使用配合的平衡混频器的制作方法

文档序号:7538023阅读:294来源:国知局
专利名称:使用配合的平衡混频器的制作方法
技术领域
本发明涉及通常在射频(RF)接收器中使用的混频器,尤其涉及具有高偶次截获点的双平衡混频器。
背景技术
及相关技术混频器是射频(RF)接收器中的一个首要构件,用于在频率上把调制信号从集中在RF载波或中频(IF)的周围转变成集中到直流电附近,在此处它被称为基带(BB)信号。本文其余部分中凡提到RF频率或RF信号时同样适用于其输入为IF频率信号的混频器。真正实现频率转换的元件是换向开关(混频器的核心),这些换向开关将RF电流交替地引向负载阻抗的相对两端。在数学上整个负载上的差动电压等于RF电流乘以差动负载阻抗以及1和-1的交替序列。所述序列是一种有效的换向功能,在理想、平衡的配置中应有50%的占空比。由于RF输入经常是电压,因此通常在换向开关前使用晶体管来把所述的RF电压转变成电流。如

图1所示,实现电压-电流转换的晶体管(互导器)、换向开关以及负载阻抗的组合就是一般所知的有源混频器。如图1a所示,单晶体管互导器1后跟一对差动或平衡开关晶体管2被称为单平衡混频器。如图1b所示,差动或平衡互导器3后跟两对平衡开关晶体管4,5称为双平衡混频器。互导器1、3和换向开关2、4、5都由有源器件构成,因而都可具有偶次和奇次的非线性信号传输特征。
在多种应用中,在混频器的输入端存在被称为阻塞信号的大干扰射频信号与期望的输入信号并存。尽管在期望信号和阻塞信号之间通常有相当大的频率分隔,但在混频器之前的无源RF滤波器只能在有限的程度上衰减阻塞信号。到达混频器输入端的残余的阻塞信号会被解调器中的偶次非线性度转移到基带。这种现象被不严格地称为包络检波,因为除了代表非期望的BB信号的平均功率的DC分量以外,阻塞信号中存在的任何调幅都会被转变成基带中的变化信号。由于所述的期望信号在适当放大之前已被直接变频到基带,因此广泛说来RF接收器,具体说来混频器中的偶次非线性度会对零IF(直接变频)和低IF接收器架构中期望信号的检测产生不利影响。用于根据二次失真来描述线性度的一个常用的品质因数被称为二次截获点,即IP2。同样,更高的偶次失真可以用针对四次截获点的IP4、针对六次截获点的IP6等等来描述。低中频或直接变频结构需要有高偶次截获点的混频器。
在完全差动或平衡混频器实现中,经偶次非线性度包络检波的阻塞信号在正负输出节点处理想的情况下应相等,以使差动输出为零,从而保持期望信号不受影响。然而,混频器的正负信号路径的实际实现的不可避免的失配会导致经包络检波后的阻塞信号的不完全消除。因此,匹配良好的差动电路也被认为有高IP2。由于RF器件往往小巧以实现高频工作,因此它们之间的匹配准确性是有限的。一个完全集成的混频器的典型的可实现IP2是40~50dBm,这对诸如WCDMA等高级应用是不够的,在WCDMA中,移动电话的发射器信号通过双工器漏到移动电话自身的接收器中,在该接收器中该信号起阻塞信号的作用。如果在低噪声放大器(LNA)后没有昂贵的SAW滤波器,则在直接变频的体系结构中,接收器的混频器需要75dBm数量级的IP2。这种要求是现有技术的一千倍。
现在对下列几个文献进行参考[1] K.Kiveks,A.Prssinen及K.Halonen所著“Characterization of IIP2 andDC-Offsets in Transconductance Mixers(互导混频器中IIP2及直流偏置的特征描述)”,IEEE电路和系统(Circuits and Systems)学报,48卷,2001年11月,11期,1028到1038页[2]D.Manstretta等人所著“Second-Order Intermodulation Mechanisms inCMOS Downconverters(互补金属氧化物半导体集成电路降频器中的二次互调机制)”IEEE固态电路(Solid-State Circuits)学报,38卷,2003年3月,第3期,394到406页[3]JussiRyynnen等所著“A Single-Chip Multimode Receiver for GSM900,DCS 180,PCS 1900 and WCDMA(用于GSM900,DCS1800,PCS1900及宽带码分多址系统的单片多模接收器)”IEEE固态电路(Solid-State Circuits)学报,38卷,2003年4月,第4期,593到602页参考文献[1]和[2]标识了混频器中的非线性度的许多根源,任何方法若想大大改善总体IP2就必须适当解决所有这些根源。参考文献[3]认识到电路失配对包络检波的影响,因此建议在接通电源时微调混频器输出端的负载阻抗作为改善IP2的一种方法。美国6393260 B1号专利公开了一种靠基于重复的测量的经验性偏差调整来改善混频器平衡的微调方法。然而,对双平衡混频器而言,若不单独调整互导晶体管对以及每一对开关晶体管,一般不可能取得彻底平衡。上述方法是在混频器的正常工作范围之外执行的,并且需要存储器元件、A/D及D/A转换器,而且最好还要有一个RF测试信号源,这就会大大增加其成本开销。对RF测试信号的需要使这种方法充其量只适合于产品捡测,而储存最终的工作点所需的非易失性存储器需要专门的集成技术。
发明概述鉴于以上所述,本发明的目的是提供一种显著改善双平衡混频器的偶次截获点,而不必中断所述混频器的正常工作,也不需要特殊的RF测试信号的方法及电路配置。
本发明一方面是基于对以下事实的认识如果能防止所有的DC或低频差动信号到达换向开关,那么包络检波就可以只限于换向开关的非线性度单独引发的信号了。
另一方面,即使混频器不平衡,由换向开关的所述非线性度包络检波的共模低频信号也可以被有效地移除。关键的要求是混频器的驱动方式应使双平衡混频器中的两对开关晶体管所实现的有效换向功能具有互补的占空比。
