多电源电压半导体器件的制作方法

文档序号:7508117阅读:201来源:国知局
专利名称:多电源电压半导体器件的制作方法
技术领域
本发明涉及一种以多个电源电压工作的多电源电压半导体器件,并且具体地说,涉及一种由多个模块组成的多电源电压半导体器件,其中某些或全部模块具有独立的时钟电路。
背景技术
诸如移动电话之类包含半导体器件的电子设备在近年来尺寸和功耗都已经降低。因此,需要减小半导体器件中的功耗。
为了降低功耗而减小电源电压是有效的。减小电源电压还减小了漏电流,这导致了功耗的降低。然而,减小电源电压也一律减小了可用时钟频率,因此减小了工作速度。因此,使用了以多个电压工作的多电源电压半导体器件,其中提供给模块的电源电压可以以如下方式独立改变向组成半导体器件的模块中不需要快速工作速度的模块提供低电源电压,并且向需要快速工作速度的模块提供高电源电压。
在待机状态中,通过仅仅向需要提供电源电压的模块提供电源电压,可以最小化漏电流,从而减小功耗。
在下面的描述中使用的术语“多电源电压半导体器件”是指,以从多个电源系统提供的具有不同电压值的多个电源来工作的半导体器件,以及以从多个电源系统提供的具有相同电压值的多个电源来工作的半导体器件,以及以电源电压变化的单个电源系统来工作的半导体器件。
在由多个模块组成的传统半导体器件中,这些模块中的某一些或全部具有独立的时钟电路,其中每个时钟电路根据从为多个模块提供的公共时钟发生器电路所提供的时钟信号来驱动每个模块内所使用的时钟信号。然而,当在每个模块内驱动时钟信号时,由于各个模块中驱动时钟信号的定时不一致,可能在各个模块内出现时钟偏移。模块之间出现的这种时钟偏移可能导致模块之间发信号的定时不一致的问题。因此,由多个模块组成的半导体器件使用延迟电路来调整输入到各个模块的公共时钟信号的定时,以控制模块之间的时钟偏移。
图1示出了使用这种延迟电路来抑制模块之间的时钟偏移的传统多电源电压半导体器件的配置。传统多电源电压半导体器件包括两个模块31、32、时钟(CLK)发生器电路10、以及延迟电路120。为了简单起见,这里将描述由两个模块31、32组成的多电源电压半导体器件。然而,实际中的半导体器件可以包括多于两个的模块。
时钟发生器电路10产生时钟信号,并将其提供给模块31和32。从时钟发生器电路10提供给模块32的时钟信号由插入在它们之间的延迟电路120延迟,并且将从时钟发生器电路10所生成的时钟信号延迟了一定时间量的时钟提供给模块32作为其时钟信号。
模块31包括时钟电路41和触发器(F/F)电路51、52。模块32包括时钟电路42和触发器电路62、63。
模块31的时钟电路41基于来自时钟发生器电路10的时钟信号,驱动要提供给模块31内的电路的时钟信号CLK1。模块32的时钟电路42基于被延迟电路120延迟了给定时间量的时钟信号,驱动要提供给模块32内的电路的时钟信号CLK2。
在这种多电源电压半导体器件中,必须在所有工作点保证适当操作,即使器件使用提供在一定范围内变化的电源电压的可变电源作为电源。也就是说,必须以这种方式来设计模块电路(时钟电路和运算电路)在所有电源电压处,时钟偏移小于信号传播延迟,相反,信号传播延迟大于时钟偏移。
通过使用提供一定延迟量的延迟电路120可以抑制模块31和32之间的时钟偏移(clock skew),除非模块31和32之间的时钟电路41、42的延迟量随可变电源101的电压值改变。
例如,在图1所示的传统多电源电压半导体器件中,通过如此设置延迟电路120的延迟量可以抑制模块31和32之间的时钟偏移从时钟电路41输出的时钟信号CLK1与从时钟电路42输出的时钟信号CLK2同相。
然而,如果模块31、32的时钟电路41、42的延迟量在电源电压依赖性方面彼此不一致,则出现这样的问题可变电源101的电源电压的改变使每个时钟电路延迟改变,这大大增加了模块之间的时钟偏移。
如果使用一种所谓的多Vt(其中,在同一半导体器件上形成具有不同阈值(Vt)的MOS晶体管)的技术或者一种所谓的多Tox的技术(其中,在同一半导体器件上形成具有不同的栅极氧化物厚度(Tox)的MOS晶体管),则这一问题尤其显著,因为模块31、32的时钟电路41、42的延迟量在电源电压依赖性方面彼此差别很大。
例如,假设图1所示的时钟电路41、42的延迟量的电源电压依赖性具有图2所示的特性。即使将延迟电路120设置为防止在可变电源101的电压为A时模块之间的时钟偏移,当可变电源101的电源电压变为电压B时,也会产生延迟差,因此模块之间的时钟偏移增加。
图3中的时序图示出了这种传统多电源电压半导体器件中的时钟电路41、42的操作。参考图3中的时序图,可以看到,在可变电源101的电压为A时最小的时钟偏移在可变电源101的电源电压变为电压B之后变得很大。
另外,如前所述,某些多电源电压半导体器件同时使用非可变电源以及可变电源。图4示出了一种多电源电压半导体器件,其包括输入了非可变电源的模块以及输入了可变电源的模块。在图4中,非可变电源102输入端模块41,并且可变电源101输入到模块42。如果输入不同的电源电压,则输出不同电平的信号。为了适应电压差,为模块31和32之间的信号提供电平切换器(level shifter)71~73。在图4所示的多电源电压半导体器件中,当可变电源101的电源电压改变时,模块32中时钟电路42的电源电压改变,如图5所示。因此,由不同电源供电的模块32与模块31之间的时钟偏移大大增加。
已经提出了许多方法来减小时钟偏移。例如,日本专利早期公开No.11-39868公开了一种用于减小由多个IC芯片组成的半导体集成电路系统中的时钟偏移的方法。在半导体集成电路系统中,将一个IC芯片分类为主芯片,并且将其他芯片分类为从芯片。主芯片检测条件的改变(例如,电源电压变化),并且将所检测到的改变指示给每个从芯片。每个从芯片然后根据所指示的关于检测到的改变的信息来调整自身的时钟相位。
因为传统的半导体集成电路系统由多个IC芯片组成,所以其配置与多电源电压半导体器件(其中在单个芯片上形成多个模块)的配置不同。如果要将上述方法应用于多电源电压半导体器件,则需要用于检测电源电压变化的电路以及从该电路到各个模块的接线。具体地说,因为多电源电压半导体器件具有多个电源系统,所以器件需要用于检测这些电源系统中每一个的电源电压变化的电路。因此,电路导线的数目随着所包括的模块数以及所使用的电源系统数增加,这使得在高密度半导体器件中使用这种方法是不切实际的。
