于晶体管Tr1和晶体管Tr2构成电流镜电路,所以流过与从可变电流源20输出的电流的大小成比例的振荡器驱动电流200。
晶体管Tr3至晶体管Tr8构成电流镜电路,进而晶体管Tr9到晶体管Tr13也构成电流镜电路。从这些电流镜电路,与振荡器驱动电流200成比例的电流分别流过第一逆变器22、第二逆变器24、第三逆变器26、第四逆变器28构成的差动输出型的环型振荡器。即,如果振荡器驱动电流200变大,则差动输出型的环型振荡器中流过的电流变大,所以从差动输出型的环型振荡器的第一生成振荡信号202和第二生成振荡信号204的振荡频率变高。这里,第一生成振荡信号202和第二生成振荡信号204例如象正弦波那样,使最大值和最小值在一定期间重复出现,它们相互构成差动信号。而且,差动信号也称为“平衡信号”,另一方面,以地等的固定电位为基准的通常的信号有时也被称为“非平衡信号”。
差动放大器12分别放大第一生成振荡信号202和第二生成振荡信号204,输出第一放大振荡信号206和第二放大振荡信号208。而且,差动放大以提高后述的晶体管Tr20和晶体管Tr21的驱动能力为目的来执行。构成差动放大器12的晶体管Tr14至晶体管Tr19通过来自恒流源30的放大器驱动电流216驱动,第一生成振荡信号202和第二生成振荡信号204分别被施加到晶体管Tr19和晶体管Tr19的栅极端子,从而被放大,输出具有与第一生成振荡信号202和第二生成振荡信号204相同的波形的差动信号的第一放大振荡信号206和第二放大振荡信号208。而且晶体管Tr14至晶体管Tr19相当于前述的放大用FET。
可变电流源32为了将第一放大振荡信号206和第二放大振荡信号208的电压变换为电流,流过用于驱动后述的晶体管Tr20和晶体管Tr21的变换用驱动电流218。而且,虽然在后面详细叙述,但是从外部调节可变电流源32包含的可变电阻的值,可以对变换用驱动电流218的大小进行调节。
变换电路14将第一放大振荡信号206和第二放大振荡信号208变换为吸收电流和源极电流相互切换形式的输出电流振荡信号214。以后,设输出电流振荡信号214包含“吸收电流”和“源极电流”。晶体管Tr20将施加在栅极端子的第一放大振荡信号206变换为第一电流振荡信号210。这里,因为晶体管Tr20是n沟道型,所以如果第一放大振荡信号206的值变大,则第一电流振荡信号210的值接近变换用驱动电流218的值。晶体管Tr21进行与晶体管Tr20相同的动作,将第二放大振荡信号208变换为第二电流振荡信号212。
晶体管Tr22和晶体管Tr23构成电流镜电路,将第一电流振荡信号210变换为与其有比例关系的第一输出电流信号。而且,晶体管Tr24和晶体管Tr25、以及晶体管Tr26和晶体管Tr27也分别构成电流镜电路,变换为与第二电流振荡信号212有比例关系的第二输出电流信号。进而,第一输出电流信号和第二输出电流信号通过晶体管Tr20和晶体管Tr21的切换,成为切换了所述吸收电流和源极电流的输出电流振荡信号214。
图2表示可变电流源32的结构。可变电流源32包含参照电压源40、运算放大器42、可变电阻44、晶体管Tr28至晶体管Tr30。而且,作为信号,包含设定信号220。
可变电阻44是用于将规定的恒压变换为电流的电阻,其值根据从外部输入的设定信号220调节。
参照电压源40使由运算放大器42、晶体管Tr28、可变电阻44变换的电流的值稳定。这里,为了通过运算放大器42放大晶体管Tr28的栅极电压,晶体管Tr28被使用在漏极电流特性的饱和区域。
晶体管Tr29和晶体管Tr30构成电流镜电路,输出变换用驱动电流218。即,如果变更可变电阻44的值,则变换用驱动电流218的值也被变更。