根据本发明的一方面,提供了一种电路配置,其中使用滤波器和负反馈调节来阻止(或至少显著衰减)由于非线性度作用于高频阻塞信号而产生的任何DC或低频信号到达换向开关。
根据本发明的另一方面,提供了一种电路配置,其中所述两对(或更多)开关晶体管由带有单独可变的占空比或阈值的两个(或更多)分别的开关信号来驱动,以使上述换向功能即使在所述晶体管对具有不同的不平衡性情况下也可以彼此互补。(如用阈值调整,这既可在将开关信号施加于开关晶体管对之前完成,也可以通过直接施加调整信号于晶体管的阈值连接端,将对阈值的调整信号直接施加于晶体管来完成。在后一情况下,由于对阈值的调整被直接馈给晶体管,而对开关信号是原处调整的,因此,只有开关信号的一部份,即单一共本机振荡器信号被馈给晶体管的控制端(比如栅极))。
上述滤波方法较佳地与所述互补占空比的换向功能组合以防止所有经包络检波的阻塞信号到达混频器的输出端。
特别地,根据本发明,提供了如所附权利要求书中所定义的双平衡混频器电路。
本发明的一个优点是它可以不用昂贵的SAW滤波器来妥善地处理阻塞信号。更特别地,所提供的电路均可用集成电路技术,较佳地制造成一个单片集成电路。
本发明尤其可用于移动电话或任何其它种类的移动终端站,如具有无线移动数据连接功能的PDA或具有类似功能的膝上型计算机;在后者中,例如无线连接从例如PC卡中提供,PC卡例如可以用GPRS来发送数据。
附图简述以下将参考各附图仅以示例方式来详细描述本发明的较佳实施例,附图中图1a是现有技术的单平衡混频器的示意图。
图1b是现有技术的双平衡混频器的示意图。
图2是根据本发明的双平衡混频器的框图。
图3a是图2所示的互导器的伪差动共源NMOS实现的示意图。
图3b是图2所示的互导器的共源NMOS差动对实现的示意图。
图3c是图2所示的互导器的共栅NMOS实现的示意图。
图4a是根据本发明的高通/带通无源网络的框图。
图4b是根据本发明的无源网络的较佳的高通实施例的示意图。
图4c是根据本发明的无源网络的较佳的带通实施例的示意图。
图5a是根据本发明的电流跟随器的NMOS实施例的框图。
图5b是根据本发明的电流跟随器的NMOS实施例的示意图,该电流跟随器带有其低通滤波器的R-C实现以及其其积分器的有源RC实现。
图6a是根据本发明的混频器核心的NMOS实现的示意图。
图6b是图6a的电路的一种可供选择的形式。
图7a是根据本发明的占空比控制块的第一较佳实施例的示意图。
图7b是根据本发明的占空比控制块的第二较佳实施例的示意图。
图7c是示出图7b的占空比控制块的工作的波形图。
图7d是根据本发明的占空比控制块的第三较佳实施例的示意图。
图8a是根据本发明的选频互阻抗块的第一较佳实施例的示意图。
图8b是根据本发明的选频互阻抗块的第二较佳实施例的示意图。
图9是根据本发明的积分器F的较佳实施例的示意图。
图10是根据本发明的双平衡混频器电路配置的较佳实施例的示意图。
发明详述如图2所示,在该较佳实施例中,根据本发明的混频器电路包括互导器A、无源双端口网络B、电流跟随器C、混频器核心D、互阻抗级E、低通滤波器F以及占空比控制块G。概括而言,该混频器电路如下工作。
整个混频器电路10在其边界有第一总输入端口RF、第二总输入端口LO及总输出端口BB。输入端口RF接收载有需要移频的信息的射频信号,当然,这个端口同样接收存在的任何阻塞信号。输入端口LO接收本机振荡器信号。输出端口BB提供已移频的输出信号。
输入端口RF由互导器A的输入提供。互导器A将接收到的RF信号转换成其输出端的差动RF电流。此差动RF电流进入无源网络B的输入端口,B的电流转移特性是高通或带通,以使到达无源网络B的输出端口的电流基本不含DC或低频分量。(然而,在多数情况下,这种简单的滤波器仍然会让阻塞信号通过,这就是为什么现有技术的设备常使用SAW滤波器来消除阻塞信号的原因)。
无源网络B的输出端口连接到电流跟随器C的输入端口。电流跟随器C由有源器件组成,并且还具有由反馈放大器提供的反馈调节,以便尤其在低频和DC的情况下达到极低的输入阻抗和极高的输出阻抗。除了实现阻抗变换,电流跟随器C还可以起到对偏置电压的电平转换的有用作用,以便于混频器在低电源电压下工作。为了防止反馈放大器的任何非线性度把低频失真带入输出电流中(即,防止对阻塞信号的包络检波),在每个差动支路上都用低通滤波器(图5a中的C2)把反馈放大器的负输入端与该电流跟随器C的输入端在RF频率上相互隔离开。可任选地,两个差动支路上的所述低通滤波器的输出可以由低偏压积分器检测出,且该积分器的差动输出反馈到反馈放大器的正输入端,以减小电流跟随器C的输入端的电压偏差。
电流跟随器C的输出被馈给混频器核心D的rf端口。混频器核心D也有一个LO输入端口,在所描述的实施例中,该LO输入端口可以包括多达三个个别的输入端口以接收同步的LO信号或阈值调整控制。
混频器核心的输出电流被馈给互阻抗放大器E的输入端。互阻抗放大器E的输出电压也就是双平衡混频器10的总输出BB。此总输出BB被馈给低通滤器或积分器F的输入端。
低通滤波器F的输出端是占空比控制块G的两个输入端中的第一个。占占空比控制块G的第二个输入端是混频器10的总输入端口LO。占空比控制块G有一个输出端口,(在所述的实施例中)它可以有多达三个个别的输出端口来提供混频器核心D实现前述占空比互补的有效换向功能所需的同步LO输出及阈值控制信号。
下面是各个块A-G的细节。为此还有必要参考图10的整体详细电路图。它只包含下文所描述的各种可能电路中的某几个。本描述最后的提示会说明所用的是哪些具体电路。