上述传统多电源电压半导体器件使用延迟电路来控制延迟量,以减小特定电源电压处的时钟偏移,因此存在这样的问题如果在每个模块中所提供的每个时钟电路的延迟量具有不同的电源电压依赖性,则当电源电压改变时,模块之间的时钟偏移增加。

发明内容
本发明的目的是提供这样一种多电源电压半导体器件在为每个模块提供的每个时钟电路具有不同电源电压依赖性的情况下,即使电源电压改变,不使用复杂的配置,也能够减小模块之间的时钟偏移。
为了实现该目的,根据本发明的多电源电压半导体器件包括多个模块并且以多个电源电压工作,其中多个模块中的任何模块或全部模块具有独立的时钟电路,其特征在于为从时钟发生器电路提供给所述多个模块中每个模块的每个时钟信号中的任何或全部时钟信号提供可变延迟电路,所述可变延迟电路提供根据电源电压而改变的延迟量。
根据本发明,通过由时钟发生器电路与每个模块之间所提供的可变延迟电路来补偿与电源电压改变相关联的延迟量改变,可以抑制模块之间由于电源电压改变而出现时钟偏移。
当电源电压减小时,所述可变延迟电路可以增加延迟量。
通过在一个模块中的时钟电路的延迟量变为小于另一模块(其中,电源电压减小)中的时钟电路的延迟量时增加提供给这个模块的时钟信号的延迟量,可以抑制由于电源电压减小而引起的时钟偏移增加。
根据本发明的另一多电源电压半导体器件包括多个模块并且以多个电源电压工作,其中多个模块中的任何模块或全部模块具有独立的时钟电路,其特征在于提供电压电平检测器电路,所述电压电平检测器电路检测电源电压的电压电平,并且将检测到的电压电平输出为电压电平检测信号;并且为从时钟发生器电路提供给所述多个模块中每个模块的每个时钟信号中的任何或全部时钟信号提供可变延迟电路,所述可变延迟电路根据所述电压电平检测信号改变延迟量。
根据本发明,电压电平检测器电路检测电源电压的电压电平,并且根据所检测到的电压电平来改变可变延迟电路的延迟量。
本发明的另一多电源电压半导体器件包括多个模块并且以多个电源电压工作,其中多个模块中的任何模块或全部模块具有独立的时钟电路,其特征在于为从时钟发生器电路提供给所述多个模块中每个模块的每个时钟信号中的任何或全部时钟信号提供相位同步电路,所述相位同步电路用于使模块中的时钟信号同相。
根据本发明,即使模块中的时钟电路的延迟量由于电源电压的改变而改变,模块中的时钟信号也不会失去同相,因为相位同步电路将模块中的时钟信号保持为同相。
可以为任何或全部相位同步电路提供可变延迟电路,所述可变延迟电路提供根据电源电压而改变的延迟量,以补偿电平切换器的延迟改变,其中所述电平切换器调整由不同电源电压供电的模块之间的信号电平。
根据本发明,补偿电平切换器的延迟改变,以便在这种改变可能引起问题的情形中抑制由于电源电压改变而引起的时钟偏移增加。
本发明的另一多电源电压半导体器件还可以包括电压改变检测器电路,其检测电源电压的改变;以及阻断装置(blocking means),用于在所述电压改变检测器电路确定电压正在改变时阻止将所述时钟发生器电路所生成的时钟信号提供给每个模块电路。
根据本发明,通过在电源电压正在改变时防止将来自时钟发生器电路的时钟信号提供给每个模块,可以防止电压改变时出现故障,以便确保模块的稳定操作。
该多电源电压半导体器件还可以包括最小电压检测器电路,其生成并输出电源控制信号,所述电源控制信号提供控制,以在可以以预定时钟频率执行正常操作的范围内最小化电源电压;以及电源控制电路,其根据所述电源控制信号来控制电源电压。
根据本发明,可以最小化功耗以实现高功率效率,因为可以在确保正常工作的范围内减小电源电压。
本发明的另一多电源电压半导体器件包括多个模块并且以多个电源电压工作,其中多个模块中的任何模块或全部模块具有独立的时钟电路,其特征在于提供电源控制电路,其根据指示当前工作模式的工作模式信号来控制电源电压;并且为从时钟发生器电路提供给所述多个模块中每个模块的每个时钟信号中的任何或全部时钟信号提供可变延迟电路,所述可变延迟电路根据所述工作模式信号来改变延迟量。
该多电源电压半导体器件还可以包括模式改变检测器电路,当检测到由所述工作模式信号指示的工作模式改变时,在由所述模式改变检测器电路中包含的定时器所设定的一段时间内强迫并保持时钟控制信号为预定值。
阻断装置,用于在所述时钟控制信号保持为预定值时阻止将所述时钟信号发生器电路生成的时钟信号提供给每个模块电路。


图1是示出了传统多电源电压半导体器件的配置的方框图;图2示出了时钟电路41、42的电源电压依赖性;图3是示出了传统多电源电压半导体器件中时钟电路41、42的操作的时序图;图4是示出了另一传统多电源电压半导体器件的配置的方框图;图5是示出了另一传统多电源电压半导体器件中时钟电路41、42的操作的时序图;图6是示出了根据本发明第一实施例的多电源电压半导体器件的配置的方框图;图7示出了图6所示的可变延迟电路20的具体示例配置;图8是示出了组成可变延迟电路20的反相器的示例的电路图;图9是示出了组成可变延迟电路20的反相器的另一示例的电路图;图10示出了图6所示的可变延迟电路的电源电压相对于时钟电路延迟的特性;图11是示出了根据本发明第一实施例的多电源电压半导体器件中时钟电路41、42的操作的时序图;图12是示出了根据本发明第二实施例的多电源电压半导体器件的配置的方框图;图13是示出了根据本发明第三实施例的多电源电压半导体器件的配置的方框图;图14是示出了图13所示的电压改变检测器电路90的配置的方框图;图15是示出了图13所示的电压改变检测器电路的操作的时序图;图16是示出了根据本发明第四实施例的多电源电压半导体器件的配置的方框图;图17示出了图16所示的电压电平检测器电路96的一个示例;图18示出了图16所示的可变延迟电路22的示例性配置;