以上结构的高频振荡电路100的动作如下所述。如果增大控制电压,则可变电流源20流过的振荡器驱动电流200也变大。由晶体管Tr22至晶体管Tr28构成的差动输出型环型振荡器在振荡器驱动电流200变大时,输出更高振荡频率的第一生成振荡信号202和第二生成振荡信号204。差动放大器12将第一生成振荡信号202和第二生成振荡信号204分别放大为足够大振幅的第一放大振荡信号206和第二放大振荡信号208。
晶体管Tr20和晶体管Tr21将第一放大振荡信号206和第二放大振荡信号208分别变换为第一电流振荡信号210和第二电流振荡信号212。可变电流源32在晶体管Tr20和晶体管Tr21中流过从外部设定的变换用驱动电流218。晶体管Tr22至晶体管Tr27分别变换第一电流振荡信号210和第二电流振荡信号212的值,进而通过晶体管Tr20和晶体管Tr21的切换成为输出电流振荡信号214。
图3表示用于与图1的高频振荡电路100比较特性的高频振荡电路150的结构。高频振荡电路150包含振荡信号生成电路110、缓冲器112、变换电路114,振荡信号生成电路110包含可变电流源120、第一逆变器122、第二逆变器124、第三逆变器126、晶体管Tr50至晶体管Tr66,缓冲器112包含第四逆变器128、第五逆变器130、第一电阻132、第二电阻134、第三电阻136、第四电阻138、晶体管Tr68至晶体管Tr74,变换电路114包含可变电流源140、可变电流源142、晶体管Tr76、晶体管Tr78。
振荡信号生成电路110与高频振荡电路100的振荡信号生成电路10对应,可变电流源120流过根据施加的控制电压而改变的电流。晶体管Tr50至晶体管Tr58构成电流镜电路,进而晶体管Tr60至晶体管Tr66也构成电流镜电路。通过这些电流镜电路,与可变电流源120的输出电流成比例的电流流过由第一逆变器122、第二逆变器124、第三逆变器126构成的环型振荡器,输出与流过的电流的大小对应的振荡频率的振荡信号。而且,与振荡信号生成电路10的第一生成振荡信号202和第二生成振荡信号204不同,振荡信号不是差动信号。
缓冲器112与高频振荡电路100的差动放大器12对应,从振荡信号生成电路110输出的振荡信号通过第四逆变器128以及第一电阻132、晶体管Tr68、晶体管Tr70、第二电阻134被放大至提高对后述的晶体管Tr76的驱动能力的程度。而且,第五逆变器130以及第三电阻136、晶体管Tr72、晶体管Tr74、第四电阻138也进行相同的动作。
变换电路114对应高频振荡电路100的变换电路14,将缓冲器112放大的振荡信号从电压信号变换为电流信号。这里,晶体管Tr76是p沟道型,晶体管Tr78是n沟道型,所以它们通过输入到栅极的振荡信号交替导通,其结果,最终输出切换吸收电流和源极电流的振荡信号。
图4(a)-图4(b)是分别表示基于实验结果的图1的高频振荡电路100和图3的高频振荡电路150的输出波形的图。图4(a)是图1的高频振荡电路100的输出电流振荡信号214,振荡频率344.98MHz,振幅42.2mA,为信号的失真分量少的波形。另一方面,图4(b)是图2的高频振荡电路150的输出,虽然为与振荡频率283.02MHz,振幅40.0mA的图4(a)相等的值,但是与图4(a)相比,为包含了较多失真分量的波形。该波形的失真是由于晶体管Tr76、晶体管Tr78的切换定时的误差带来的影响,以及包含于高频振荡电路150的环型振荡器的振荡信号接近矩形波,在振荡信号中包含较多高频分量而产生的。如果比较相同程度的振荡频率的图4(a)和图4(b),则图4(b)的信号波形中包含较多失真分量,具有包含较多信号的高次谐波分量的倾向。因此,高频振荡电路150的EMI特性低于高频振荡电路100。另一方面,在用图1的高频振荡电路100传送的差动信号期间,因为信号的失真分量相互抵消,所以信号中包含的失真分量也降低。