图3示出了可用作本发明中的互导器A的公知的互导器电路的三个示例。每个电路主要由执行电压到电流的转换的一对晶体管,最好是例如NMOS晶体管组成。取决于是否需要为RF输入端100和100’提供阻抗匹配,这一对晶体管或者可以安排成如图3a和3b中的共源构造,或者可以安排成如图3c中的共栅构造。在所有情况下,差动RF输入电压都施加于终端100与100’之间,而差动输出电流则在终端200与200’之间提供。(在诸图中,110或GND指接地,140或VDD指正电源)。各例均以没有源极负反馈的NMOS晶体管来图示说明,但对于本领域的技术人员而言,显而易见的是可以用类似的方式来使用PMOS和NPN及PNP两种类型的双极晶体管。源极或发射极负反馈也可以用于使互导线性化或匹配阻抗。
图4a是电流滤波器B的差动支路之一的框图。一个这样的电路连接于输出端300和输入端200之间(见图2);而另一个与之匹配的电路连接在输出端300’和输入端200’之间。所述电流滤波器包括高通(HP)或带通(BP)阻抗B1、高通或带通导纳偏压阻抗B3。B1为互导器A的DC电流提供偏压路径,但在RF频率上是高阻抗。因此,由互导器A的非线性度响应于RF输入100及100’而产生的低频或DC电流分量会从终端200-200’分流到AC地线VDD(或GND)。在图4a、4b和4c中,假如晶体管M11(或M12) (见图3)是PMOS,则选择将B1连接到GND;若晶体管M31(或M32)(见图5)是PMOS,则选择将B3连接到VDD。
另一方面,HP或BP导纳B2在RF频率上是高导纳(低阻抗),而在低频时是高阻抗。假如电流滤波器B后面的电流跟随器电路C从终端300-300’看去具有低输入阻抗,则所述RF信号电流大多会流经HP/BP导纳B2而进入所述电流跟随器电路C。B2所提供的DC阻塞使得随后的电路功能的工作电压能独立于互导器输出端200-200’的电压来设置,这对现代集成电路的低电压工作特性来说是一个合乎需要的特点。
从终端300-300’分流的阻抗B3为电流跟随器C提供了通向电源的GND(或VDD)终端的偏压通路。如果(图5中用虚线示出的)电流源能有足够的线性度,则该电流源可以取代B3的功能。尽管在低电源电压的偏压约束也许会限制B3可达到的阻抗,但该阻抗仍需要远高于电流跟随器C的所述输入阻抗。在RF频率下,B3阻抗与C的输入阻抗间的这一高比值会限制RF信号电流的损失。在DC和低频下,该高比值能防止由电流跟随器C的非线性动态器件产生的任何乱真低频信号流回所述B3阻抗。
图4b是电流滤波器B的两条差动路径(图中只示出了两条匹配路径之一)中的每条路径的第一实现的示意图。这是一个高通实现,即它让期望的RF信号通过,并且也允许频率更高的信号得以通过,但是后者或者量极少,或者量是下游电路中可容许的。在此实现中,导纳B2包含电容器C21,阻抗B1包含电感器L21,高阻抗B3包含串联的电阻器R21和电感器L22。虚线所示的C22、C23及C24表示在集成电路实现中可能将有效的传递函数从高通变成带通特性的可能的寄生电容器,这是在设计时可有利地利用的一个事实。电容器C22、C23和C24也可以被特意地实现以获得所述带通特性。
图4c是电流滤波器B的两条匹配的差动路径中的每一条的替换实现的示意图。这是一种带通实现,即它使期望的RF信号附近的频带通过。此实现与第一实现的不同之处在于导纳B2包含串联的电容器C21和电感器L23。同样,虚线所示的C22、C23及C24也表示集成电路实现中可能修改有效传递函数的可能的寄生电容器,这是在设计时可以有利地利用以加强带通特性的一个事实。也可以特意地实现电容器C22、C23及C24。
在图4b及图4c的电路中,可以只用一个电阻器来取代电阻器R21及电感器L22。
图5a中从概念上示出的电流跟随器C的主要功能是把RF电流重新导向混频器核心D,这在可能时较佳地为所述混频器核心启用更有利的偏压点而不将低频乱真分量引入到其输出电流中。仅仅考虑差动支路之一(另一个的构造与其相似),通常采用如M31(在此它是NMOS晶体管)等简单的共栅晶体管作为电流跟随器,该电流跟随器具有等于晶体管互导的倒数的低输入电阻以及高输出电阻(具体说来,源极连接到节点300,而漏极向混频器提供输出电流)。所述输入电阻尽管相当低,但仍允许在所述共栅晶体管的源极上形成RF电压,该共栅晶体管的非线性V-I特性会在晶体管的源极和漏极终端处分别产生乱真低频电压和电流分量。(如上面所指出的,阻塞信号尚未被电流滤波器B消除,因而可能仍然存在这些阻塞信号或者被M31包络检波,或者在M31中被包络检波而产生乱真信号)。为了消除漏极电流中的这些低频乱真分量(否则它会很不利地流进混频器),进入M31源极的电流总和减去通过M31的栅-源电容器分流的电流后应实际上没有低频分量。这可根据本发明的另一方面,如图5所示引入一个强低频反馈调节来稳定节点300上的M31的源极电压来实现。当把节点300稳定到在低频上几乎为常数后,仅节点340还由于节点300处的高频电压变化及M31的非线性V-I特性而有残余的低频电压变化。可以示出通过M31的栅-源电容器而注入M31源极的低频电流大小比没有反馈调节时注入M31的低频电流的大小低几个数量级。
反馈调节是由反馈放大器C1和低通(或带通)滤波器C2来提供的。反馈放大器C1通常由有源器件组成。但是如果在C1的反相输入端320(如图所示通过低通滤波器C2连接到节点300)上存在高频RF信号,则这些有源器件易于在节点340处产生大得多的低频乱真电压分量。为防止所述较大的乱真低频信号把乱真电流注入M31中,根据本发明,用低通滤波器C2把反相输入端320与电流跟随器的输入端300隔离开。
在所述反馈调节下,节点300和节点300’之间的偏压是由两个调节放大器C1之间的偏压之差所决定的。为减少这一偏压差对两个差动支路之间的匹配的影响,在此提供一个可任选的积分器C3,其正负输入端分别为节点320及330,其输出端310和310’则为所述反馈放大器C1的正输入节点。积分器C3通过负反馈把节点300及300’间的所述偏压调节为所述积分器C3的等效输入端的等效偏压。由于C3不是直接在信号路径上,因此本领域的技术人员在实现C3时能够把它的偏压做得很低,由此使节点300与300’间的偏压也很低。