图19示出了图16所示的可变延迟电路22的另一示例性配置;图20示出了图16所示的电压电平检测器电路96的另一示例;图21示出了图16所示的可变延迟电路22的另一示例性配置;图22是示出了根据本发明第五实施例的多电源电压半导体器件的配置的方框图;图23是图示根据本发明第五实施例的多电源电压半导体器件的操作的时序图;图24是示出了根据本发明第六实施例的多电源电压半导体器件的配置的方框图;图25是示出了图24所示的最小电压检测器电路的配置的方框图;图26是图示根据本发明第五实施例的多电源电压半导体器件的操作的时序图;图27是示出了根据本发明第七实施例的多电源电压半导体器件的配置的方框图;图28示出了图27所示的相位同步电路131、132的具体示例;图29示出了图27所示的相位同步电路131、132的另一具体示例;图30是图示根据本发明第七实施例的多电源电压半导体器件的操作的时序图;图31是示出了根据本发明第八实施例的多电源电压半导体器件的配置的方框图;图32是图示根据本发明第八实施例的多电源电压半导体器件的操作的时序图;图33是示出了根据本发明第九实施例的多电源电压半导体器件的配置的方框图;图34是图示在根据本发明第八实施例的多电源电压半导体器件中将工作模式从模式A切换为模式B的操作的时序图;图35是图示在根据本发明第八实施例的多电源电压半导体器件中将工作模式从模式B切换为模式A的操作的时序图;
图36是示出了根据本发明第九实施例的多电源电压半导体器件的另一配置的方框图;图37是示出了根据本发明第九实施例的多电源电压半导体器件的另一配置的方框图;图38是图示图37所示的根据本发明第九实施例的多电源电压半导体器件的操作的时序图;图39是示出了根据本发明第十实施例的多电源电压半导体器件的配置的方框图;图40示出了时钟电路的延迟量的电源电压依赖性;图41示出了图39所示的可变延迟电路24的具体示例;图42示出了图39所示的可变延迟电路24的另一具体示例;图43是图示根据本发明第十实施例的多电源电压半导体器件的操作的时序图;图44是示出了根据本发明第十实施例的多电源电压半导体器件的另一配置的方框图;图45示出了图44所示的可变延迟电路25的具体示例;图46示出了图44所示的可变延迟电路25的另一具体示例;图47是示出了根据本发明第十一实施例的多电源电压半导体器件的配置的方框图;图48是示出了根据本发明第十二实施例的多电源电压半导体器件的配置的方框图;图49是示出了根据本发明第十三实施例的多电源电压半导体器件的配置的方框图;图50是示出了根据本发明第十四实施例的多电源电压半导体器件的配置的方框图。
具体实施例方式
为了阐明本发明的目的、特征以及优点,下面将参考附图详细描述本发明的实施例。
(第一实施例)
图6是示出了根据本发明第一实施例的多电源电压半导体器件的配置的方框图。图6中与图1相同的部件标记为相同的标号,并且省略对它们的描述。
根据第一实施例的多电源电压半导体器件包括时钟(CLK)发生器电路101、模块31、32以及可变延迟电路20。第一实施例的多电源电压半导体器件具有这样的配置,其中用可变延迟电路20代替了图1所示的多电源电压半导体器件的延迟电路120。
电源电压变化的可变电源101输入到第一实施例的多电源电压半导体器件。可变电源101对可变延迟电路20以及模块31、32供电。如果可变电源101是提供给多电源电压半导体器件的唯一电源,则时钟发生器电路10由可变电源101供电。从时钟发生器电路(例如,驱动器或PLL)10生成时钟信号。时钟输出提供给模块31和模块32。分别在模块31、32中提供时钟电路41、42。在模块31和模块32之间提供信号连接。
可变延迟电路20是这样一种延迟电路,其提供的延迟量根据电源电压改变。因为在第一实施例中提供可变电源101作为电源电压,所以延迟量随着可变电源101的电压值改变。
虽然为了简单起见针对由两个模块31、32组成的多电源电压半导体器件来描述本实施例,但是实际上器件可以由多于两个的模块组成。
在下面的描述中假设模块31由高阈值晶体管构成,并且模块32由低阈值晶体管构成。因此,可变电源101的电压下降大大增加了时钟电路41的延迟量,而略微增加了时钟电路42的延迟量。
以如下方式来配置可变延迟电路20可变电源101的电压降低使延迟量增加。因此,当可变电源101的电源下降,并且因此时钟电路41的延迟量变为大于时钟电路42的延迟量时,由于可变延迟电路20的延迟量增加,调整了时钟信号CLK1、CLK2的相位。因此,使输入到模块31、32的触发器51、52、61和62的时钟信号CLK1和CLK2同相。然后,模块31、32根据调整过相位的时钟CLK1、CLK2工作,因此无延迟地发送和接收信号。可以确保信号连接的保持余量(hold margin)的可变延迟电路20的延迟精度是足够的。术语“保持余量”是指信号必须保持的余量,以便防止在时钟信号改变之后出现故障。
图7示出了图6所示的可变延迟电路20的具体示例配置。参考图7,图6中的可变延迟电路20由多级反相器实现,其中由高阈值晶体管形成的多个反相器互相串联连接在一起。与常规电路相比,由高阈值晶体管形成的反相器中的延迟量在电源电压降低时大大增加。因此,可以通过上述配置来实现根据电源电压改变延迟的可变延迟电路。
或者,组成可变延迟电路20的每个反相器可以是图8所示的典型反相器。这种反相器是典型的反相器,其中P沟道MOS晶体管81和N沟道MOS晶体管82连接在电源电压与地电压之间。这种配置对于本领域的技术人员而言是公知的,因此省略对其操作的描述。
组成可变延迟电路20的每个反相器可以是由具有长栅极长度的晶体管形成的反相器。与常规电路相比,具有较长栅极长度的晶体管具有较大的阈值,因此该晶体管的延迟量在电源电压降低时大大增加。因此,可以实现上述根据电源电压改变延迟的可变延迟电路。
或者,组成可变延迟电路20的每个反相器可以是图9所示的反相器。图9所示的反相器是由垂直堆叠的许多个级组成的多级反相器。通过垂直堆叠晶体管,可以提供衬底效应,与常规电路相比,这增加了晶体管的阈值,并且在电源电压降低时大大增加了延迟。因此,可以实现上述根据电源电压改变延迟的可变延迟电路。
图10示出了如上配置的可变延迟电路20中电源电压相对于延迟特性的关系。从图10可以看到,可变延迟电路20的延迟量在电源电压降低时增加。例如,当可以电源101电压从电压A变为电压B时,延迟量增加了图10所示的改变量。从模块32的时钟电路42输出的时钟信号CLK2被延迟了改变量这么多,这消除了图2所示的时钟电路41的延迟与时钟电路42的延迟之间的差异。
下面将参考图11所示的时序图来描述在可变电源101的电压从电压A变为电压B时根据本发明的多电源电压半导体器件所执行的操作。
图11分别示出了可变电源101以及分别输入到模块31和32的触发器电路51、52和61、62的时钟信号。当可变电源101处于电压A时,时钟信号CLK1和CKL2同相。当可变电源101的电压从电压A改变为电压B时,电源电压逐渐从电压A减小为电压B。于是,时钟信号CLK1、CLK2的幅度和相位逐渐变化。