按照本实施方式,因为振荡信号的生成和放大是基于差动信号,所以可以减小生成的电流信号中包含的失真分量。而且,如果信号的失真变小,则可以使安装了高频振荡电路的装置稳定工作。而且,调节最终在从电压信号变换为电流信号的阶段流过的驱动电流的大小,调节输出的电流信号的振幅,所以电路的动作效率变高,消耗电力变小。
(实施方式2)实施方式2关于具有与实施方式1相同的结构的高频振荡电路,在实施方式1中,流过变换用FET的驱动电流的大小通过来自外部的设定信号可变地调节,但是,在实施方式2中,流过放大用FET的驱动电流的大小通过来自外部的设定信号可变地调节。本实施方式的高频振荡电路通过调节包含于差动放大器的放大用FET流过的驱动电流的大小,使用于开关变换用FET的电压信号的振幅变化,使最终输出的电流信号的振幅变化。而且,如果驱动电流减小,则从差动放大器输出的差动信号的振幅变小,所以在差动放大器的电源和地之间产生的并且附加到差动信号的噪声变小。
图5表示实施方式2的高频振荡电路100的结构。图5的高频振荡电路100中包含的差动放大器50、驱动电路52、变换电路54与图1的高频振荡电路100中包含的差动放大器12、变换电路14、驱动电路16有所不同。差动放大器50从差动放大器12中除去恒流源30,变换电路54在变换电路14中增加恒流源58,新增加的驱动电路52包含可变电流源56。
可变电流源56与图1的恒流源30一样,在差动放大器50中流过放大器驱动电流216。这里,可变电流源56具有与图2的可变电流源32相同的结构,通过来自外部的未图示的设定信号220调节包含于内部的未图示的可变动作44的值,可以调节放大器驱动电流216的大小。
变换电路54将第一放大振荡信号206和第二放大振荡信号208变换为切换了吸收电流和源极电流的输出电流振荡信号214,但是从电压信号变换为电流信号中使用的晶体管Tr20和晶体管Tr21中流过的变换用驱动电流218的大小基于恒流源58,所以被固定。
在图5中,为了调节输出电流振荡信号214的振幅的大小,不是直接调整应流过晶体管Tr20和晶体管Tr21的变换器驱动电流218的大小,而是根据来自外部的设定信号调节应流过差动放大器50的放大器驱动电流216的大小,调节输出电流振荡信号214的振幅的大小。通过以上的结构,因为可以将放大器驱动电流216的大小减小至必要的程度,所以可以减小差动放大器50和驱动电路52的电源与地之间产生的并且被附加到第一放大振荡信号206和第二放大振荡信号208的噪声,可以输出噪声的影响小的输出电流振荡信号214。
以上结构的高频振荡电路100的动作如下所述。如果增大控制信号,则可变电流源20流过的振荡器驱动电流200也变大。由第一逆变器22至第四逆变器28构成的差动输出型的环型振荡器在振荡器驱动电流200变大时,输出更高振荡频率的第一生成振荡信号202和第二生成振荡信号204。差动放大器50将第一生成振荡信号202和第二生成振荡信号204分别放大至足够大的振幅的第一放大振荡信号206和第二放大振荡信号208。
可变电流源56在晶体管Tr18和晶体管Tr19中流过基于外部设定的放大器驱动电流216,以便满足被要求的差动放大器50的动作速度。晶体管Tr20和晶体管Tr21将第一放大振荡信号206和第二放大振荡信号208分别变换为第一电流振荡信号210和第二电流振荡信号212。恒流源58在晶体管Tr20和晶体管Tr21中流过变换用驱动电流218。晶体管Tr22至晶体管Tr27分别变换第一电流振荡信号210和第二电流振荡信号212的值,进而通过晶体管Tr20和晶体管Tr21的切换而成为输出电流振荡信号214。
按照本实施方式,因为振荡信号的生成和放大基于差动信号,所以可以减少信号的失真分量。而且,如果减小流过差动放大器的驱动电流,则可以输出噪声影响小的电流信号。