图5b示出了电流跟随器C的一个较佳实现的示意图,其中低通滤波器C2被实现为简单的RC网络,而可任选积分器C3被实现为有源RC积分器。对有源RC积分器的一种替换是开关电容器(SC)积分器。该可任选积分器C3在图5a及5b中都以虚线表示。当省去可任选积分器C3时,正相输入端310可以连接到一个恒偏压。
此实现中的电路详细描述如下。在(图中左侧的)一条路径上,低通滤波器C2包括连接于节点300和反馈放大器C1的反相输入端之间的电阻器R31,以及连接在GND及反相输入端之间的电容器C31。另一条路径则是用同值的元件类似地构造的。
两条路径包括一公共差动放大器C4,它有反相和正相输入端以及反相和正相输出端。反相和正相输入端经电阻器R33和R34分别连接到左路径和右路径上的反馈放大器C1的反相输入端320、330。反馈放大器C1的正相输入端310、310’则分别由电阻器R37和R36连接到VDD(或偏压)380,并且还分别由电阻器R39及R38连接到差动放大器C4的正相和反相输出端。放大器C4的反相和正相输入端也分别由电容器C32和C31连接到放大器C4的正相和反相输出端。同样,图中左侧和右侧的类似连接的元件均有类似的值。
在图5a和图5b中,该较佳实施例是用NMOS场效应晶体管来示例说明的。对本领域的技术人员应显而易见的是可以用PMOS晶体管或NPN型或PNP型双极型晶体管来实现类似的实施例。
图2所示的块A、B和C的组合配置形成了一个总互导Gm,如前所述,它实际上没有偶次失真而不一定要有匹配良好的差动路径。
其余的块D、E、F、G形成一反馈调节,以使混频器核心D所实现的有效换向功能具有互补的占空比,从而既抑制了开关晶体管可能产生的任何低频乱真信号,又抑制了从所述总互导器Gm过来的残余的乱真基带信号。此外,互阻抗E的低通滤波在总输出端口BB之前基本去除了阻塞信号。
图6a示出了混频器核心D的一个较佳实施例。虚线画出的两对晶体管(M45、M46;M47、M48)形成一个标准的混频器核心D1(现有技术中已知的-比较图1b),它具有差动rf输入端口400--400’、控制端口700-700’以及输出端口600-600’。这些晶体管如下连接。晶体管M45及M46的源极连接到rf输入节点400’,而晶体管M47及M48的源极连接到rf输入端节点400。晶体管M45及M48的栅极连接到控制输入节点700,而晶体管M46及M47的栅极连接到控制输入节点700’。晶体管M45及M47的漏极连接到输出节点600’,而晶体管M46及M48的漏极则连接到输出节点600。这种标准混频器核心正如下文所述的是对电路的一个可任选的补充。(尽管示出了使用场效应晶体管的混频器核心,但混频器核心也可以用双极晶体管来构造)。
然而,根据本发明,提供了一种占空比受控的混频器核心D2,它包括两对开关晶体管M41、M42;M43、M44,它们的栅极可分别从输入端口710-720及730-740单独控制。具体而言,连接如下。晶体管M41及M42的源极连接到rf输入节点400,而晶体管M43及M44的源极连接到rf输入节点400’。晶体管M41、M42、M43及M44的栅极分别连接到控制输入节点710、720、730、740。晶体管M41及M43的漏极连接到输出节点600,而晶体管M42及M44的漏极则连接到输出节点600’。
所述混频器核心D的偏压及自适应控制电路位于占空比控制块G中。与现有技术的混频器核心相比较,此处把710与740分开以及把720和730分开的好处是在将第一控制信号施加于端口710-720的同时将第二控制信号施加于端口740-730,而不必中断混频器的正常工作,且所述第一和第二控制信号也不必相同。实际上,由于目的在于对所述有效换向功能实现互补的占空比,因此所述第一控制信号和所述第二控制信号的极性较佳地相反。如所述控制信号中只有一个被适调而另一个固定,也可实现所述互补占空比。以下将解释提供此种调整的电路。
由于在实际的实现中所需的占空比调整相当小,因此如图6a所示,所述占空比受控的混频器核心D2可任选地与现有技术的混频器核心D1组合。占空比控制灵敏度可通过改变D2中的开关晶体管相对于D1中的开关晶体管的大小来调整。然而,在一个较佳实施例中可以省略现有技术的混频器核心D1。
图6b是图6a的电路的一种替换形式,稍后将在下文中描述。
图7a中示出了所述占空比控制电路G的第一较佳实现。本机振荡器信号LO被施加于第一输入端口500-500’(即图2中的总本机振荡器输入端口),施加于两个终端的信号反相。占空比控制信号τ-C被施加于第二输入端口900-900’。第一输出端口710-720及第二输出端口740-730向所述混频器核心D提供开关信号,即这些输出端口连接到混频器核心(在此例中即核心D2,见图6a)中标号相同的输入端口。可任选的附加元件(以虚线示出)提供适用于驱动附加的标准混频器D1(如果添加了该混频器)的第三输出端口700-700’。
施加于终端500的信号由比如电容器C41和C44分别电容耦合到节点710和740;而施于终端500’的信号由比如电容器C42和C43分别电容耦合到节点720和730。一恒定偏压分量Vb通过电阻耦合,即分别通过电阻器R41、R42、R44、R43、R49和R40,被从节点550处的DC电压源VB提供给所述输出端口710-720、740-730以及700-700’。占空比控制信号τ-C通过电阻耦合至少在所述710-720和740-730两个输出端口处被叠加到所述偏压分量Vb上,即至少节点900由比如电阻器R45连接到节点710,且节点900’由比如电阻器R46连接到节点720。可任选地,另外(比如用电阻器R47和R48)把节点900电阻连接到节点730,而把节点900’经电阻连接到节点740。