另一方面,因为可变延迟电路20具有图11所示的电压特性,所以当可变电源101的电压从电压A变为电压B时,延迟增加。
可以延迟电路20的延迟以如下方式改变总是如上所述补偿时钟电路41与42之间的延迟差。因此,即使可变电源101的电压值改变,也能抑制模块31和32之间的时钟偏移。于是,可以确保以多个电源电压工作的多电源电压半导体器件在工作时总是具有足够的保持余量,而不必在特定电源电压处将保持余量增加到极大的值。
虽然只是在组成多电源电压半导体器件的两个模块31、32中的一个模块32中提供可变延迟电路20,但是可以为从时钟发生器电路10提供给多个模块的部分或所有时钟信号提供可变延迟电路。
(第二实施例)下面将描述根据本发明第二实施例的多电源电压半导体器件。图12是示出了根据本发明第二实施例的多电源电压半导体器件的配置的方框图。图12中与图6相同的部件标记为相同的标号,并且省略对它们的描述。
虽然在上述本发明第一实施例中的多电源电压半导体器件只在其一个模块中提供了可变延迟电路,但是本发明第二实施例中的多电源电压半导体器件在多个或全部模块中提供了可变延迟电路,如图12所示。
如果时钟电路41由高阈值晶体管形成并且时钟电路42由低阈值晶体管形成,则如上所述将由高阈值晶体管形成可变延迟电路20,并且由低阈值晶体管形成可变延迟电路21。
即使由低阈值晶体管形成时钟电路,其延迟在电源电压降低时也会稍稍增加。因此,上述配置使高阈值晶体管的电源电压依赖性与低阈值晶体管的电源电压依赖性能够彼此抵消,由此以比只在一个模块中提供可变延迟电路的情形中更高的精度来减小时钟偏移。
如果多电源电压半导体器件包括三个或更多模块,则可以以与上述方式相类似的方式来在部分或全部模块中提供可变延迟电路。
(第三实施例)下面将描述根据本发明第三实施例的多电源电压半导体器件。在上述第一和第二实施例中,提供可变延迟电路20,以减小由于可变电源101的电压改变引起的时钟偏移,从而稳定模块的操作。然而,如果在可变电源101的电压改变同时可变延迟电路20和时钟电路41、42的延迟变化失去同步,则可能出现故障。第三实施例的多电源电压半导体器件在电源电压改变期间停止从设置发生器电路10提供的时钟信号,以便稳定模块的操作。
除了图6所示的第一实施例的多电源电压半导体器件的部件之外,第三实施例的多电源电压半导体器件还包括电压改变检测器电路90和AND电路91、92,如图13所示。
当检测到可变电源101的电压值改变时,电压改变检测器电路90输出低电平(后文表示为L)电压改变检测信号。在可变电源101的电压值保持不变时,电压改变检测器电路90将电压改变检测信号保持在高电平(后文表示为H)。
当来自电压改变检测器电路90的电压改变检测信号为H时,AND电路91将来自时钟发生器电路10的时钟信号提供给模块31的时钟电路41,而在电压改变检测信号为L时,其阻断来自时钟发生器电路10的时钟信号。
当来自电压改变检测器电路90的电压改变检测信号为H时,AND电路92将来自时钟发生器电路10的时钟信号提供给模块32的时钟电路42,而在电压改变检测信号为L时,其阻断来自时钟发生器电路10的时钟信号。
换句话说,AND电路91、92充当阻断装置,用于在电压改变检测器电路90确定电压正在改变期间阻止将时钟发生器电路10生成的时钟信号提供给模块电路31、32。
电压改变检测器电路90包括A/D转换器电路93、触发器电路94、以及比较器95,如图14所示。
A/D转换器电路93将可变电源101的电压值转换为数字信息。触发器电路94将该数字信息保持时钟信号的一个周期。于是,在触发器电路94中保持了前一时钟周期的数字信息。
比较器95将触发器电路94中保持的数字信息与从A/D转换器电路93输出的数字信息进行比较。如果从A/D转换器电路93输出的数字信息与触发器电路94中保持的数字信息不匹配,则比较器95确定可变电源101正在改变,并且使电压改变检测信号变为H。
图15示出了根据第三实施例的多电源电压半导体器件的操作。参考图15,当可变电源101的电压开始从电压A下降时,电压改变检测器电路90检测到电压改变,并且使电压改变检测信号变为L(时刻t1)。
然后,AND电路91、92阻止来自时钟发生器电路10的时钟信号提供给模块31、32。
当可变电源101的电压变为电压B并且稳定时,电压改变检测器电路90使电压改变检测信号变为H(时刻t2)。因此,AND电路91、92开始将来自时钟发生器电路10的时钟信号提供给模块31、32。
第三实施例的多电源电压半导体器件防止在可变电源101正在改变时将来自时钟发生器电路10的时钟信号提供给模块31、32,由此防止了模块31、32中的故障,并且确保了稳定的模块操作。
虽然针对在多电源电压半导体器件内提供电压改变检测器电路90的情形来描述第三实施例,但是可以在多电源电压半导体器件外部提供电压改变检测器电路90,并且可以只将电压改变检测信号输入到多电源电压半导体器件中。
(第四实施例)下面将描述根据本发明第四实施例的多电源电压半导体器件。在第一实施例中,将可变电源101输入到可变延迟电路20中,以便以模拟方式控制可变延迟电路20的延迟。相反,在第四实施例的多电源电压半导体器件中,提供了检测可变电源101的电压电平的电压电平检测器电路96,并且以数字方式控制可变延迟电路。
图16示出了根据第四实施例的多电源电压半导体器件的配置。图16中与图6相同的部件标记为相同的标号,并且省略对它们的描述。
与图6所示的第一实施例的多电源电压半导体器件相比,第四实施例的多电源电压半导体器件还包括电压电平检测器电路96,并且使用可变延迟电路22代替了可变延迟电路20。
电压电平检测器电路96检测可变电源101的电压电平,并且将其输出为电压电平检测信号103,这是数字信息。第四实施例中的可变延迟电路22在电压电平检测信号103的基础上改变延迟。
电压电平检测器电路96的最简单的配置可以由差分放大器来实现,其中将可变电源101和参考电压Vref输入到该差分放大器。在这种情形中,电压电平检测信号103是1位数字信息(H或L)。
图18和19示出了响应于输入的1位电压电平检测信号103来改变延迟量的可变延迟电路22的具体示例。
图18示出了由延迟门97和选择器98组成的可变延迟电路22。