(实施方式3)实施方式3说明有关应用了实施方式1和2的高频振荡电路的装置或者LSI的结构。
图6(a)是表示在实施方式3的高频振荡电路100的应用例中光拾取器300的结构。光拾取器300包含高频振荡电路100、半导体激光芯片302、监视用光电二极管304、光接收用光电二极管308。光拾取器300在光盘装置或者光磁盘装置等信息记录再现装置中,对记录介质的盘进行信号的读出或者写入。
半导体激光芯片302根据从后述的高频振荡电路100提供的电流发射激光束。高频振荡电路100根据来自后述的APC(Automatic Power Control)电路306的电压所表示的控制信号向半导体激光芯片302提供电流信号。
光学系统310将从半导体激光芯片302发射的激光束作为光点照射到未图示的记录介质的盘上,而且,将来自盘的反射光导入后述的光接收用光电二极管308。
光接收用光电二极管308将反射光变换为电流信号。进而该电流信号被变换为电压信号。监视用光电二极管304将从半导体激光芯片302发射的激光束的一部分变换为电流信号。而且,这里所谓激光束的一部分是从半导体激光芯片302的光学系统310不存在的一侧发射的激光束。
APC电路306根据从监视用光电二极管304输出的电流信号向高频振荡电路100输出控制信号,使得激光束以始终固定的功率从半导体激光芯片302输出,即进行半导体激光芯片302的反馈控制。这里,由于以下的理由而配备APC电路306。虽然需要将光拾取器300输出的电压信号电平保持为固定的电平,但是半导体激光芯片302输出的激光束的功率存在个体差异,同时对温度变化反应敏感,所以仅对半导体激光芯片302进行相同的控制,激光束的功率不能固定,因此,不能将电压信号的输出电平保持为固定。
另一方面,高频振荡电路100如实施方式1和2中记载的那样,可以增大输出电流振荡信号214的振幅,所以半导体激光芯片302可以稳定地发射激光束。
图6(b)表示在实施方式3的高频振荡电路100的应用例中频率变换电路330的结构。频率变换电路330包含高频振荡电路100、乘法电路322、BPF(Bandpass Filter)324、放大器326。频率变换电路330在通信装置中,将应发送的信号变换为用于传送的信号。更具体来说,在无线通信装置中,将应发送的基带信号或者对该基带信号进行了变频的中间频率信号频率变频为无线频率信号。
信号生成部320将应发送的信号生成为基带信号,将该基带信号频率变频为中间频率。
高频振荡电路100输入对应于发送中使用的无线频率的电源,输出无线频率的信号。
乘法电路322将中间频率的信号通过无线频率的信号进行频率变换。进而,BPF324降低由频率变换产生的高次谐波的影响。
放大器326为了在无线传输路径中发送BPF324的输出信号,将其放大至规定的功率。
这里,高频振荡电路100如在实施方式1或2中记载的那样,对高振荡频率也可以根据设定来输出大值的电流信号,所以频率变换电路330可以稳定地输出无线频率的信号。
图6(c)表示在实施方式3的高频振荡电路100的应用例中PLL340的结构。PLL340包含高频振荡电路100、相位比较器350、环路滤波器352、分频器354。
相位比较器350比较从外部输入的基准时钟信号和从分频器354输入的参考时钟信号的相位和频率,输出与其差值成比例的直流信号。环路滤波器352除去输入信号的高频分量,输出控制电压。高频振荡电路100输出与输入的控制电压对应的频率的时钟信号。这里,输出具有基准时钟信号频率的N倍的频率的时钟信号。输出的时钟信号在分频器354中被分频为1/N,作为参照时钟信号被输入到相位比较器350。
按照本实施方式,可以将可调节输出的电流信号的振幅,可以降低信号的失真分量的高频振荡电路应用于各种装置和LSI中。