可任选的附加输出端口700-700’(比如分别用电容器C45和C46)电容耦合到本机振荡器输入端口500-500’。
图7a的电路对混频器核心的工作影响如下。占空比控制信号τ-C对施加给混频器核心的开关晶体管的本机振荡器信号LO的DC电平加以调整,由于更多(或更少,视情况而定)的本机振荡器信号位于开关晶体管的开关阈值之上,这改变了开关的占空比。
在图示的实施例中,占空比控制信号τ-C是差动的。例如,把图6a和图7a的电路组合在一起考虑,M41是由受τ-C+调整的LO+所控制,而M42是由受τ-C-调整的反相LO-所控制。这种连接的结果是使占空比得到调整,特别是在彼此同向移动的晶体管M41和M42的开关功能的对应边缘中的占空比得到调整,以使调整之后的M41和M42仍然会同时开关(即使晶体管之间有些失配)。
在图7a所示的实施例中,占空比控制信号τ-C还被施加于混频器核心的另一对晶体管,即M43和M44。具体而言,M43是由受τ-C+调整的LO-控制,而M44是由受τ-C-调整的LO+控制。在M43与M44对内,其行为与M41、M42这一对的相同。
比较这两对晶体管,其配置如此当两个开关晶体管(每对中一个),比如M41和M43,被连接起来以驱动同一输出时,这两个晶体管的本机振荡器信号(理想情况下它们反相)均由同一个信号(此例中为τ-C+)调整,这意味着如果该调整信号升高,则这两个晶体管的占空比(即它们接通的时间所占的比例)也都升高,反之亦然。正如上面所指出过的,理想的情况是两对开关具有彼此互补的占空比的时候,例如当驱动同一输出的晶体管,如M41及M43具有互补占空比的时候。此时,由对阻塞信号进行非线性度包络检波而产生的乱真信号在离开混频器核心的正负输出端600及600’时是相等的,因此被相互抵消。占空比调整信号被设置在如下详述的因反馈布置而导致乱真信号的抵消的水平。请注意,尽管此时占空比是互补的,但总的来说它们并非象在平衡情况中那样是50%。
(M42和M44各自以分别与M41和M43互补的方式开关,因此它们相互间的关系和M41与M43间的关系一样,即在由反馈布置而取得的理想点处,M42与M44也以相互互补的方式开关。)同样如上所述,只对混频器核心的两对晶体管中的一对进行占空比调整也是可能的。对该对晶体管进行调整直到发生乱真信号的抵消,预期这也正是M41与M43以相互互补的方式开关之时。在图7a的电路的情况下,只需不把τ-C连接到节点730-740上就能实现这种设置。
图7b中示出了所述占空比控制电路G的第二较佳实现。在该实现中,本机振荡器信号LO首先被第一可变电路元件τ1延迟。τ1和LO的输出由第一NAND(与非)逻辑电路进行NAND,该NAND逻辑电路的输出被第二延迟电路元件τ2延迟。第二延迟电路元件τ2的输出以及第一NAND逻辑的输出进一步由第二NAND逻辑电路进行NAND,该第二NAND逻辑电路的输出电容耦合到节点720。所述第二NAND逻辑电路的输出进一步由一反相器反相,该反相器的输出电容耦合到节点710。另外,延迟电路元件τ1的输出电容耦合到节点730。同一τ1输出也由一逻辑反相器反相,该逻辑反相器的输出电容耦合到节点740。占空比控制电路D的输出节点710、720、730和740还电阻耦合到一个提供DC偏压的恒压源VB。延迟元件τ1和τ2两者或两者之一均可具有由占空比控制输入端900-900’控制的可变延迟,以使所述输出端710-720的占空比可以受τ1和τ2之差的控制。(通过把710-720与740-730的角色互换,可以改为控制输出端口740-730的占空比,同时仍达到对所述有效换向功能实现互补占空比的同样目的)。
图7c是示出图7b的电路中各级处的信号的波形图。在图中,τ1和τ2分别代表由延迟元件τ1和τ2提供的延迟。前四个轨迹示出当τ1等于一个特定间隔Δ时电路的几个前端节点处的波形,后三组双轨迹表示当τ2>τ1、τ1=τ2、τ1<τ2的三种情况下在几个后端节点处所得的波形。
图7b的电路只对混频器核心中两对晶体管中的一对晶体管的占空比进行调整,前面已解释过,这已经足以抵消乱真信号。提供相似的逻辑电路以调整另一对晶体管的占空比也是可能的。同样,当M41的占空比增大时,M43的占空比也增大,反之亦然。
图7b的较佳实施例具有单端电路。然而,本领域的技术人员会很清楚,以公知的符号示出的所述逻辑及延迟功能也可容易地以通常在RF应用中优选的差动电路形式来实现。
在图7b电路中,本机振荡器信号LO的占空比在它施加于混频器前已被调整,这与图7a的电路不同,在图7a中,偏压调整影响混频器晶体管的开关时刻。
图7d示出了占空比控制电路G的第三实施例,它是图7a所示的实施例的一种变体。为了这个变体,混频器核心作了如图6b所示的修改(即混频器核心D3),见下文便会清楚。
在第一实施例中,占空比控制电路在本机振荡器施加于混频器核心的晶体管之前把占空比控制信号τ-C+/τ-C-叠加到本机振荡器信号LO+/LO-上。在此第三实施例中,大致如前一样地把本机振荡器信号施加于混频器核心的晶体管,只是占空比控制信号被施加于混频器核心的晶体管的衬底接线端。
现在详细参考图7d及图6b,本机振荡器信号LO+/LO-通过各自的电容器C45及C46电容耦合到混频器核心的晶体管上,如前一样,晶体管M41和M44的栅极接收LO+,而M42及M43接收LO-。(注意,与图7a及6a相比,这里为本机振荡器信号使用了半数的耦合电容器)。这几对栅极分别通过由各自的电阻器R49及R40连接到偏压VC(560)上来加偏压。