延迟门97将来自时钟发生器电路10的时钟信号延迟一定的时间量。选择器98根据电压电平检测信号103的逻辑,选择通过延迟门92的时钟信号或从时钟发生器电路10输入的时钟信号,并且将其输出到模块32。
图19是示出了由两个延迟门971、972以及两个选择器981、982组成的可变延迟电路22。
图19所示的配置(其中,两组图18所示的延迟门97和选择器98互相连接在一起)可以用在单个延迟门所提供的延迟不充足的情形中。
图20示出了电压电平检测器电路96的这样一种配置,其中电压电平检测信号103由多于一个的位组成。在图20中,电压电平检测器电路96由A/D转换器电路实现,该A/D转换器电路将输入到其中的模拟可变电源101转换为数字信号。虽然为了简单起见将描述电压电平检测信号103由2位组成的情形,但是也可以实现由多于2个的位组成的电压电平检测信号103。
图21示出了响应于输入的2位电压电平检测信号103来改变延迟量的可变延迟电路22的具体示例。
图21中示出了包括延迟门99和选择器100的可变延迟电路22。
延迟门99具有三个并联连接的延迟电路D1、D2、D3,它们提供不同的延迟。选择器100选择从时钟发生器电路10提供的时钟信号以及已经通过延迟电路D1、D2、D3的时钟信号之一,并将其输出到模块32。
上述延迟门97、971、972、99可以由多级反相器来实现。
虽然将本实施例描述为在多电源电压半导体器件内提供电压电平检测器电路96,但是可以在多电源电压半导体器件外部提供电压电平检测器电路96,并且可以只将电压电平检测信号输入到多电源电压半导体器件中。
(第五实施例)下面将描述根据本发明第五实施例的多电源电压半导体器件。
图22示出了根据第五实施例的多电源电压半导体器件。图22中与图6、13和16中相同的部件标记为相同的标号,并且省略对它们的描述。
该多电源电压半导体器件是第三和第四实施例的组合,其中提供电压电平检测器电路96以执行对可变延迟电路22的数字控制,提供电压改变检测器电路90以在电源电压改变期间阻断时钟的提供,由此确保模块的稳定操作。
下面将参考图23所示的时序图来描述第五实施例的多电源电压半导体器件的操作。
参考图23,当可变电源101的电压开始从电压A下降时,电压改变检测器电路90检测到电压改变,并且使电压改变检测信号变为L(时刻t1)。
然后,AND电路91、92阻止来自时钟发生器电路10的时钟信号提供给模块31、32。从电压电平检测器电路96输出的电压电平检测信号103所指示的电压值也从电压A变为电压B。于是,可变延迟电路22根据电压电平检测信号103来改变延迟量。
当可变电源101的电压变为电压B并且稳定时,电压改变检测器电路90然后使电压改变检测信号变为H(时刻t2)。因此,AND电路91、92开始将来自时钟发生器电路10的时钟信号提供给模块31、32。此时,可变延迟电路22的延迟已经变为与电压B相对应的延迟量,因此从时钟电路41、42输出的时钟信号CLK1、CLK2同相。
虽然将本实施例描述为在多电源电压半导体器件内提供电压改变检测器电路90和电压电平检测器电路96,但是可以在多电源电压半导体器件外部提供电压改变检测器电路90和/或电压电平检测器电路96,并且可以将电压改变信号和/或电压电平检测信号103输入到多电源电压半导体器件中。
(第六实施例)下面将描述根据本发明第六实施例的多电源电压半导体器件。
图24示出了根据第六实施例的多电源电压半导体器件。图24中与图6相同的部件标记为相同的标号,并且省略对它们的描述。根据第六实施例的多电源电压半导体器件除了图6所示的第一实施例的多电源电压半导体器件的部件之外还包括最小电压检测器电路110。在图24中还示出了图6中没有示出的电源控制电路111。
在根据第六实施例的多电源电压半导体器件中,提供了最小电压检测器电路110,并且向其输入可变电源101以及来自时钟发生器电路10的参考时钟(CLK),并且向外部电源控制电路111提供电源控制信号104,以将可变电源101的电压值控制为能够确保以预定参考CLK工作的最小电压,由此最小化功耗以获得高的功率效率。
触发器之间具有最大延迟的路径称作临界路径,并且临界路径的延迟称作临界路径延迟。为了正常工作,临界路径延迟必须小于周期T。相反,只要满足该条件,即使可变电源101的电压减小,也不会出现故障。因此,在第六实施例的多电源电压半导体器件中,在可以满足临界路径延迟<周期T的条件下,将可变电源101的电压值减小到最小电平,由此减小功耗。
最小电压检测器电路110生成电源控制信号140以将可变电源101的电压值控制为可以以给定时钟频率来进行正常操作的范围内的最低值,并且将其输出到电源控制电路111。具体地说,最小电压检测器电路110生成电源控制信号140,并且将其提供给电源控制电路111,从而将可变电源101的电压值减小为确保时钟发生器电路10所生成的时钟信号的一个周期比临界路径延迟时间长的范围内的电压。
电源控制电路111根据来自最小电压检测器电路110的电源控制信号140来控制可变电源101。
图25示出了最小电压检测器电路110的配置。
最小电压检测器电路110包括延迟电路112~114、反相器115、以及触发器电路116、117。电源控制信号140包括下降信号(命令电源控制电路111减小可变电源101的电压值)和上升信号(命令电源控制电路111增加可变电源101的电压值)。
延迟电路112将来自时钟发生器电路10的时钟信号CLK延迟临界路径延迟量那么多,并输出延迟后的时钟信号CLK。延迟电路113和114分别将时钟信号延迟延时α1和延时α2,并输出信号。
通过如上所述来配置最小电压检测器电路110,可以如下控制下降和上升信号(1)下降信号a)如果临界路径延迟+α1+α2<周期T,则信号变为“1”,使电压值减小。
b)如果临界路径延迟+α1+α2≥周期T,则信号变为“0”,使电压值保持不变。
(2)上升信号a)如果临界路径延迟+α1>周期T,则信号变为“1”,使电压值增加。
b)如果临界路径延迟+α1≤周期T,则信号变为“0”,使电压值保持不变。
这里,α1是延迟余量,并且α2是容差(allowance)。于是,最小电压检测器电路110向电源控制电路111输出电源控制信号140(包括上升和下降信号),从而临界路径延迟+α1<周期T<临界路径延迟+α1+α2。
在图26的时序图中示出了根据第六实施例的最小电压检测器电路110的操作。