以上,根据实施方式说明了本发明。本技术领域的技术人员应该理解,该实施方式是例示,在这些各结构元件和各处理过程的组合中可以有各种变形例,而且,这些变形例也属于本发明的范围。
在实施方式1和2中,由一个差动放大器分别构成差动放大器12和差动放大器50。但是并不限于此,例如,也可以由多个差动放大器构成。按照该变形例,可以进一步增大第一放大振荡信号206和第二放大振荡信号208的振幅。即,可以设定对应于从差动放大器12或者差动放大器50输出的第一放大振荡信号206和第二放大振荡信号208所要求的值的数量的差动放大器。
在实施方式1中,驱动电路16根据来自外部的设定信号220来可变地输出应流过变换电路14的变换用驱动电流218的大小,在实施方式2中,驱动电路52根据来自外部的设定信号220可变地输出应流过差动放大器50的放大器驱动电流216的大小。但是并不限于此,例如也可以是将两者组合的形式。这时,驱动电路16根据来自外部的设定信号220而可变地输出应流过变换电路14的变换用驱动电流218的大小,同时驱动电路52根据来自外部的设定信号220可变地输出应流过差动放大器50的放大器驱动电流216的大小。按照本变形例,可以进行更详细的设定。即,可以进行设定,以满足高频振荡电路100要求的输出电流振荡信号214的振幅的大小、失真分量、消耗功率。
本发明在产业上的可利用性在于,按照本发明,可以可变地输出振荡信号的振幅,并且可以改善波形的失真特性。
权利要求
1.一种振荡电路,其特征在于,该振荡电路包括振荡信号生成电路,将振荡信号作为差动信号输出;差动放大器,放大从所述振荡信号生成电路输出的差动信号;变换电路,将由所述差动放大器放大的差动信号从电压信号变换为电流信号;以及驱动电路,以对应于从外部输入的设定信号的大小,可变地输出使所述变换电路动作的驱动电流。
2.如权利要求1所述的振荡电路,其特征在于,在通过输入到所述驱动电路的设定信号,增大了所述驱动电流的情况下,所述变换电路增大所述变换的电流信号的振幅。
3.一种振荡电路,其特征在于,该振荡电路包括振荡信号生成电路,将振荡信号作为差动信号输出;差动放大器,放大从所述振荡信号生成电路生成的差动信号;变换电路,将由所述差动放大器放大的差动信号从电压信号变换为电流信号;以及驱动电路,以对应于从外部输入的设定信号的大小,可变地输出使所述差动放大器动作的驱动电流。
4.如权利要求3所述的振荡电路,其特征在于,在通过输入到所述驱动电路的设定信号,增大了所述驱动电流的情况下,所述差动放大器提高动作速度。
全文摘要
降低振荡信号的失真分量。作为振荡信号,振荡信号生成电路(10)生成为相互差动信号的关系的第一生成振荡信号(202)和第二生成振荡信号(204)。差动放大器(12)分别差动放大处理第一生成振荡信号(202)和第二生成振荡信号(204),输出第一放大振荡信号(206)和第二放大振荡信号(208)。变换电路(14)将第一放大振荡信号(206)和第二放大振荡信号(208)变换为吸收电流和源极电流交互切换的形式的输出电流振荡信号(214)。可变电流源(32)为了将第一放大振荡信号(206)和第二放大振荡信号(208)的电压变换为电流,流过用于驱动变换电路(14)的变换用驱动电流(218)。而且,从外部调节被包含于可变电流源(32)中的可变电阻的值,从而可以调节变换用驱动电流(218)的大小。
文档编号H03K3/354GK1754314SQ20048000493
公开日2006年3月29日 申请日期2004年5月27日 优先权日2003年5月28日
发明者丸山涉, 胁井刚 申请人:罗姆股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1