尽管占空比控制信号连接到混频器核心D3的晶体管的衬底接线端,但这种连接是通过与第一实施例中所用的相似的无源网络来实现的(比较图7d和图7a)。τ-C+经由串联连接到恒定偏压VB(550)的电阻器R45和R41所组成的分压器连接到M41的衬底接线端,且M41的衬底接线端连接到这些电阻器之间的节点710。晶体管M43的衬底接线端也连接到节点710,因此也以同样的方式由τ-C+供给。(在图7d中,因为这些电阻器执行相似的功能,因此对它们给予与图7a中的相似的参考标号。)τ-C-类似地经由同样串联连接到恒定偏压VB(550)的电阻器R46和R42所组成的分压器连接到M42和M44的衬底接线端,且M42和M44的衬底接线端连接到这些晶体管之间的节点720。
两分压器在占空比控制信号被施加于混频器核心晶体管的衬底接线端之前,对它们进行位移和缩放。(至少在原理上,可以安排由互阻抗放大器E和低通滤波器F来提供占空比控制信号而无需位移和缩放。在这种情况下,图7d中所示的占空比控制电路G的左半部就成了仅提供低通滤波器F的输出到混频器核心的正确路线的节点。同样,至少在原理上,也可以安排让本机振荡器提供本机振荡器信号而无需上述位移和缩放。在这种情况下,图7d中所示的占空比控制电路G的右半部就成为仅提供本机振荡器输入端口500-500’的正确路线的节点)。
两个衬底接线端710、720也都分别由电容器C41、C42各自连接到偏压VB上。这在占空比控制信号施加于衬底接线端之前提供了对该信号的低通滤波。(当然,尽管这些电容器并不像图7a中标有类似标号的电容器那样耦合本机振荡器信号,但因为图7a中的这些电容器也提供了对占空比控制信号的低通滤波,因而仍对它们标上了类似的标号)。
现在参考图6b。当施加于混频器核心D3的晶体管的衬底接线端的占空比控制信号变化时,它们对那些晶体管的阈值电压进行调整,且由于晶体管的输出(即漏极电流)取决于栅极电压和阈值电压之差,因此当以此方式调整阈值电压时,其效果又是本机振荡器信号位于阈值电压之上的时间所占比例更多或更少,因此晶体管的占空比也受到调整。
(图7a的晶体管其实也有衬底接线端。由于它们较佳地是NMOS晶体管,,因此其(P型)衬底电极(或体电极)是接地的,以免源-体极之间或漏-体极之间的PN结的正向偏置。由于这对于电路的运作没有影响,所以图中省略了衬底接线端(惯例如此)。在现代CMOS技术中,NMOS和PMOS晶体管大多做在阱内实现(对NMOS晶体管为P阱,对PMOS晶体管为N阱)。一特定晶体管的衬底如是在单独的阱内形成的,则可以与其它晶体管的衬底隔离开。现在回到图7d及6b的电路,其衬底接线端被施加了占空比控制信号的那些晶体管较佳地在独立的阱中隔离开。)把信号连接到衬底接线端从理论上说会冒源-体极之间或漏-体极之间的PN结正向偏置的风险。该风险通过在设计时限制占空比控制信号的大小,并在偏压设置(在此由图7d的无源网络和电压VB提供)时格外注意来降到最低。
于是,在所有这三个实施例中,占空比控制信号和本机振荡器信号相互协调来控制混频器核心晶体管的开关。在第一和第三实施例中,这是通过把占空比控制信号施加于本机振荡器信号以调整它们对晶体管进行开关的阈值来实现的,这两个实施例的区别在于占空比控制信号是在什么地方施加于本机振荡器信号的。在第二实施例中,把占空比控制信号施加于本机振荡器信号以改变它们的占空系数(markspace ratio)。
图8a示出了互阻抗放大器E的一个较佳实现,该互阻抗放大器E把来自混频器核心D的输出电流转换成总混频器电路10的输出电压BB。两个电流源为从所述混频器核心D到电压源VDDDC电流提供了偏压路径。(将它们连接到110-GND的选择表示电流源可以被电流宿取代)。互阻抗放大器包括运算放大器,确定互阻抗的反馈电阻器R61、R62,以及与所述反馈电阻器一起提供衰减带外阻塞信号所需的低通滤波的反馈电容器C61、C62。阻塞信号也已被混频器降频(但是未降到基带本身),且在这种较低频率下它们更容易从期望信号(这当然是在基带)中滤出。可任选地,由斩波器时钟信号驱动的开关可以既在所述运算放大器的输入终端之前又在同一放大器的输出终端之后,以使所述放大器的偏移效应得以减轻。
图8b示出了互阻抗放大器E的另一个较佳实现,其中由电阻器R65、R66把互阻抗输入与所述混频器核心D分开。图8a的偏置电流源用并联元件R63、C63及R64、C64取代,以便除了提供DC偏压路径之外还在互阻抗放大器之前提供对阻塞信号的额外滤波。图8a的所述可任选开关也可以在所述运算放大器的输入终端之前并在其输出终端之后,以减轻所述放大器的偏移效应。
图9示出了积分器/低通滤波器F的一个较佳实现,该积分器/低通滤波器被设计成能通过同时去除期望信号和残余的阻塞信号来从所述BB输出中提取DC分量。所述DC分量中所含的关于由混频器核心的偶次非线性度所造成的乱真DC和低频响应的信息由所述占空比控制输入端900-900’用来最小化所述乱真响应。如果此分量不为零,则积分器会调整占空比调整信号的电平,而该调整信号又会调整混频器核心的占空比,以使其以更加互补的方式开关并减少DC分量。
图10示出了整个高IP2混频器10的较佳实现的示意图。它包括图2的各块的特定实现,这些特定实现已在图3a、图4b、图5a(它本身较佳地被实现为图5b的电路一积分器C3在图10中未示出,但较佳地包括在内)、图6a(仅有左半部,它就是占空比受控的混频器核心)、图7a(但没有虚线标出的元件)、图8b及图9中示出。
尽管所述较佳实施例在图10中被示为使用NMOS场效应晶体管,但本领域的技术人员显而易见的是在不脱离本发明的前提下,类似的混频器的全PMOS、全NPN或PNP BJT晶体管的实现都是可能的。事实上,图10所示的各晶体管的NMOS、PMOS及BJT实现的混合能使本领域的技术人员更好地利用可供他选择的工艺和电源电压。
尽管已经图示并描述了某些较佳实施例,但应当理解,还可以在不脱离如所附权利要求书中描绘的本发明的前提下对这些方案做出许多变更和修改。
权利要求