(第七实施例)下面将描述根据本发明第七实施例的多电源电压半导体器件。虽然在上述第一至第六实施例中使用可变延迟电路来抑制时钟偏移,但是在根据本发明第七实施例的多电源电压半导体器件中,提供了用于使模块31和32中的时钟信号彼此保持同相的相位同步电路来抑制模块之间的时钟偏移。
如图27所示,根据第七实施例的多电源电压半导体器件包括相位同步电路131、132,而不是图6所示的第一实施例的多电源电压半导体器件中的可变延迟电路20。
相位同步电路131使用来自时钟发生器电路10的时钟信号作为CLK输入,并且使用时钟电路41生成的时钟信号CLK1作为参考CLK,以生成时钟信号,并且将其提供给时钟电路41作为CLK输出。相位同步电路131以如此方式来调整CLK输出的相位使CLK输入与参考CLK保持同相。
类似地,相位同步电路132以如此方式来调整输出到时钟电路42的时钟信号的相位使来自时钟发生器电路10的时钟信号与时钟电路41所生成的时钟信号CLK2保持同相。
相位同步电路131、132可以由图28所示的PPL(锁相环)电路或者图29所示的DDL(延迟锁定环)电路来实现。
根据第七实施例,通过提供相位同步电路131、132,从而模块31、32中使用的时钟信号CLK1、CLK2与时钟发生器电路10生成的时钟信号保持同相,即使可变电源101的电压值从电压A变为电压B,时钟信号CLK1和CLK2也彼此保持同相,如图30所示。于是,根据第七实施例的多电源电压半导体器件可以与提供可变延迟电路的情形一样减小模块31和32之间的时钟偏移。
(第八实施例)下面将描述根据本发明第八实施例的多电源电压半导体器件。第八实施例的多电源电压半导体器件具有这样的配置,其中除了图27所示的第七实施例的多电源电压半导体器件的部件之外,还提供了电压改变检测器电路90,从而在电源电压改变期间停止时钟输出。
如图31所示,根据第八实施例的多电源电压半导体器件分别在模块31、32中提供了AND电路11、12以及缓冲电路13、14,而不是时钟电路41、42。
AND电路11在来自电压改变检测器电路90的电压改变检测信号为H时提供来自相位同步电路131的时钟信号作为模块31的时钟信号CLK1,而在电压改变检测信号为L时阻止将从相位同步电路131提供的时钟信号提供给模块31中的电路。
缓冲电路13接收来自相位同步电路131的时钟信号,将其改变为时钟信号CLK1’,并且将其输出为相位同步电路131的参考CLK。
AND电路11和缓冲电路13是由相同类型的晶体管形成的,并且以如下方式来进行配置它们的延迟之间不会由于电源电压的改变而出现大的差异。因此,当电压改变检测信号为H时,无论可变电源101的电压值如何,时钟信号CLK1和时钟信号CLK1’实质上彼此同相。
AND电路12和缓冲电路14的操作与AND电路11和缓冲电路13的操作相同,因此省略对它们的描述。
如图32所示,与前述第三实施例一样,根据第八实施例的多电源电压半导体器件通过在可变电源101正在改变期间防止将来自时钟发生器电路10的时钟信号提供给模块31、32,可以防止模块31、32中的故障,并且确保稳定的模块操作。
虽然在上述第八实施例中在多电源电压半导体器件中提供了电压改变检测器电路90,但是可以在多电源电压半导体器件外部提供电压改变检测器电路90,并且可以只将电压改变检测信号输入到多电源电压半导体器件中。
(第九实施例)下面将描述根据本发明第九实施例的多电源电压半导体器件。在根据第一至第八实施例的多电源电压半导体器件中,时钟发生器电路生成恒定频率的时钟信号。在根据本发明第九实施例的多电源电压半导体器件中,输入指示当前工作模式的工作模式信号,时钟发生器电路根据工作模式信号改变时钟信号的频率,并且可变电源的电压值也根据工作模式改变。
图33示出了根据第九实施例的多电源电压半导体器件的配置。如图33所示,用时钟发生器电路15代替了第一实施例的多电源电压半导体器件的时钟发生器电路10,并且示出了控制可变电源101的电源控制电路141。将指示多电源电压半导体器件的当前工作模式的工作模式信号105输入到时钟发生器电路15和电源控制电路141。
时钟发生器电路15根据所输入的工作模式信号105来控制要输出的时钟信号的频率。电源控制电路141根据所输入的工作模式信号105来控制要输出的可变电源101的电压值。
将参考图34和35的时序图来描述多电源电压半导体器件的操作。
图34示出了当工作模式从模式A变为模式B时的操作。当工作模式信号105从模式A变为模式B时,时钟发生器电路15减小要输出的时钟信号的频率,并且电源控制电路141减小可变电源101的电压。此时,时钟发生器电路15在可变电源101的电压从电压A减小为电压B之前减小时钟频率。
图35示出了当工作模式从模式B变为模式A时的操作。当工作模式信号105从模式B变为模式A时,时钟发生器电路15增加要输出的时钟信号的频率,并且电源控制电路141增加可变电源101的电压。此时,时钟发生器电路15在可变电源101的电压从电压B增加为电压A之后增加时钟频率。
如果如第九实施例的多电源电压半导体器件一样根据工作模式改变时钟信号的频率以及可变电源101的电压值,则提供可变延迟电路20可以防止时钟信号由于电压和频率的改变而不同相,由此可以抑制模块31和32之间的时钟偏移。
如图13所示的第三实施例一样,可以提供电压改变检测器电路90,或者可以从外部输入电压改变检测信号,以控制改变频率(如第九实施例一样)的定时。在这种情形中,通过在电源电压转变完成之后改变频率,可以确保稳定的工作。
另外,如图36所示,可以使用根据工作模式信号105改变延迟量的可变延迟电路23代替根据可变电源101的电压改变延迟量的可变延迟电路20,以利用工作模式信号105直接控制延迟量。当工作模式确定时,该工作模式中可变电源101的电压值也确定。因此,通过直接将工作模式信号105输入到可变延迟电路23,可以控制延迟量。
此外,如图37所示,可以提供模式改变检测器电路151以及AND电路91、92,用于在电源电压改变时停止时钟提供。
模式改变检测器电路151在内部包含定时器,并且当从工作模式信号105检测到工作模式改变时,使时钟(CLK)控制信号106在定时器所设定的时间内为L。AND电路91、92充当阻断装置,它们在来自模式改变检测器电路151的时钟控制信号106为H时将来自时钟发生器电路10的时钟信号提供给模块31、32的时钟电路41、42,并且在时钟控制信号106变为L时阻止将来自时钟发生器电路10的时钟信号提供给模块电路31、32。虽然将阻断装置描述为在时钟控制信号106保持L时阻断从时钟发生器电路10提供的时钟信号的AND电路91、92,但是阻断装置不限于AND电路91、92。实际上,模式改变检测器电路151在其检测到工作模式改变时可以将时钟控制信号设置为预定值,并且阻断装置可以在时钟控制信号106保持为预定值时阻断从时钟发生器电路10提供的时钟信号。
将参考图38的时序图来描述包括这种模式改变检测器电路151的多电源电压半导体器件的操作。
当工作模式信号105从模式A变为模式B时,模式改变检测器电路151使时钟控制信号106变为L(时刻t3)。因此,AND电路91、92阻断从时钟发生器电路10提供的时钟信号。然后,电源控制电路141将可变电源101从电压A改变为电压B,并且时钟发生器电路10改变要输出的时钟信号的频率。
在给定的一段时间过去之后,模式改变检测器电路151使时钟控制信号106变为H(时刻t4)。此时,可变电源101的电压值已经变为电压B,时钟信号的频率已经改变,并且可变延迟电路23的延迟改变也已经完成。因此,当AND电路91、92开始向模块31、32提供时钟信号时,向模块31、32提供了具有稳定的频率、电压和相位的时钟信号。
根据第九实施例,可以在任何工作模式中容易地获得低的时钟偏移,因为如上所述根据工作模式来控制可变延迟电路。应该注意,除了工作模式之外,还可以考虑诸如关于芯片以及工作条件(例如,温度和电源的改变)中的变化的信息这样的信息。
(第十实施例)下面将描述根据本发明第十实施例的多电源电压半导体器件。虽然在根据上述第一至第九实施例的多电源电压半导体器件中向模块31和32都提供可变电源101,但是将针对如图39所示向模块31输入具有恒定电压值的电源102并且向模块32输入可变电源101的情形描述本发明的第十实施例。
根据第十实施例的多电源电压半导体器件具有连接到模块32的可变电源101以及在时钟发生器电路10与模块31之间提供的可变延迟电路24,如图39所示。此外,沿着模块32的边界提供电平切换器71~73,用于调整具有不同电源电压的模块之间的接口处的信号电平。可变延迟电路24是在电源电压减小时增加其延迟的延迟电路。
当电源电压改变时,时钟电路41、42的延迟量改变。然而,时钟电路41的延迟量是恒定的,因为输入到时钟电路41的电源102的电压不改变。因为可变电源101输入到时钟电路42,所以当可变电源101的电压值改变时,时钟42的延迟改变。例如,当可变电源101的电压从电压A变为电压B时,时钟电路42的延迟量增加延迟差AB那么多,如图40所示。
因此,通过在时钟发生器电路10与时钟电路41之间提供可变延迟电路24(当电压降低时增加其延迟量),可以补偿时钟电路42的延迟量增加,以减小模块31和32之间的时钟偏移。另外,根据本实施例通过根据可变电源101的电源电压来控制延迟电路24的延迟量,可以实现相位调整(包括由于提供电平切换器71~73引起的电平切换延迟改变)。
图41示出了可变延迟电路24的具体示例。图41所示的可变延迟电路24由多级反相器构成,其中在每个反相器的GND端加入n沟道MOS晶体管,并且可变电源101连接到n沟道MOS晶体管的栅极端。在可变延迟电路24中,在可变电源101的电压减小时,限制反相器控制电流,以便增加延迟量。
图42示出了可变延迟电路24的另一具体示例。图42所示的可变延迟电路24由多级反相器构成,其中电容通过p沟道MOS晶体管连接到每一级。在可变延迟电路24中,在可变电源101的电压减小时,连接到每个反相器输出端的电容看起来增加,因此延迟量增加。
下面将参考图43的时序图来描述根据第十实施例的多电源电压半导体器件的操作。
假设电源102的电压是电压A,并且可变电源101在初始状态时是电压A,随后可变电源101的电压开始从电压A变为电压B。当可变电源101的电压值减小时,模块32中时钟信号CLK2的幅度减小,并且其相位延迟。然而,调整了时钟信号CLK1的相位,因为在时钟发生器电路10和模块31之间提供了可变延迟电路24。
与图33所示的第九实施例一样,可以向时钟发生器电路10输入工作模式信号105,以便如第十实施例中一样改变模块32中的时钟频率。例如,时钟频率可以减小为一半,从而前沿对齐。
另外,可以在时钟发生器电路10和模块31之间以及时钟发生器电路10和模块32之间分别提供可变延迟电路24、25,如图44所示。在这种情形中,可变延迟电路25是在电源电压减小时其延迟量减小的延迟电路。
图45示出了可变延迟电路25的具体示例。图45所示的可变延迟电路25是由多级反相器实现的,其中在每个反相器的电源端加入了两个p沟道MOS晶体管,这两个p沟道MOS晶体管中一个的栅极端连接到GND,并且另一个的栅极端连接到可变电源输入101。在以这种方式配置的可变延迟电路25中,当可变电源101的电压减小时,反相器控制电流增加,并且延迟量减小。
图46示出了可变延迟电路25的另一具体示例。图46所示的可变延迟电路25是由多级反相器实现的,其中电容通过p沟道MOS晶体管连接到每一级。在以这种方式配置的可变延迟电路25中,当可变电源101的电压减小时,对每个反相器而言,电容看起来减小,因此延迟量减小。通过使该可变延迟电路的电压依赖特性与图41和37所示的可变延迟电路24的电压依赖特性相反,可以高效地应用这种可变延迟电路。
(第十一实施例)下面将描述根据本发明第十一实施例的多电源电压半导体器件。虽然在上述第十实施例中当非可变电源102输入到模块31并且可变电源101输入到模块32时使用可变延迟电路来抑制时钟偏移,但是在第十一实施例中使用图27所示的相位同步电路131、132来进行相位控制,以便减小模块31和32之间的时钟偏移。
图47示出了根据第十一实施例的多电源电压半导体器件。与图39所示的第十实施例的多电源电压半导体器件相比,该多电源电压半导体器件具有相位同步电路131、132,并且用可变延迟电路26代替了可变延迟电路24。另外,在模块32中与其他电路的输入/输出接口处提供电平切换器71~74,以调整具有不同电源电压的模块之间的信号电平。