1.一种双平衡混频器,包括混频器核心,所述混频器核心具有射频输入端口、本机振荡器输入端口输出端口,所述混频器核心包括第一对开关晶体管,所述第一对开关晶体管被连接成响应于本机振荡器信号一般以彼此反相的方式开关,并且该对被连接成对所述混频器核心的射频输入端口上的该对共用的第一终端上存在的射频信号进行开关,所述混频器核心还包括第二对开关晶体管,所述第二对开关晶体管被连接成响应于所述本机振荡器信号一般以彼此反相的方式开关,并且该对被连接成对所述混频器核心的射频输入端口上的该对共用的第二终端上存在的射频信号进行开关,其中所述第一对和第二对中的每一对的一个晶体管被连接成一般以彼此反相的方式把所述射频信号切换到所述输出端口的第一终端,而所述第一对和第二对中的每一对的另一个晶体管被连接成一般以彼此反相的方式把所述射频信号切换到所述输出端口的第二终端;DC检测电路,所述DC检测电路被连接成接收所述混频器核心的输出,以及响应于所述混频器核心的输出中的DC电平来提供占空比调整信号;占空比控制电路,所述占空比控制电路具有本机振荡器输入端口、被连接成接收所述占空比调整信号的输入端口、以及被连接成将在所述占空比控制电路的本机振荡器输入端口上所接收到的所述本机振荡器信号施加于所述混频器核心的本机振荡器输入端口的输出端口,其中所述占空比控制电路被设置成将所述占空比调整控制信号施加于所述本机振荡器信号以相对于所述混频器核心的第二对晶体管的占空比来改变所述混频器核心的第一对晶体管的占空比。
2.如权利要求1所述的双平衡混频器,其特征在于所述占空比控制信号被连接成将所述占空比调整控制信号施加于在其本机振荡器输入端口上所接收到的本机振荡器信号,以及将所得的本机振荡器信号施加于所述第一对晶体管。
3.如权利要求2所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成将所述占空比调整信号施加于所述本机振荡器信号,以增大所述第一对晶体管中的一个晶体管的占空比,同时减小另一个晶体管的占空比,反之亦然。
4.如权利要求2或3所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成不把所述占空比调整信号施加于已被施加到所述第二对晶体管的本机振荡器信号。
5.如权利要求2或3所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成将所述占空比调整控制信号施加于在其本机振荡器输入端口上所接收到的本机振荡器信号,以及将所得的本机振荡器信号施加于所述第二对晶体管。
6.如权利要求5所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成将所述占空比调整信号施加于所述本机振荡器信号,以增大所述第二对晶体管中的一个晶体管的占空比,同时减小另一个晶体管的占空比,反之亦然。
7.如前述权利要求1至6中任一项所述的双平衡混频器,其特征在于,所述占空比调整电路包含被连接成将所述占空比调整信号添加到所述本机振荡器信号以调整它们的DC电平的元件。
8.如权利要求1至6中任一项所述的双平衡混频器,其特征在于,所述占空比调整电路包含被连接成在所述本机振荡器信号被施加于所述混频器核心之前对它们的占空比进行调整的元件。
9.如权利要求1所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成将所述占空比调整信号施加于所述混频器核心,以调整所述第一对晶体管的阈电压,从而将这些信号施加于所述本机振荡器信号并调整这些晶体管的占空比。
10.如权利要求9所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成将所述占空比调整信号施于所述混频器核心,以增大所述第一对晶体管中的一个晶体管的阈电压,同时减小另一个晶体管的阈电压,反之亦然。
11.如权利要求9或10所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成不影响所述第二对晶体管的阈值。
12.如权利要求9或10所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成影响所述第二对晶体管的阈值。
13.如权利要求12所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成施加所述占空比调整信号以增大所述第二对晶体管中的一个晶体管的占空比,同时减小另一个晶体管的占空比,反之亦然。
14.如权利要求13所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成将所述占空比调整信号施加于所述混频器核心以增大所述第二对晶体管中的一个晶体管的阈电压,同时减小另一个晶体管的阈电压,反之亦然。
15.如权利要求9至14中任一项所述的双平衡混频器,其特征在于,所述占空比调整电路被连接成将所述占空比调整信号施加于所述混频器核心的晶体管的衬底接线端。
16.如前述权利要求中任一项所述的双平衡混频器,当从属于权利要求4或11时例外,其特征在于,所述占空比调整电路被连接成将所述占空比调整信号施加于所述本机振荡器信号,以同时增大所述第一对晶体管和所述第二对晶体管中连接到所述混频器核心的输出端口的第一输出终端的晶体管的占空比,并在其它时候同时减小这两个晶体管的占空比。
17.如前述权利要求中任一项所述的双平衡混频器,其特征在于,所述DC检测器包含积分器或低通滤波器。
18.如前述权利要求中任一项所述的双平衡混频器,其特征在于,包括连接到所述混频器核心的输出端口以将所述混频器核心的输出传递到所述DC检测器的输入的滤波器,其中所述滤波器被设置成能通过高于所述DC检测器所通过的频率,但阻塞更高的频率。