可变延迟电路26用于在电平切换器71~74的延迟改变引起问题时补偿这种改变。第十一实施例通过使用相位同步电路131、132来补偿由于电源改变引起的延迟量改变,可以在一个或多个模块由不同电源系统供电的工作模式中实现低偏移。
(第十二实施例)下面将描述根据本发明第十二实施例的多电源电压半导体器件。根据第十二实施例的多电源电压半导体器件包括被提供了可变电源101的两个或多个模块。第十二实施例的多电源电压半导体器件将可变电源输入101连接到模块31、32、时钟发生器电路10与模块31之间提供的可变延迟电路27、以及时钟发生器电路10与模块32之间提供的可变延迟电路28。另外,在由可变电源101供电的模块31、32与其他电路之间的接口处提供电平切换器71、75。
(第十三实施例)下面将描述根据本发明第十三实施例的多电源电压半导体器件。根据第十三实施例的多电源电压半导体器件包括由可变电源101供电的两个或多个模块以及由恒定电源102供电并且与这些模块通过信号连接的模块。在第十三实施例的多电源电压半导体器件中,可变电源101连接到模块31、32,并且电源102连接到模块33,如图49所示。在时钟发生器电路10与模块31之间、在电路10与模块32之间、以及在电路10与模块33之间分别提供可变延迟电路27、28和29。在由可变电源101供电的模块31、32与与其他电路(包括模块33)之间的接口处提供电平切换器71、75和76。
(第十四实施例)下面将描述根据本发明第十四实施例的多电源电压半导体器件。虽然上述第一至第十三实施例减小了多电源电压半导体器件的模块之间的时钟偏移,但是第十四实施例减小了一个多电源电压半导体器件与另一半导体器件之间的时钟偏移。
第十四实施例的多电源电压半导体器件包括时钟发生器电路10、可变延迟电路20、时钟电路41、以及触发器电路51、52,如图50所示。通过电平切换器72、73向另一半导体器件输入信号,以及从另一半导体器件输出信号。多电源电压半导体器件由可变电源101供电。
如上配置的多电源电压半导体器件通过可变延迟电路20根据可变电源101的电压值改变延迟值,可以减小相对于另一半导体器件的时钟偏移。
应该清楚,本发明不限于上述实施例,而是在本发明的技术思想的范围之内可以对这些实施例做出适当的修改。例如,虽然为了简单起见,针对多电源电压半导体器件包括两个模块以及单个可变和/或非可变电源的情形来描述第一至第十四实施例,但是本发明并不局限于此。本发明可以同样应用于多电源电压半导体器件包括多于两个的模块以及多于一个的可变和/或非可变电源的情形。
另外,虽然在上述实施例中没有特别提及模块31、32之外的其他一些电路的电源,但是如果多电源电压半导体器件仅仅由可变电源101来供电,则可变电源101也提供给这些电路(例如,时钟发生器电路10)。
权利要求
1.一种多电源电压半导体器件,包括多个模块并且以多个电源电压工作,其中多个模块中的任何模块或全部模块具有独立的时钟电路,其特征在于为从时钟发生器电路提供给所述多个模块中每个模块的每个时钟信号中的任何或全部时钟信号提供可变延迟电路,所述可变延迟电路提供根据电源电压而改变的延迟量。
2.根据权利要求1所述的多电源电压半导体器件,其中当电源电压减小时,所述可变延迟电路增加延迟量。
3.一种多电源电压半导体器件,包括多个模块并且以多个电源电压工作,其中多个模块中的任何模块或全部模块具有独立的时钟电路,其特征在于提供电压电平检测器电路,所述电压电平检测器电路检测电源电压的电压电平,并且将检测到的电压电平输出为电压电平检测信号;以及为从时钟发生器电路提供给所述多个模块中每个模块的每个时钟信号中的任何或全部时钟信号提供可变延迟电路,所述可变延迟电路根据所述电压电平检测信号改变延迟量。
4.一种多电源电压半导体器件,包括多个模块并且以多个电源电压工作,其中多个模块中的任何模块或全部模块具有独立的时钟电路,其特征在于为从时钟发生器电路提供给所述多个模块中每个模块的每个时钟信号中的任何或全部时钟信号提供相位同步电路,所述相位同步电路用于使模块中的时钟信号同相。
5.根据权利要求4所述的多电源电压半导体器件,其中为所述相位同步电路中的任何或全部相位同步电路提供可变延迟电路,所述可变延迟电路提供根据电源电压而改变的延迟量,以补偿电平切换器的延迟改变,所述电平切换器调整由不同电源电压供电的模块之间的信号电平。
6.根据权利要求1至5之一所述的多电源电压半导体器件,还包括电压改变检测器电路,检测电源电压的改变;以及阻断装置,用于在所述电压改变检测器电路确定电压正在改变时阻止将所述时钟发生器电路所生成的时钟信号提供给每个模块电路。
7.根据权利要求1至5之一所述的多电源电压半导体器件,还包括最小电压检测器电路,生成并输出电源控制信号,所述电源控制信号提供控制,以在可以以预定时钟频率执行正常操作的范围内最小化电源电压;以及电源控制电路,根据所述电源控制信号来控制电源电压。
8.一种多电源电压半导体器件,包括多个模块并且以多个电源电压工作,其中多个模块中的任何模块或全部模块具有独立的时钟电路,其特征在于提供电源控制电路,根据指示当前工作模式的工作模式信号来控制电源电压;并且为从时钟发生器电路提供给所述多个模块中每个模块的每个时钟信号中的任何或全部时钟信号提供可变延迟电路,所述可变延迟电路根据所述工作模式信号来改变延迟量。
9.根据权利要求8所述的多电源电压半导体器件,还包括模式改变检测器电路,当检测到由所述工作模式信号指示的工作模式改变时,在由所述模式改变检测器电路中包含的定时器所设定的一段时间内强迫并保持时钟控制信号为预定值。阻断装置,用于在所述时钟控制信号保持为预定值时阻止将所述时钟信号发生器电路生成的时钟信号提供给每个模块电路。
全文摘要
公开了一种多电源电压半导体器件,包括多个模块(31、32)(其中每个模块具有独立的时钟电路41、42)并且以可变电源(101)工作,其中,向从时钟发生器电路(10)提供给数个模块(32)的时钟信号提供可变延迟电路(20),该可变延迟电路根据可变电源(101)的电压值改变延迟量。即使可变电源(101)的电源电压改变,这也可以减小模块之间的时钟偏移。
文档编号H03K5/135GK1826691SQ20048002094
公开日2006年8月30日 申请日期2004年7月15日 优先权日2003年7月22日
发明者野村昌弘 申请人:日本电气株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1