19.如权利要求18所述的双平衡混频器,其特征在于,所述滤波器的输出为所述双平衡混频器提供基带输出端口。
20.如前述权利要求中任一所述的双平衡混频器,其特征在于,所述占空比控制信号代表单一值。
21.如权利要求20所述的双平衡混频器,其特征在于,所述占空比控制信号是差动信号。
22.一种双平衡混频器,包含混频器核心和被连接成将信号输入到所述混频器核心的输入级,所述输入级包括用于接收信号的输入终端,被连接成将所述信号从所述输入终端传送到所述混频器核心的晶体管,连接于所述晶体管的控制输入端和所述输入终端之间的反馈电路,其中所述反馈电路包括可操作以堵塞相对较高频率的信号并通过相对较低频率的信号的滤波器。
23.如权利要求22所述的双平衡混频器,其特征在于,所述滤波器是低通滤波器。
24.如权利要求22所述的双平衡混频器,其特征在于,所述滤波器是带通滤波器。
25.如权利要求22至24中任一项所述的双平衡混频器,其特征在于,所述反馈电路包括放大器。
26.如权利要求25所述的双平衡混频器,其特征在于,所述放大器的输出端连接到所述晶体管的控制输入端,而所述滤波器连接于所述输入级的输入终端和所述放大器的输入端之间。
27.如权利要求26所述的双平衡混频器,其特征在于,所述放大器具有一反相输入端,而所述滤波器连接于所述放大器的该输入端。
28.如权利要求22至27中任一项所述的双平衡混频器,其特征在于,所述晶体管是场效应晶体管,且所述控制终端是所述晶体管的栅极。
29.如权利要求22至28中任一项所述的双平衡混频器,其特征在于,所述晶体管是场效应晶体管,且所述双平衡混频器的输入终端是所述晶体管的源极。
30.如权利要求22至27中任一项所述的双平衡混频器,其特征在于,所述晶体管是双极晶体管,且所述控制终端是所述晶体管的基极。
31.如权利要求22至27中任一项或如权利要求30所述的双平衡混频器,其特征在于,所述晶体管为双极晶体管,且所述双平衡混频器的输入终端是所述晶体管的发射极。
32.如权利要求22至31中任一项所述的双平衡混频器,其特征在于,包括连接于电源终端和所述输入级的输入终端之间的偏压电路。
33.如权利要求32所述的双平衡混频器,其特征在于,所述偏压电路包含电阻器。
34.如权利要求33所述的双平衡混频器,其特征在于,所述偏压电路包括与所述电阻器串联的电感器。
35. 如权利要求22至34中任一项所述的双平衡混频器,其特征在于,包含两个所述输入级,其中所述两个输入级被连接成将信号传送到所述混频器核心的一对差动输入端中相应的两端。
36.如权利要求22至35中任一项所述的双平衡混频器,其特征在于,每个输入级包含一所述放大器,且所述混频器包含被连接成响应于所述两个放大器的输入偏移并向所述放大器提供输出以减小这种偏移的偏移积分器。
37.如权利要求1至21中任一项以及如权利要求22-36中任一项所述的双平衡混频器。
38.如前述权利要求中任一项所述的双平衡混频器,其特征在于,包含具有输入端口和输出端口的输入滤波器,所述输入滤波器被连接成在信号通过所述混频器核心的输入端口或其射频输入端口之前对信号进行滤波,所述滤波器通过相对较高频率的信号,并阻塞相对较低频率的信号。
39.如权利要求38所述的双平衡混频器,其特征在于,所述滤波器是高通滤波器。
40.如权利要求38所述的双平衡混频器,其特征在于,所述滤波器是带通滤波器。
41.如权利要求38至40中任一项所述的双平衡混频器,其特征在于,所述输入滤波器是无源网络。
42.如权利要求41所述的双平衡混频器,其特征在于,所述滤波器包含连接于其输入端口和输出端口之间的电容器。
43.如权利要求42所述的双平衡混频器,其特征在于,所述滤波器还包含与所述电容器串联连接于其输入端口和输出端口之间的电感器。
44.如权利要求41至43中任一项所述的双平衡混频器,特征在于,包含连接于其输入端口和电源终端之间的电感器。
45.如权利要求38至44中任一项所述的双平衡混频器,其特征在于,包含两个所述输入滤波器,其中所述两个输入滤波器被连接成将信号传送到所述混频器核心的一对差动输入端中相应的两端。
46.如权利要求38至45中任一项所述的双平衡混频器,当从属于权利要求22至36中的任一项时,其特征在于,所述输入滤波器的输出端口连接到所述输入级的输入终端。
47.如权利要求38至46中任一项所述的双平衡混频器,其特征在于,包含其输出端连接到所述输入滤波器的输入端口的输入放大器。
48.如权利要求47所述的双平衡放大器,其特征在于,其输出端连接到所述输入滤波器的输入端口的所述输入放大器是互导放大器。
49.一种包括如前述权利要求中任一项所述的双平衡放大器的集成电路。
50.一种包括如前述权利要求1至48中任一项所述的双平衡混频器或包括如权利要求49所述的集成电路的无线电接收器。
51.一种包含如权利要求1至48中任一项所述的双平衡混频器,或包含如权利要求49所述的集成电路,或包括如权利要求50所述的无线电接收器的移动终端站。
全文摘要
一种双平衡混频器具有被连接成接受混频器核心的输出的DC检测电路。施加所检测到的电平以调整混频器核心的晶体管的占空比。在一个示例中,该调整电平被添加到施加于该核心的本机振荡器信号中。在另一示例中,施加该电平以调整混频器核心的晶体管的阈值。在又一示例中,在本机振荡器信号被施加于混频器核心之前调整其占空比。还提供了用于双平衡混频器核心的输入级,该输入级包括具有低通滤波器作为反馈电路的晶体管。
文档编号H03D7/14GK1981429SQ200580022915
公开日2007年6月13日 申请日期2005年7月1日 优先权日2004年7月6日
发明者黄秋庭, 于尔根罗金 申请人:Acp尖端电路钻研股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1